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Abstract. For projection-based linear-subspace model order reduction (MOR), it is well known that the
Kolmogorov n-width describes the best-possible error for a reduced order model (ROM) of size n. In this
paper, we provide approximation bounds for ROMs on polynomially mapped manifolds. In particular, we
show that the approximation bounds depend on the polynomial degree p of the mapping function as well
as on the linear Kolmogorov n-width for the underlying problem. This results in a Kolmogorov (n, p)-width,
which describes a lower bound for the best-possible error for a ROM on polynomially mapped manifolds of
polynomial degree p and reduced size n.

Résumé. Pour la réduction de 'ordre des modeles basée sur la projection d'un sous-espace linéaire, il est
bien connu que la largeur de Kolmogorov n décrit la meilleure erreur possible pour un modéle d’ordre réduit
de taille n. Dans cet article, nous fournissons des bornes d’erreur pour les modeles d’ordre réduit sur des
variétés construites par des applications polynomiales. En particulier, nous montrons que les bornes d’erreur
dépendent du degré polynomial p de I'application ainsi que de la largeur linéaire de Kolmogorov n pour le
probléme sous-jacent. Il en résulte une largeur de Kolmogorov (n, p), qui décrit une borne inférieure pour
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polynomiales du degré polynomial p et de taille réduite n.
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1. Introduction

Model Order Reduction (MOR) is used to derive surrogate models for high-dimensional full-order
models (FOMs). This allows to execute and speed up tasks which require to evaluate the FOM
multiple times for different parameters (e.g. in parameter studies, sampling-based uncertainty
quantification) or in real time (e.g. in model-based control). We denote the (possibly parametric)
FOM with P(u) in dependence of an arbitrary but fixed parameter vector p € 22 from a given
parameter domain 2 < R",n, € N. Typically, the FOM is a parametric system of partial or
ordinary differential equations and it is formulated on an N-dimensional Banach space (V, ||-||y)
over a field K, (K = R or K = C), with large dimension N € NU {oo}. The goal of MOR is to
approximate the so-called solution manifold

M= {x(p) € V: x(p) is solution of P(u) for parameter vector u € P]’} cV. @))

To this end, classical MOR determines a low-dimensional subspace V;, ¢ V withdim(V;) = n < N
and an efficiently computable reduced-order model (ROM) P, (n). The ROM is used to compute a
reduced solution to approximate the FOM solution x(u) € .#. The quality of this approximation
can be bounded from below by the Kolmogorov n-widths. These quantify how well a given subset
S c V can be approximated by an n-dimensional linear subspace of V with

dn(S;V):= inf sup inf ||x—x,lv.
n<V,  xeS Xn€Un
dim(Uy)=n

Since classical MOR relies on the approximation in a linear subspace of dimension #, it is
well-known that the best-possible approximation of all elements in the solution manifold ./ is
bounded from below by d,,(.4; V).

For some problem classes, there have been analytical results for the behavior of the Kol-
mogorov n-widths for increasing n. E.g. for linear coercive elliptic PDEs, (a) with one parame-
ter, it has been shown that d,(.#; V) decays at least exponentially, i.e., d,,(#; V) < Cexp~ " for
C,y >0, see [19, 20], or (b) with d € N parameters, the works [1, 21] prove for affinely decompos-
able problems that the decay is at least d,,(.#;V) < C exp~°" for C, ¢,y > 0. For linear transport
equations or linear wave equations, it is known that d,,(.#; V) can exhibit slow decays with a rate
of at most =12, see [13, 21]. Especially for the latter case, there have been various attempts to
“break” the Kolmogorov n-width barrier by, e.g., considering model reduction on manifolds.

The object of interest in the Kolmogorov n-width are the linear subspaces V,, ¢ V. These
can be characterized by a basis { vi}lflzl c V, via linear combination of basis vectors v; € Vj,
with basis coefficients X; € K. In MOR, the basis coefficients X = (Jvci);’zl € K" are referred
to as reduced coordinates and are determined by solving the according ROM. In this paper,
we are looking at Kolmogorov n-widths for a special type of submanifold for which the basis
coefficients X; are obtained from a polynomial of degree p € Ny. We refer to these submanifolds
as polynomially mapped. Moreover, we introduce an analogue to the Kolmogorov n-width, which
we refer to as polynomial Kolmogorov (n, p)-width which additionally depends on the order p
of the polynomial. For an overview of different versions of nonlinear widths, we refer to [7].
Additionally, we relate our polynomial Kolmogorov (n, p)-width to a polynomial analogue of the
nonlinear manifold width, first introduced in [9], at the end of this paper.

Note, that in previous works, polynomial approximations are ubiquitous in the field of nu-
merical approximation of high-dimensional problems. For example in the work [6], parametric
PDEs are approximated with a polynomial function. However, this approach is polynomial in
the parameter vector g while our approximation is polynomial in the reduced coordinates which
may depend arbitrarily complex on the parameter vector. It has been shown in [1] for classical
MOR (i.e. p=1 in our case) that such methods can perform significantly better than the methods
from [6].
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Moreover, there have been recent approaches using polynomial approximation for the re-
duced coordinates. In the work of [14], the general idea of using nonlinear mapping functions
and especially quadratic mapping functions (p = 2) has been described, but the model reduction
is only performed with piece-wise linear manifolds. Recently, the idea of model reduction with
quadratically embedded manifolds has been introduced in [17, 23] for structural nonlinear dy-
namics. In these references, the approaches are introduced for a special class of second-order
dynamical systems by e.g., using a linearized problem to compute vibration modes as linear part
of the basis and then constructing the quadratic extension via modal derivatives. A different pos-
sibility to derive the modal derivatives in the context of model reduction on quadratically em-
bedded manifolds has been derived in [8]. In [2] the authors perform projection based model
reduction on quadratically embedded manifolds, but their approach holds for more general set-
tings, e.g., first-order equations and transport-dominated flow problems. The same idea of us-
ing a quadratic mapping function has been used in [12], but there the authors perform operator
inference, i.e., the ROM is learned from data instead of projecting the FOM. In [16], a shifted op-
erator inference using quadratic mapping functions has been used to predict solar winds. In [4],
also operator interference is used, but the approach utilizes a state-dependent mass matrix that
depends on the derivative of the mapping function. A structure-preserving technique for Hamil-
tonian systems has been introduced in [24].

In the present work, we are particularly interested in what is the best-possible approximation
error of a solution manifold by a polynomially mapped manifold. We will derive an upper as well
as a lower bound for this approximation error, with both bounds being related to the classical
Kolmogorov n-width of the problem at hand.

2. Approximation Bounds on Polynomial Manifolds

In this section, we start by defining polynomial mappings and polynomially mapped manifolds.
Then, we show that these polynomially mapped manifolds are contained in a linear subspace,
which leads to a lower and an upper bound for the polynomial Kolmogorov (n, p)-widths of these
manifolds. We close this section by stating how this impacts certain decay rates for which a
classical Kolmogorov n-width is known.

2.1. Polynomial Mappings

Consider a vector space V over a field K, (K = R or K = C) and the V-valued polynomial map (of
degree p = 0 over K")
Tnp:K'—V, ¥=FE)L,— Y ¥, X=X X5
lalsp

based on multi-indices a = (crl-)fl=1 € Ng with |a| = a; + -+ @4, and a given set of vectors
Vn,p = {va|lal < p} = V, which results in

p
t(n,p) = Z m(n, k), m(n, k) =
k=0

n+k-1
k )

addends in I';, ,. The image of a polynomial mapping of order p over K" defines an at most n-
dimensional submanifold of V which we call polynomially mapped submanifold

My, p = img(Ty, p) < V.

We can then immediately show the following lemma, which will be needed later to derive the
approximation bounds.
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Lemma 1 (Intermediate Linear Mapping). The image of a polynomial mapping of order p is
contained in a t(n, p)-dimensional subspace of V.

Proof. Firstly, we rewrite the polynomial mapping as the composition Iy, := Ay 0 Ky, of a
nonlinear map

Kpp: K" — K™, %— (39,2,
which generates all polynomial terms up to order p and a linear map

App KPP —V oy Y (v

Vi€7/n,p

But then, the submanifold lenyp = img(l'y,p) < img(A,,p) =t oy is a subset of the #(n, p)-
dimensional subspace 7, ;. U

Example 2 (Notation with Kronecker Product in Finite-Dimensional Vector Spaces). In the
case of V = K" for some N € N, the polynomial mapping can be expressed with the symmetric
Kronecker product

E®Sk: K"* — Km(n,k)’ ¥ — [Ea)la\:k
and (p + 1) mapping matrices Ay := (Vi1 k)»--+» Viimio.) € KN*ME 0 < k < p, with indices
i(1,k),...,i(m(n, k), k) €{l,..., t(n, p)} such that

14
~ ~®S
Ty =) AEF,
k=0

In this case, the linear map from Lemma 1 stacks all 0 < k < p mapping matrices Ay in its columns
Anp(=Ay,  A:i=[Ap, ..., A eKV'"P) suchthat Ty, (%) = AKy,p(X).
Thus, the definition of a polynomial mapping covers

(1) classical MOR on affine or linear subspaces with 'y, 1 (X) = A1 X + Ay, ‘
(2) MOR on quadratic manifolds, as e.g. in [2, 4, 12, 16, 24], with T, »(X) = A,X® 2 + A1 X + A.

2.2. Bounds for the Approximation Error using Polynomial Mapping

We start by recalling the classical Kolmogorov n-width and transfer its concept to polynomially
mapped manifolds. Afterwards, we show that the polynomial Kolmogorov (n, p)-width can be
bounded from below and above by classical Kolmogorov widths.

Definition 3 (Worst Best-approximation Error). Let (V, ||-|v) be a normed vector space. For two
sets S, T <V, we call
dist(S, T) :=sup inf[ls—tlly
ses teT
the worst best-approximation error of Sin T.

Next, we are interested in how well a subset S € V can be approximated by an n-dimensional
linear subspace of V. This measure is known as the Kolmogorov n-width and the idea was first
formulated in [18], although we refer here to a later definition.

Definition 4 ((Classical) Kolmogorov n-width [22, Chapter II, Definition 1.1]). Lez (V,|-llv) be
a normed vector space and let S ¢ V be a subset. Then, the Kolmogorov n-width
d, (S;V):= inf dist(S, U), 2)

UcCV subspace
dim(U)=n

measures the theoretically optimal worst best-approximation error of S achievable by some at most
n-dimensional subspace U of V. Ifd,, (S; V) = dist(S, U), for some subspace U of dimension at most
n, then U is said to be an optimal subspace for d,, (S; V).
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The Kolmogorov n-widths are an established measure to argue how well the solution manifold
A < V from (1) can be approximated by classical MOR. Since the approximation of the ROM in
classical MOR is determined in an n-dimensional subspace V,, c V, the best-possible approxi-
mation is limited from below by the Kolmogorov n-width by construction, i.e.

dist(A,Vy) =2 dyp (M V). 3)

In the following, we generalize the classical Kolmogorov n-width to the polynomial Kol-
mogorov (n, p)-width, i.e., we are interested in the best-possible approximation error for a ROM
constructed by a polynomial mapping.

Definition 5 (Polynomial Kolmogorov (7, p)-width). Consider a normed vector space (V, |-|lv)
with a subset S < V. Then, the polynomial Kolmogorov (n, p)-width
dy,(S;V)= _ inf dist(S,.41, )
M, ppoly. mappedsubmnf.
dim(ﬁ;_p)sn
measures the theoretically optimal worst best-approximation error of S achievable by some poly-
nomially mapped submanifold 4, of V with dimension dim(4 ;) <1 < n.

This allows us to bound the best-approximation error for ROMs from MOR with polynomially
mapped manifolds of order p and reduced dimension n from below with the polynomial Kol-
mogorov (1, p)-width analogously to (3) by

diSt(./ﬂ,aZ[n,p) = df;p (‘/ﬂ;ﬁn,p) .

We can show, that the polynomial Kolmogorov (n, p)-width can be bounded from above and
below with quantities relating to the classical Kolmogorov n-width.

Theorem 6 (Approximation Bounds for Polynomial Kolmogorov (n, p)-width). Consider a
normed vector space (V, ||-|ly). For any set S € V the polynomial Kolmogorov (n, p)-width for p = 1
is sandwiched by the classical Kolmogorov t(n, p)-width and n-width, i.e.,

dinp) (S$; V) <dyy , (V) < dp (S V). 4)

Proof. We start by proving the upper bound d;?yp (S;V)=d, (S;V): As p = 1, linear mappings are
included in I'y , as a special case by setting all vectors vg; € 7y, with k # 1 to zero. Thus, the
polynomially mapped submanifolds JZZI p in the polynomial Kolmogorov (n, p)-width include all
linear subspaces with dimension [/ < n as special case and the polynomial Kolmogorov (7, p)-
width is bounded by the classical Kolmogorov n-width from above.

We continue by deriving the lower bound dy(,,p) (S; V) < d;; p (S;V): From Lemma 1, we know

that img(T';, ) < o with dirn(szfl,p) = t(l, p). Then, for any set S < V, it holds that

— 2) i<
dist(S, 7, ) = dist(S, 54 ) S dytp (S;V) = dinp) (S;V)

since d, (S;V) is monotoni(iellly decreasing in n and £(/, p) is monotonically increasing in [. By
taking the infimum over .4, in the left-hand side of the inequality, we arrive at the lower
bound. O

Especially critical in the statement of Theorem 6 is the lower bound. It states that the poly-
nomial mappings are limited by a classical Kolmogorov n-width, which results from Lemma 1:
we know that the image of every polynomial of order p is contained in a #(n, p)-dimensional
subspace of V. This is visualized schematically in Figure 1, where the solution manifold .# is
approximated by the polynomially mapped manifold M, n,p> Which is in turn embedded in the
linear subspace </, ,. If for a given parameter vector p € 2, we consider the distance from
x(p) € M to M, n,p, then this particular distance cannot be less than the orthogonal projection of
x(u) onto <ty p.
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Frn.p x(13)

x( ___“” __x(’fZ)/ =
diSt(x(ﬂ)n/%n,p -

dist(x(ll), dn,p)

Figure 1. Schematic illustration of the main assertion of the paper for n =1, p =2 and
ny = 1. Approximation of the solution manifold .# (solid blue line) with a polynomially
mapped submanifold M, n,p (solid yellow line) which is contained in the subspace <,
(green surface). To this end, for a fixed parameter u € 22, the approximation of x(u) by
M, n,p cannot be better than the approximation of x(u) by ), ;.

In the following, we show how this impacts certain decay rates in the classical Kolmogorov
n-widths.
Corollary 7. Ifthe decay of the Kolmogorov n-widths is at most algebraic or exponential
dy(S;V)=Mn™%,  or  dy(S;V)=Me V", 5)
for some M, a,a > 0, then for p = 2, n = 4, the decay of the polynomial Kolmogorov (n, p)-width is
also at most algebraic respective exponential with
d,f'p (S; V)= Mn~%P, or dffyp (S;V) = Me~ ",
Proof. We can estimate the total number of vectors used in the polynomial mapping for p = 2
and n big enough with
t(n,p) < n’. (6)

For the rigorous proof of this part, we refer due to length to the Appendix. With Theorem 6 we
derive for the algebraic case

(4) (5) —a © _
dy  (S;V) Z dynp) (S;V) = M (t(n, p))™* = Mn™%P
and for the exponential case
4) (5) a (6) a
g, (S;V) = dynp) (S V) = Me“UP)" > ppeman™
since both, ()~ and e~ *"", are monotonically decreasing. U

For MOR, this theorem means that, if bounds on the classical Kolmogorov n-widths d,, (4; V)
are known, then the best-possible approximation error of ROMs based on polynomially mapped
manifolds d;; p (A;V) decays within the same type of convergence class. This is exemplified in
the following.

Example 8 (Linear Advection [21], Linear Wave Equation [13]). Two classical results for a
provable lower bound of the Kolmogorov n-widths are the linear advection model from [21] and
the linear wave equation from [13]. These papers prove that the decay rate of the Kolmogorov n-
widths of the snapshot set is bounded from below by 1/2 - n~'/2 for the linear advection problem
and, respectively, 1/4- n~"/2 for the linear wave equation. With Corollary 7, we can see that the
corresponding polynomial Kolmogorov (n, p)-widths of the snapshot set will be limited by

dy, (M;V)21/2-07P? and dy, , (M;V) = 1/4-07P",

respectively.
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In [7], an alternative formulation of nonlinear widths is introduced, the manifold widths. The
following definition transfers this concept to our case of polynomially mapped manifolds.

Definition 9 (Polynomial Manifold (7, p)-width). Consider a normed vector space (V, |-|lv) with
a subset S c V. Then, the polynomial manifold (n, p)-width

OnpSV)i=  inf inf  suplls—Tp,p(e()lv
L'y p poly. map. ecCO(vK!) seS
I=n

minimizes the maximum distortion of the encoding procedure of S over the set of all polynomial
mappingsT'; , and some continuous encoder e € C%(V, K" with reduced dimension | < n.

Indeed, we can show directly from Theorem 6 that the lower bound transfers to the polynomial
manifold width.

Theorem 10. The polynomial manifold (n, p)-width is bounded from below with
dinp) (S V) <dyy , (V) <85, (S V).
Proof. For a fixed polynomial map I'; p,, it holds for all encoders e € cOv,ikh

suplls—Ty,(e(9)llv = inf suplls—T;,@) v
3 P~ deK! seb P

Xekt se§
ek!
and thus
inf  suplls—Ty,(e(s)lv = inf suplls—T,@v. (7)
ecCO(VKY) ses XeK! ses
Together with the max-min inequality (see e.g. [5, Equation (5.46)]) in step (*), we observe
8pp(SV)=_ inf inf  suplls—Tppe(s)lv
’ Ty,p poly. map. ¢ecO(v,k!) seS
I<sn
@ . . -
> inf inf suplls—Ty,pX)llv
I';p poly. map. xek! se§
I<sn

(*) . . -
> inf sup inf [|s—T'y p(X)llv
I} p poly. map. se§ ¥ek!
I=n

=dg,(S;V)
(4)
= dt(n,p) S;V)

where we use in the second to last step that choosing a polynomially mapped manifold JZ[Z pis
equivalent to choosing a polynomial map I';;, and choosing an element from ¢ € .4, is then
equivalent to choosing a reduced coordinate ¥ € K. g

Note that the presence of the lower bound allows to transfer the decay rates of Kolmogorov
n-widths to the polynomial manifold (7, p)-widths from (5) to

53’7 (S;V)=Mn~%P, or 52#] (S; V) = Me—an‘wy

respectively. The proof works analogously to the proof of Corollary 7.
We comment in the three subsequent remarks on related topics.

Remark 11 (Data-Driven Generation of Mapping Matrices). In the present work, we discuss
theoretical lower bounds to the worst best-approximation of .# over all possible polynomial
manifolds. To use a polynomial approximation of .4 in practice, however, a concrete choice
of the vector set %, , < V (or equivalently the mapping matrices Ay € KN*™(0 0 < k < p, from
Example 2) is required. A classical approach for basis generation in the MOR community are
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the data-driven techniques via so-called snapshots, which are finitely many samples of .#. Such
techniques are discussed in [2, 12] for quadratic mappings (p = 2), and in [11] for polynomial
mappings (p > 1). However, the motivation for the technique discussed in these references is
to find a polynomial map that approximates the solution manifold well in the mean over all
snapshots, whereas the widths discussed in the present paper consider the maximum error. In
the linear case (p = 1), so-called greedy basis generation techniques are particularly interesting,
since they can consider the error in a maximum sense [15]. Moreover, the convergence can be
guaranteed if a sufficiently fast decay of the Kolmogorov n-widths is assumed [15, Prop. 2.49].
To the best of our knowledge, there is yet no work that investigates greedy algorithms for
polynomially mapped manifolds. Future work may investigate such techniques and relate
the convergence to the polynomial Kolmogorov (n, p)-widths introduced in the present paper
similarly to the case p = 1 mentioned above.

Remark 12 (Best-Possible Approximation Error vs. Error in Reduced Simulation). Note that
all the above is a discussion about the best-possible approximation error or respective manifold
width. However, it is by no means guaranteed that the approximation provided by solving the
ROM realizes this best-approximation. Thus, the error between the FOM and the ROM solution,
the error in the reduced simulation, may be much higher than these two quantities.

This becomes relevant, if one thinks about choosing a ROM based on a polynomially mapping
I'y,p of order p or a (classical) ROM based on an affine linear map I'y ¢(,,p). Although both of
these choices share the same lower bound on the best-possible approximation error, the error
in the reduced simulation may differ. In [2], it is observed experimentally for a complex three-
dimensional CFD benchmark problem with a quadratic mappingI'; ,, and n, = 39 that the error
in the reduced simulation behaves as expected from the best-approximation error presented
in our paper: A ROM based on the quadratic mapping I'; ,, matches the error in the reduced
simulation of a (classical) ROM based on a linear mapping of size

ny =627 = 820 = t(ny, 2),

while at the same time, the offline and online runtimes are improved with the ROM based on the
quadratic approach. This supports the idea that, despite the lower bound on the best-possible
approximation error, polynomial mappings are relevant in the application.

Remark 13 (Extension to More General Nonlinear Mappings K,;). Although Theorem 6 refers
to polynomially mapped manifolds only, it also holds for a more general setting of nonlinearly
mapped reduced coordinates. If we consider the structure of d;, := A, 0 K, in Lemma 1 as the
composition of a general nonlinear map K,: K" — K’ for some ¢ € N and a linear mapping
A, K" — V, one could also choose the linear mapping, e.g., from modes of the proper orthogo-
nal decomposition and the nonlinear mapping (a) as an autoencoder [10] or (b) a general artifi-
cial neural network [3]. Then, following the ideas of Theorem 6, the best-possible approximation
error and manifold width over decoders of the proposed form can be bounded from below by the
classical Kolmogorov ¢-width d; (4; V).

3. Conclusion

In this paper, we derived bounds for the best-possible approximation error for ROMs based on
polynomially mapped manifolds. If bounds on the Kolmogorov n-width of the snapshot set are
known, we can derive an upper and a lower bound on the best-possible approximation error
depending on the order of the polynomial. We showed that the class of convergence does not
change, but the rate of convergence can be improved, depending on the degree of the polynomial.
Future work could be related to the questions on how sharp this lower bound is as well as on what
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are good algorithms for the construction of polynomially mapped manifolds such that this best-
approximation bound could possibly be attained within a given tolerance.

Appendix

We provide a rigorous argument by induction for the first part of the proof of Corollary 7, i.e., we
show that t(n,p) < n” forallp=2,n=4.
Lemma 14. Forallp =2,n =4, it holds that
P ln+k-1
(ttm,p)=) ), ( f )s nP.

k=0
Proof. We provide a proof by induction over p for all n = 4.

(1) Initial case for p = 2 and n = 4 arbitrary.

2 (n+k-1) (n-1) [n] (n+1 nn+1) 3 1,
> = + |+ =l+n+ =1+-n+-n°
al & 0 ) 2 27" 2

We thus need to verify that

3 1
1+—n+—n2Sn2,
2 2

which is equivalent to

0< 1, 3 1 )
<-n“"—--n-1=:¢n).
2 2 ¢
The function ¢(n) has roots r;» = %ﬁ, with r; < r». As the function ¢(n) is a parabola with

positive curvature, we obtain that ¢(r) = 0 for all r = r» = 3.5616 and thus ¢(n) =0 for all n = 4.

(2) Induction assumption (IA). We assume that for fixed p = 2 and for all n = 4 it holds that

i(n+k—1)_(n+p)<np
k=0 k p )

(3) Induction step. p — p+1, n=4fixed, i.e., we prove that

;il n+k-1 _ n+p+1 < Pl ®)
<o k p+1

We start by using the definition of the binomial formula and apply the (IA)
(n+p+1) _ n+p+1(n+p) (12) n+p+1np.

p+1 p+1 p p+1
To finish this part of the proof, we need to show that
n+p+1 <n
p+1

which can be reformulated to
Osnp+)-n+p+1)=pn-1)-1.
The latter inequality is fulfilled for all p = 2, n = 4, thus (8) is proven. U
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