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Abstract. We exhibit an orthonormal basis of cyclic gradients and a (non-orthogonal) basis of the homoge-
neous free divergence-free vector field on the full Fock space and determine the dimension of Voiculescu’s
free divergence-free vector field of degree k or less. Moreover, we also give a concrete formula for the orthog-
onal projection onto the space of cyclic gradients as well as the free Leray projection.

Résumé. Nous présentons une base orthonormée de gradients cycliques et une base (non orthogonale) du
champ de vecteurs libre homogène à divergence nulle sur l’espace de Fock plein et déterminons la dimension
du champ de vecteurs libre au sens de Voiculescu à divergence nulle de degré k ou moins.

En outre, nous donnons une formule concrète pour la projection orthogonale sur l’espace des gradients
cycliques ainsi que pour la version libre de la projection de Leray.
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1. Introduction

In the 1980s, Voiculescu introduced free probability theory to address the free group factor
isomorphism problem (see [5]). Within this theoretical framework, the concept of the free semi-
circular system emerges, defined as a tuple of freely independent semi-circular distributions given
by 1

2π

p
4− t 2 1[−2,2] dt (with the Lebesgue measure dt ). The free semi-circular system plays a role

analogous to independent Gaussian distributions, as demonstrated in the free analogues of the
central limit theorem, Wick’s theorem, and the Stein equation.

In the 1990s, Voiculescu also introduced free probabilistic analogues of entropy and Fisher’s
information measure, naming them free entropy and free Fisher’s information measure, re-
spectively (see a survey article [9]). In particular, Voiculescu [6] introduced the so-called non-
microstates free entropy. In this approach, Voiculescu introduced a certain non-commutative
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differential operator, which is called the free difference quotient and plays the role of a non-
commutative counterpart of Hilbert transform, in order to define the free Fisher’s information
measure.

Then, the study of the cyclic derivative associated with the free difference quotient naturally
emerged in relation to free entropy (see [7, 8]). In the work [7], Voiculescu determined the
range of the cyclic gradient associated with the free difference quotient and established a certain
exact sequence, which Mai and Speicher [4] and the first-named author [2] revisited in more
general contexts. In the work [8], Voiculescu studied more geometric aspects of cyclic gradients
associated with the free difference quotient. In particular, he introduced the notion of the free
divergence-free vector field (originally called τ-preserving non-commutative vector fields) which
is a free probabilistic analogue of the divergence-free vector field, and he showed that, for a vector
in the free divergence-free vector field, the associated derivative exponentiates a one-parameter
automorphism of a free group factor.

This work was motivated by Voiculescu’s work [10]. The paper [10] gave a free probabilis-
tic analogue of the Euler equation (called free Euler equation) of ideal incompressible fluids
based on the techniques developed in [7, 8] with replacing Euclidean space Rn with a free semi-
circular system s1, s2, . . . , sn on the full Fock space, following the method of [1]. Recently, Jekel-
Li-Shlyakhtenko [3] extended Voiculescu’s framework to tracial non-commutative smooth func-
tions, and they connect a solution of the free Euler equation with a geodesic in the free Wasser-
stein manifold. In our quest for examples of (non-stationary) solutions of the free Euler equa-
tion, we realized that it is difficult to analyze the free probabilistic analogue of Leray projection
(called free Leray projection), which is an ingredient of free Euler equation and the orthogonal
projection from the non-commutative L2-space generated by a free semi-circular system onto
the free divergence-free vector field. Hence, we tried to understand the structure of the free
divergence-free vector field. In [8], Voiculescu gave linearly independent sets of vectors in the
free divergence-free vector field represented on the full Fock space. However, it was not clear
whether they span the whole free divergence-free vector field or not.

The purpose of this note is to clarify the dimensions of the homogeneous parts of the free
divergence-free vector field and deduce an exact formula for the free Leray projection. To show
this, we focus on the space of cyclic gradients whose dimension can be computed by a group
action of cyclic groups on words of finite length. We hope that our results will be used to find
concrete solutions to the free Euler equation in future work.

2. Preliminaries

In this section, we recall some basic notations and some facts from [8, 10]. The full Fock space
F (Cn) over Cn is the Hilbert space defined as follows:

F (Cn) =C1⊕⊕
k≥1

(Cn)⊗k ,

where 1 is the vacuum vector. Throughout this note, we fix an orthonormal basis {e1, . . . ,en} of
Cn , and { f1, . . . , fn} denotes the standard basis of Cn , i.e., the i -th component of fi is 1 and other
components are 0.

For any n ∈ N, we set [n] = {1,2, . . . ,n}. We denote by [n]∗ the free monoid with the identity
ϵ and n generators 1, . . . ,n, that is, [n]∗ = {ϵ}∪ {i1i2 · · · ik |k ∈ N, i j ∈ [n], 1 ≤ j ≤ k}. For any word
w = i1 · · · ik ∈ [n]∗, we define the length of w by k (the length of ϵ is defined by 0), and [n]k denotes
the subset of [n]∗ which consists of all elements whose lengths are k. For any w ∈ [n]∗ and k ∈N,
wk denotes the k-product of w , that is, w · · ·w . In addition, for the identity ϵ and i1 · · · ik ∈ [n]∗,
let eϵ and ei1···ik denote the vacuum vector 1 and ei1 ⊗ei2 ⊗·· ·⊗eik , respectively.
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Let l j and r j denote the left and right creation operator with respect to e j , respectively, for
each j = 1, . . . ,n. Namely, for each w ∈ [n]∗, l j ew and r j ew are given by

l j ew = e j w ,

r j ew = ew j .

Set s j = l j + l∗j for each j = 1, . . . ,n. Then, {s1, . . . , sn} becomes a free semi-circular system with
respect to the vacuum state τ(·) := 〈 · 1,1〉. Let C〈s1, . . . , sn〉 =Cs

〈n〉 denote the unital (algebraic) ∗-
subalgebra of B(F (Cn)) generated by {1}∪ {s1, . . . , sn} and by M the von Neumann subalgebra of
B(F (Cn)) generated byCs

〈n〉. For each k ∈Z≥0, we define (Cs
〈n〉)k as the subspace of homogeneous

polynomials of degree k in Cs
〈n〉.

We then work in the non-commutative L2-space L2(M ,τ). We have the unitary isomorphism
U : L2(M ,τ) → F (Cn) which sends an element Uk1 (si1 ) · · ·Ukp (sip ) to e

i
k1
1 i

k2
2 ···i kp

p
where i1, . . . , ip ∈

[n] with i j ̸= i j+1, k1, . . . ,kp ∈ N, and {Uk (t )}∞k=0 are the Chebyshev polynomials (of degree k) of
the second kind, which are orthogonal to each other with respect to the semi-circular distribution
([8, section 1.4]).

In a similar way, let C〈l1, . . . , ln〉 =Cl
〈n〉 denote the unital subalgebra of B(F (Cn)) generated by

{1}∪{l1, . . . , ln} and (Cl
〈n〉)k denotes the subspace of homogeneous polynomials of degree k inCl

〈n〉.
Now, we have two cyclic gradients δs = (δs

j )n
j=1 and δl = (δl

j )n
j=1 with respect to s1, . . . , sn and with

respect to l1, . . . , ln defined by

δs (si1 si2 · · · sip ) =
p∑

j=1
si j+1 · · · sip si1 si2 · · · si j−1 ⊗ fi j ∈ (Cs

〈n〉)
n ,

δl (li1 li2 · · · lip ) =
p∑

j=1
li j+1 · · · lip li1 li2 · · · li j−1 ⊗ fi j ∈ (Cl

〈n〉)
n ,

where i1, . . . , ip ∈ [n] and we identify (Cs
〈n〉)

n ≃ Cs
〈n〉⊗Cn and (Cl

〈n〉)
n ≃ Cl

〈n〉⊗Cn . In general, δl is
different from δs as an operator, but we have the following fact:

Theorem 1 ([8, Theorem 7.4]). We have (δsCs
〈n〉)[1⊕·· ·⊕1] = (δlCl

〈n〉)[1⊕·· ·⊕1] in F (Cn)n .

Following [8, 10], we write Vect(Cs
〈n〉) = (Cs

〈n〉)
n . The next object is the main target of this note.

Definition 2 ([8, Section 3.5], [10, Section 2]). The free divergence-free vector field (with respect
to a free semi-circular system) is defined as follows.

Vect(Cs
〈n〉|τ) =

{
(p1, . . . , pn) ∈ Vect(Cs

〈n〉)

∣∣∣∣∣ ∑
1≤ j≤n

τ(p jδ
s
j [r ]) = 0 for all r ∈Cs

〈n〉

}
.

By definition, it is clear that Vect(Cs
〈n〉|τ) = Vect(Cs

〈n〉)⊖δsCs
〈n〉. Moreover, we have the next fact:

Theorem 3 ([8, Theorem 7.5]). We have

L2(M ,τ)n ⊖δsC〈〉 ≃F (Cn)n ⊖δsC〈〉[1⊕·· ·⊕ 1] =
{(

(l∗j − r∗
j )ξ

)n

j=1

∣∣∣∣ξ ∈F (Cn)

}
.

In particular, we also have the orthogonal decomposition:

Vect(Cs
〈n〉|τ)[1⊕·· ·⊕1] = ⊕

k≥0
X (n)

k ,

where X (n)
k = [(Cn)⊗k ]n ⊖

(
δl (Cl

〈n〉)k+1[1⊕·· ·⊕1]
)
=

{(
(l∗j − r∗

j )ξ
)n

j=1

∣∣∣∣ ξ ∈ (Cn)⊗k+1
}

.
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We call X (n)
k the homogeneous free divergence-free vector field of degree k. Here is a conse-

quence of these available facts:

Lemma 4 ([8, Lemma 7.7]). We have ker
(
(θl )∗|(Cn )⊗k

) = ker
(
(I −R)|(Cn )⊗k

)
for k ≥ 1, where

θl is the linear map from F (Cn)n to F (Cn) such that θl [(ξ1, . . . ,ξn)] = ∑n
j=1(l j − r j )ξ j for any

ξ1, . . . ,ξn ∈F (Cn) and R is the cyclic permutation, that is, R(ei1i2···ip ) = eip i1···ip−1 .

We use the same notation R for the cyclic permutation on [n]∗ \ {ϵ}, that is, R(i1 · · · ik−1ik ) =
ik i1 · · · ik−1 for all i1 · · · ik ∈ [n]∗.

At the end of this section, we exhibit an interesting example of vectors in the free divergence-
free vector field, which is inspired by the classical case when the stream function is radially
symmetric.

Proposition 5. For any m ∈N, we have(
δs

2(s2
1 + s2

2)m

−δs
1(s2

1 + s2
2)m

)
∈ Vect(Cs

〈2〉|τ).

Proof. Throughout the proof, we suppress s in the notation δs
i and simply write δi for each

i ∈ [2]. We use the fact that the free semi-circular system (s1, s2) satisfies the analogue of the
Stein equation (cf. [6]):

τ[si P (s1, s2)] = τ⊗τ[∂i P (s1, s2)]

for any non-commutative polynomial P (s1, s2) where ∂i : Cs
〈2〉 → Cs

〈2〉 ⊗Cs
〈2〉 is the free (partial)

difference quotient which is a linear map defined for each monomial P by

∂i P = ∑
P=Asi B

A⊗B.

We also use the following relation between ∂i and δ j for any i , j ∈ [2] (see [4, Lemma 3.4]):

∂i ◦δ j =σ◦∂ j ◦δi

where σ :Cs
〈2〉⊗Cs

〈2〉 →Cs
〈2〉⊗Cs

〈2〉 is the flip defined by linear extension of σ(r1 ⊗ r2) = r2 ⊗ r1.
Now, we show the proposition by induction on m. When m = 1, we have (δ2(s2

1 + s2
2),−δ1(s2

1 +
s2

2)) = 2(s2,−s1). Then, for a given r ∈Cs
〈2〉, we obtain by the analog of the Stein equation,

τ[s2δ1r ]−τ[s1δ2r ] = τ⊗τ[∂2(δ1r )]−τ⊗τ[∂1(δ2r )],

which is equal to zero by the formula ∂i ◦δ j =σ◦∂ j ◦δi . This implies (δ2(s2
1 + s2

2),−δ1(s2
1 + s2

2)) ∈
Vect(Cs

〈2〉|τ) (one can also show this by using Theorem 3 with ξ = e12). Suppose that we have

(δ2 f ,−δ1 f ) ∈ Vect(Cs
〈2〉|τ) for f = (s2

1 + s2
2)k (1 ≤ k ≤ m). From the Leibniz rule of free difference

quotients (note that ∂i (s2
1 + s2

2) = si ⊗1+1⊗ si for i = 1,2), we have for f = (s2
1 + s2

2)m+1

(δ2 f ,−δ1 f ) = (m +1)[(s2
1 + s2

2)m v + v(s2
1 + s2

2)m]

where v = (s2,−s1). Therefore, for a given r ∈Cs
〈2〉, we want to show

τ[s2(δ1r )(s2
1 + s2

2)m]+τ[s2(s2
1 + s2

2)m(δ1r )]−τ[s1(δ2r )(s2
1 + s2

2)m]−τ[s1(s2
1 + s2

2)m(δ2r )] = 0. (1)
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By using the formula τ[si P (s1, s2)] = τ⊗τ[∂i P (s1, s2)], we have from the Leibniz rule,

τ[s2(δ1r )(s2
1 + s2

2)m] = τ⊗τ[(∂2(δ1r )) ·1⊗ (s2
1 + s2

2)m]

+
m∑

k=1
τ⊗τ[(δ1r )(s2

1 + s2
2)k−1(s2 ⊗1+1⊗ s2)(s2

1 + s2
2)m−k ],

τ[s2(s2
1 + s2

2)m(δ1r )] = τ⊗τ[(s2
1 + s2

2)m ⊗1 · (∂2(δ1r ))]

+
m∑

k=1
τ⊗τ[(s2

1 + s2
2)m−k (s2 ⊗1+1⊗ s2)(s2

1 + s2
2)k−1(δ1r )],

τ[s1(δ2r )(s2
1 + s2

2)m] = τ⊗τ[(∂1(δ2r )) ·1⊗ (s2
1 + s2

2)m]

+
m∑

k=1
τ⊗τ[(δ2r )(s2

1 + s2
2)k−1(s1 ⊗1+1⊗ s1)(s2

1 + s2
2)m−k ],

τ[s1(s2
1 + s2

2)m(δ2r )] = τ⊗τ[(s2
1 + s2

2)m ⊗1 · (∂1(δ2r ))]

+
m∑

k=1
τ⊗τ[(s2

1 + s2
2)m−k (s1 ⊗1+1⊗ s1)(s2

1 + s2
2)k−1(δ2r )].

Since odd moments of the free semi-circular system are zero, we have τ[si (s2
1 + s2

2)m−k ] = 0 for
i = 1,2, and thus we have

τ[s2(δ1r )(s2
1 + s2

2)m] = τ⊗τ[(∂2(δ1r )) ·1⊗ (s2
1 + s2

2)m]

+
m∑

k=1
τ[(δ1r )(s2

1 + s2
2)k−1s2]τ[(s2

1 + s2
2)m−k ],

τ[s2(s2
1 + s2

2)m(δ1r )] = τ⊗τ[(s2
1 + s2

2)m ⊗1 · (∂2(δ1r ))]

+
m∑

k=1
τ[(s2

1 + s2
2)m−k ]τ[s2(s2

1 + s2
2)k−1(δ1r )],

τ[s1(δ2r )(s2
1 + s2

2)m] = τ⊗τ[(∂1(δ2r )) ·1⊗ (s2
1 + s2

2)m]

+
m∑

k=1
τ[(δ2r )(s2

1 + s2
2)k−1s1]τ[(s2

1 + s2
2)m−k ],

τ[s1(s2
1 + s2

2)m(δ2r )] = τ⊗τ[(s2
1 + s2

2)m ⊗1 · (∂1(δ2r ))]

+
m∑

k=1
τ[(s2

1 + s2
2)m−k ]τ[s1(s2

1 + s2
2)k−1(δ2r )].

Then, the left-hand side of (1) is equal to

τ⊗τ[(∂2(δ1r )) ·1⊗ (s2
1 + s2

2)m]+τ⊗τ[(s2
1 + s2

2)m ⊗1 · (∂2(δ1r ))]

−τ⊗τ[(∂1(δ2r )) ·1⊗ (s2
1 + s2

2)m]−τ⊗τ[(s2
1 + s2

2)m ⊗1 · (∂1(δ2r ))]

+
m∑

k=1
τ[(s2

1 + s2
2)m−k ]

(
τ[(δ1r )(s2

1 + s2
2)k−1s2]+τ[s2(s2

1 + s2
2)k−1(δ1r )]

−τ[(δ2r )(s2
1 + s2

2)k−1s1]−τ[s1(s2
1 + s2

2)k−1(δ2r )]
)
.

By using the trace property of τ and the assumption of induction f = (s2
1 + s2

2)k , the sum in the
third and fourth lines is equal to 0. Moreover, by using the trace property of τ and the formula
∂i ◦δ j =σ◦∂ j ◦δi again, we have

τ⊗τ[(∂i (δ j r )) ·1⊗X ]−τ⊗τ[X ⊗1 · (∂i (δ j r ))] = 0
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for any X ∈ M and i , j ∈ [2]. Therefore, we can see the identity (1) for any r ∈ Cs
〈2〉, and

f = (s2
1 + s2

2)m+1 satisfies (δ2 f ,−δ1 f ) ∈ Vect(Cs
〈2〉|τ), which completes the induction. □

3. The dimension of homogeneous free divergence-free vector field

In this section, we exhibit an orthonormal basis of δl (Cl
〈n〉)k+1 ≃ δl (Cl

〈n〉)k+1[1 ⊕ ·· · ⊕ 1] and

compute the dimension of the homogeneous free divergence-free vector field X (n)
k of degree k for

each k ∈N and each n ∈N. The key point of our argument is that the cyclic gradient δl is invariant
under the cyclic permutation, i.e., δl (lRu) = δl (lu) for any u ∈ [n]∗ where we write lu = li1 li2 · · · lip

for u = i1i2 · · · ip . Note that the cyclic permutation R on [n]k induces a group action ofZk =Z/
kZ

on [n]k . Thus, we can decompose [n]k into the orbits of this action, and we have δl (lu) = δl (lu′ )
if u′ is in the orbit [u] =Zk u = {g u ∈ [n]k | g ∈Zk }.

In the following theorem, we see that δl (lu)[1⊕ ·· ·⊕1] is orthogonal to δl (lu′ )[1⊕ ·· ·⊕1] if u
and u′ are not in the same orbit. Moreover, we can normalize δl (lu)[1⊕·· ·⊕1] by using the order
of the stabilizer subgroup (Zk )u = {g ∈ Zk | g u = u} of u ∈ [n]k . Note that, if u′ ∈ [u], (Zk )u and
(Zk )u′ are conjugate, and therefore |(Zk )u | only depends on the orbit [u] but not on the concrete
representative u.

Theorem 6. For each k ∈Z≥0, the subset of vectors in
[
(Cn)⊗k

]n

Sk =
{

F ([u]) := δl (lu)[1⊕·· ·⊕1]

|(Zk+1)u |
p|[u]|

∣∣∣∣∣ [u] ∈ [n]k+1/
Zk+1

}
is an orthonormal basis of δl (Cl

〈n〉)k+1[1⊕·· ·⊕1].

Proof. First, we see that δl (lu)[1⊕ ·· · ⊕ 1] is orthogonal to δl (lu′ )[1⊕ ·· · ⊕ 1] if u′ ∉ [u]. Under
the identification

[
(Cn)⊗k+1

]n ≃ (Cn)⊗k+1 ⊗Cn , we write the orthonormal basis of
[
(Cn)⊗k+1

]n

by {ew ⊗ fi }w∈[n]k+1,i∈[n] (recall that { fi }n
i=1 denotes the standard basis). Then, for each u =

i1i2 · · · ik+1 ∈ [n]k+1, the cyclic derivative δl (lu)[1⊕·· ·⊕1] is written by

k+1∑
j=1

ei j+1···ik+1i1···i j−1 ⊗ fi j .

If δl (lu)[1⊕·· ·⊕1] is not orthogonal to δl (lu′ )[1⊕·· ·⊕1] with u = i1i2 · · · ik+1 and u′ = i ′1i ′2 · · · i ′k+1,
there exists j , j ′ ∈ [k +1] such that i j = i ′j ′ and

i j+1 · · · ik+1i1 · · · i j−1 = i ′j ′+1 · · · i ′k+1i ′1 · · · i ′j ′−1,

implying that u and u′ are in the same orbit. Therefore, δl (lu)[1 ⊕ ·· · ⊕ 1] is orthogonal to
δl (lu′ )[1⊕·· ·⊕1] if u′ ∉ [u].

Note that, if p is the minimal number (generator) in the stabilizer subgroup (Zk+1)u (which is
also a cyclic group), then we have u = vm with v = i1i2 · · · ip and m = |(Zk+1)u | and p = k+1

m = |[u]|.
Thus, we obtain

δl (lu)[1⊕·· ·⊕1] = m
p∑

j=1
ei j+1···ip vm−1i1···i j−1

⊗ fi j .

The minimality of p implies that all vectors in the sum are orthonormal, and hence we have

∥δl (lu)[1⊕·· ·⊕1]∥2 = m2p = |(Zk+1)u |2 · |[u]|.
Since δl (Cl

〈n〉)k+1[1⊕·· ·⊕1] is spanned by {δl (lu)[1⊕·· ·⊕1] |u ∈ [n]k+1} and F ([u]) does not depend

on the choice of words in the same orbit [u], we can conclude that Sk = {F ([u]) | [u] ∈ [n]k+1/
Zk+1}

is an orthonormal basis of δl (Cl
〈n〉)k+1[1⊕·· ·⊕1]. □
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Corollary 7. We have dim
(
δs (Cs

〈n〉)k+1

)
= dim

(
δl (Cl

〈n〉)k+1

)
=

∣∣∣[n]k+1/
Zk+1

∣∣∣, and hence

dim
(
X (n)

k

)
= nk+1 −

∣∣∣∣[n]k+1/
Zk+1

∣∣∣∣
for any n ∈N and k ∈Z≥0. Thus, we obtain that

dim
(
Vect(Cs

〈n〉|τ)≤k

)
= n(nk+1 −1)

n −1
−

k∑
j=0

∣∣∣∣[n] j+1/
Z j+1

∣∣∣∣ ,

where Vect(Cs
〈n〉|τ)≤k is the subspace of Vect(Cs

〈n〉|τ) of all elements whose degrees as polynomials
with respect to {si }n

i=1 are k or less.

Proof. It is a direct consequence from Theorem 6 with the facts that dim
[
(Cn)⊗k

]n = nk+1 and

that [(Cn)⊗k ]n =X (n)
k ⊕

(
δl (Cl

〈n〉)k+1[1⊕·· ·⊕1]
)

by Theorem 1. □

Remark 8. The number
∣∣[n]k/

Zk

∣∣ is equal to the number of necklaces of length k such that each
bead is chosen from n colors. From Burnside’s lemma, we have∣∣∣∣[n]k/

Zk

∣∣∣∣= 1

k

∑
g∈Zk

|([n]k )g |,

where ([n]k )g is the set of elements in [n]k which are fixed by g . Moreover, we have

|([n]k )g | = ngcd(g ,k),

where gcd(g ,k) is the greatest common divisor of g and k.

Thanks to the orthonormal basis in Theorem 6, we can compute the orthogonal projection
onto the subspace of cyclic gradients. Therefore, we can obtain a concrete formula for the free
Leray projection.

Corollary 9. For any

[ eu1
...

eun

]
∈F (Cn)n with u j ∈ [n]k j , we have

P
δl (C〈〉)[1⊕···⊕1]

([ eu1
...

eun

])
= ∑

1≤ j≤n

δl (l j u j )[1⊕·· ·⊕1]

k j +1
.

where P
δl (C〈〉)[1⊕···⊕1] denotes the orthogonal projection onto δl (C〈〉)[1⊕·· ·⊕ 1].

Proof. By linearlity of P
δl (C〈〉)[1⊕···⊕1], it suffices to confirm the desired identity for eui ⊗ fi ∈

(Cn)⊗k ⊗Cn with ui ∈ [n]k and i ∈ [n] (recall that { fi }n
i=1 denotes the standard basis of Cn). Note

that we have the orthogonal decomposition δl (Cl
〈n〉)[1⊕·· ·⊕1] =⊕

k≥0δ
l (Cl

〈n〉)k+1[1⊕·· ·⊕1] and

δl (Cl
〈n〉)k+1[1⊕·· ·⊕1] ⊂ (Cn)⊗k ⊗Cn . This implies

P
δl (C〈〉)[1⊕···⊕1]

(
eui ⊗ fi

)= Pδl (Cl
〈n〉)k+1[1⊕···⊕1]

(
eui ⊗ fi

)
.
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Since Sk = {F ([w]) | w ∈ [n]k+1/
Zk+1}, as we have seen in Theorem 6, is an orthonormal basis of

δl (Cl
〈n〉)k+1[1⊕·· ·⊕1],

〈
eui ⊗ fi ,F ([w])

〉 ̸= 0 implies [w] = [i ui ]. We also have
〈

eui ⊗ fi ,F ([i ui ])
〉=

1p
|[i ui ]| by the arguments in a similar fashion to the proof of Theorem 6. Hence we observe that

Pδl (Cl
〈n〉)k+1[1⊕···⊕1]

(
eui ⊗ fi

)= ∑
[w]∈[n]k+1 /Zk+1

〈
eui ⊗ fi ,F ([w])

〉
F ([w])

= 〈
eui ⊗ fi ,F ([i ui ])

〉
F ([i ui ])

= 1√|[i ui ]|
· δ

l (li ui )[1⊕·· ·⊕1]

|(Zk+1)i ui |
√|[i ui ]|

= δl (li ui )[1⊕·· ·⊕1]

k +1
,

where we use the well-known identity of the group action |[i ui ]| · |(Zk+1)i ui | = |Zk+1| = k +1. □

Let Π be the free Leray projection, which is the orthogonal projection onto the norm-closure
of the free divergence-free vector field in the full Fock space (see [10, section 3]). By definition,
we haveΠ= I −P

δl (C〈〉)[1⊕···⊕1], and therefore we obtain the following corollary.

Corollary 10. For any

[ eu1
...

eun

]
∈F (Cn)n with u j ∈ [n]k j , we have

Π

([ eu1
...

eun

])
= ∑

1≤ j≤n

(
eu j ⊗ f j −

δl (l j u j )[1⊕·· ·⊕1]

k j +1

)
.

Remark 11. We can also describe a (non-orthogonal) basis of the homogeneous free divergence-
free vector field X (n)

k on the full Fock space. Indeed, Lemma 4 tells us

(θl )∗ : ran
(
(I −R)|(Cn )⊗k+1

)−→ ran
(
(θl )∗|(Cn )⊗k+1

)
is a linear isomorphism. Here, note that ran

(
(θl )∗|(Cn )⊗k+1

)=X (n)
k , and hence

dim
(
ran

(
(I −R)|(Cn )⊗k+1

))= dim
(
X (n)

k

)
= nk+1 −

∣∣∣∣[n]k+1/
Zk+1

∣∣∣∣ .

Thus, in order to obtain a basis of X (n)
k , it suffices to find a basis of ran

(
(I −R)|(Cn )⊗k+1

)
. In [8],

Voiculescu introduced a linearly independent subset in X (n)
k by {(θl )∗(I −R)ew | w ∈Ωk+1} where

Ωk+1 = {w ∈ [n]k+1 | w ≺ Rw, w ̸= Rw} and ≺ is the lexicographic order. However, since we
have the decomposition [n]k+1 = {Rw = w} ⊔Ωk+1 ⊔ {w ≻ Rw, w ̸= Rw} with |{Rw = w}| = n
and |Ωk+1| = |{w ≻ Rw, w ̸= Rw}| due to the bijective map w1w2 . . . wk+1 7→ (n +1−w1)(n +1−
w2) · · · (n +1−wk+1), the cardinality ofΩk+1 is 1

2 (nk+1 −n), which is smaller than our dimension

nk+1 −
∣∣∣[n]k+1/

Zk+1

∣∣∣. In fact, we can modify the set Ωk+1 and take a basis of ran
(
(I −R)|(Cn )⊗k+1

)
by considering the action of Zk+1.

Proposition 12. The set B =⊔
[u]∈[n]k+1 /Zk+1

B[u], where

B[u] = {(I −R)ev = ev −eRv | v ∈ [u] \ {u}} ,

is a basis of ran
(
(I −R)|(Cn )⊗k+1

)
, and thus, the set B̃ =⊔

[u]∈[n]k+1 /Zk+1
B̃ [u], where

B̃ [u] =
{(
δ j ,i1 ei2···ik+1 −2δ j ,ik+1 ei1···ik +δ j ,ik eik+1i1···ik−1

)
1≤ j≤n

∣∣∣ i1i2 · · · ik+1 ∈ [u] \ {u}
}

,

is a basis of X (n)
k .
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Proof. Since |B | = nk+1−
∣∣∣[n]k+1/

Zk+1

∣∣∣= dim
(
ran

(
(I −R)|(Cn )⊗k+1

))
, we have to confirm only that

all elements of B are linearly independent. Remark that if [u] ̸= [v] in [n]k+1/
Zk+1, then B[u] and

B[v] are orthogonal to each other. Hence, it suffices to show that all the elements of B[u] are
linearly independent of each other for each [u] ∈ [n]k+1/

Zk+1.
Choose an arbitrary [u] ∈ [n]k+1/

Zk+1. Assume that
∑

v∈[u]\{u}α(v) · (I −R)ev = 0 in (Cn)⊗k+1

with α(v) ∈C. Let us write

[u] \ {u} = {v,Rv,R2v, . . . ,Rp v} ⊂ (Cn)⊗k+1 (p = [u]−2 and Rp+1v = u).

Remark that R i v ̸= R j v for any 0 ≤ i ̸= j ≤ p. Then, we observe that

α(v)ev +
∑

1≤ j≤p
(α(R j v)−α(R j−1v)) ·eR j v −α(Rp v)u = 0.

By the linear independence of {eu}u∈[n]∗ , we have α(R j v) = 0 for all 0 ≤ j ≤ p. Applying (θl )∗ =
(l∗j − r∗

j )1≤ j≤n to the basis B , we obtain B̃ as a basis of X (n)
k . □

Remark 13. In [8], Voiculescu introduced another linearly independent subset in X (n)
k . For

u = i0 · · · ik ∈ [n]k+1, let per(u) be the period of u, i.e. the least m ∈ {1, . . . ,k +1} such that is = it

whenever s ≡ t (mod m). Let ρ(per(u)) be the set of the non-unital roots of ζper(u) = 1 (we set
ρ(1) =;). Then, Voiculescu introduced the following set for the basis of X (n)

k{
per(u)−1∑

j=1
ζ j Fi j i j+1···ik i0···i j−1 | u = i0 · · · ik ∈ω(k +1),ζ ∈ ρ(per(u))

}
,

where Fw = (θl )∗(I −R)ew for w ∈ [n]∗ and ω(k +1) is defined by{
u = i0 · · · ik ∈ [n]k+1 | i0 · · · ik ≺ i j i j+1 · · · ik i0 · · · i j−1, j = 1, . . . ,k

}
.

Note that the element u in ω(k + 1) is the minimal element in the orbit of u with respect to
the lexicographic order, and thus there is a bijection between ω(k + 1) and [n]k+1/

Zk+1. Since
|ρ(per(u))| = per(u)−1 = |[u]|−1, the number of (u,ζ) such that u ∈ω(k +1) and ζ ∈ ρ(per(u)) is
given by∑

u∈ω(k+1)
|ρ(per(u))| = ∑

u∈ω(k+1)
(|[u]|−1) =

( ∑
u∈ω(k+1)

|[u]|
)
−|ω(k +1)| = nk+1 −

∣∣∣∣[n]k+1/
Zk+1

∣∣∣∣ ,

which coincides with our dimension.
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pp. 556–588.

[6] D. Voiculescu, “The analogues of entropy and of Fisher’s information measure in free
probability theory. V. Noncommutative Hilbert transforms”, Invent. Math. 132 (1998),
no. 1, pp. 189–227.

[7] D. Voiculescu, “A note on cyclic gradients”, Indiana Univ. Math. J. 49 (2000), no. 3, pp. 837–
841.

[8] D. Voiculescu, “Cyclomorphy”, Int. Math. Res. Not. 2002 (2002), no. 6, pp. 299–332.
[9] D. Voiculescu, “Free entropy”, Bull. Lond. Math. Soc. 34 (2002), no. 3, pp. 257–278.

[10] D. Voiculescu, “A hydrodynamic exercise in free probability: setting up free Euler equa-
tions”, Expo. Math. 38 (2020), no. 2, pp. 271–283.

https://arxiv.org/abs/2310.09841
https://arxiv.org/abs/2310.09841

	1. Introduction
	2. Preliminaries
	3. The dimension of homogeneous free divergence-free vector field
	Acknowledgment
	Declaration of interests
	References

