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Abstract. In this note, we show that the Ω ∈ L logL hypothesis is the strongest size condition on a function
Ω on the unit sphere with mean value zero, which ensures that the corresponding singular integral TΩ
defined by

TΩ f (x) = p.v.
∫

1

|x − y |d Ω
( x − y

|x − y |
)

f (y)dy,

maps L1(Rd ) to weak L1(Rd ), provided TΩ is bounded in L2(Rd ).

Résumé. Dans cette note, nous montrons que l’hypothèse Ω ∈ L logL est la condition de taille la plus forte
sur une fonction Ω sur la sphère unitaire de valeur moyenne zéro, qui assure que l’intégrale singulière
correspondante TΩ définie par

TΩ f (x) = p.v.
∫

1

|x − y |d Ω
( x − y

|x − y |
)

f (y)dy,

est borné de L1(Rd ) dans L1(Rd ) faibles, à condition que TΩ soit bornée dans L2(Rd ).
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1. Introduction

Let Ω ∈ L1(Sd−1) with
∫
Sd−1Ω(θ)dθ = 0, where dθ is the surface measure on Sd−1. Calderón and

Zygmund [2] considered the rough singular integrals defined as,

TΩ f (x) = p.v.
∫

1

|x − y |d Ω
( x − y

|x − y |
)

f (y)dy,

They showed thatΩ ∈ L logL(Sd−1) i.e.
∫
S1 |Ω(θ)| log(e+|Ω(θ)|) <∞ implies that TΩ is bounded

on Lp (Rd ) for 1 < p < ∞. The singular integral TΩ was shown to be of weak type (1,1) using
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T T ∗ arguments by Christ and Rubio de Francia [3] in dimension d = 2 (and independently by
Hofmann [10]). The case of general dimensions was resolved by Seeger [16] by showing that TΩ
is of weak type (1,1) forΩ ∈ L logL(Sd−1).

It is of interest to know other sufficient conditions onΩ that ensures the weak type bounded-
ness of the operator TΩ. In fact, during the inception of this problem, Calderón and Zygmund [2]
showed thatΩ ∈ L logL is “almost” a necessary size condition for TΩ to be L2 bounded. If we drop
the condition thatΩ ∈ L logL, then Calderón and Zygmund [2] pointed out that TΩ may even fail
to be L2 bounded. Infact, the examples ofΩ constructed in [18] lies outside the space L logL and
the corresponding operator TΩ is unbounded on L2(Rd ). Later on, it was shown in [5, 13] that
Ω ∈ H 1(S1) in the sense of Coifman and Weiss [4] implies TΩ : Lp (Rd ) → Lp (Rd ), 1 < p <∞. For
a detailed proof, we refer to [8, 9, 14]. It is still an open problem if TΩ is of weak type (1,1) for
Ω ∈ H 1(S1). A partial result assuming additional conditions on H 1-atoms in dimension two was
obtained by Stefanov [17].

In [7, 11], it was shown that TΩ distinguishes Lp spaces by considering a suitable quantity
based on the Fourier transform of Ω. However, we would like to know if there exists an Orlicz
space X ⊋ L logL which would ensure that the L2 boundedness of TΩ implies the weak (1,1)
boundeness of TΩ when Ω ∈ X . We will show that no such X exists. To state our main result, we
introduce the Orlicz spaces and discuss some of its basic properties.

Definition 1 ([1]). Let Φ : [0,∞) → [0,∞) be a Young’s function i.e. there exists an increasing and
left continuous function φ : [0,∞) → [0,∞) with φ(0) = 0 such that Φ(t ) = ∫ t

0 φ(u)du. We say
Ω ∈Φ(L)(S1), if the quantity

∥Ω∥Φ(L) =
∫
S1
Φ(|Ω(θ)|)dθ (1)

is finite.

We note that the function Φ(t )
t is non-decreasing.

The quantity in (1) fails to be a norm and Φ(L)(S1) is not even a linear space. To remedy that,
we define the set

LΦ(S1) = {Ω :S1 −→R : ∃k > 0 such that ∥k−1Ω∥Φ(L) <∞}.

We define the Luxemburg norm as

|||Ω|||Φ(L) = inf{k > 0 : ∥k−1Ω∥Φ(L) ≤ 1}.

It is well-known that the Orlicz space LΦ(S1) forms a Banach space with this norm. For details,
we refer to [1].

2. Main result

We state our main result for dimension two but the same also holds for higher dimensions using
the methods in [7, 18]. Our main result is the following,

Theorem 2. LetΦ be a Young’s function such that

Ψ(t ) = t log(e + t )

Φ(t )
−→∞, as t −→∞, (2)

Then there exists an Ω ∈Φ(L)(S1) such that TΩ is Lp bounded iff p = 2. In particular, TΩ does not
map L1(R2) to L1,∞(R2).

We note that using the geometric construction in [11], one can obtain the above theorem for
the space L(logL)1−ϵ(S1), 0 < ϵ ≤ 1. To obtain the general case, we will employ the construction
in [7] with a suitable modification to ensure that the resultingΩ lies in the required Orlicz space.
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The proof of Theorem 2 is contained in Section 3. We will require the following notations
throughout the paper. We say X ≲ Y if there exists an absolute constant C > 0 (not depending on
X and Y ) such that X ≤ C Y . Similarly, we say X ≳ Y if there exists an absolute constant C > 0
(not depending on X and Y ) such that X ≥C Y . We say X ∼ Y if X ≲ Y and X ≳ Y .

3. Proof of Theorem 2

To prove Theorem 2, we will construct a sequence of even functions {Ωn} ∈Φ(L) with mean value
zero such that the Lp norm of TΩn is large for p ̸= 2 while having bounded Φ(L)−Orlicz norm
uniformly in n. Moreover, the quantity ∥m(Ωn)∥L∞ grows slowly in terms of n. More precisely, we
will show thatΩn satisfies,

∥TΩn∥Lp (R2)→Lp (R2) ≳ n| 1
2 − 1

p |,

and

|||Ωn |||Φ(L)(S1) +∥m(Ωn)∥L∞(S1) ≲ logn.

This will lead to a contradiction by an application of uniform boundedness principle. The proof
is divided into four crucial steps described below.

Step 1. The geometric construction of functions wk andΩn . We will construct even functions
wk and a sequence of even functionsΩn on the unit circle S1 with mean value zero in this step.

We fix a large N ∈N. Let n ∈N be a number depending on N to be chosen later (see (6)).
Let sn ∈N and t1, t2, . . . , t2n ∈Z be such that,

• The numbers tk are in arithmetic progression, i.e. tk+1 − tk = tk − tk−1.
• Let xk = (tk , sn) ∈R2. Then xk , k = 1, . . . ,2n, lies in the second quadrant between the lines

y-axis and y =−x.
• | xk+1

|xk+1| −
xk
|xk | | ∼

1
n .

(We note that the points xk = (−kn,10n2), k = 1, . . . ,2n, satisfies the above properties.)
We denote x̃k to be the point on S1 obtained by rotating the point xk

|xk | by π
2 radians clockwise.

We consider Ik , k = 1, . . . ,2n, to be the arc on S1 with centre x̃k and arc length N−1 and denote
Rα(Ik ) to be the arc obtained by rotating Ik by α radians counterclockwise. We note that the arcs
Ik , k = 1, . . . ,2n, are disjoint for our choice of n; we will justify this in Step 3.

We define wk as

wk (θ) = cIk (−χIk
(θ)+χR π

2
(Ik ) (θ)−χRπ(Ik ) (θ)+χR 3π

2
(Ik ) (θ)),

where the constants cIk are determined in Step 2.
We now set

Ωn =
2n∑

k=1
(−1)kϵ[ k+1

2

]wk ,

where [ ] denotes the integer part and the coefficients ϵ[.] are as in Lemma 4 in Step 3. It is easy to
see that wk andΩn are even functions with mean value zero for all k = 1, . . . ,2n.

Step 2 Auxiliary properties of m(wk ). In this step, we will obtain some basic estimates for the
quantity m(wk ) and the Fourier transform of wk . We recall that the Fourier transform of the
kernel in TΩ for any evenΩwith mean value zero is given by

K̂Ω(ξ) =
∫
S1
Ω(θ) log

1

|〈ξ,θ〉| dθ.
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We define the larger quantity m(Ω) which will be useful for our purpose.

m(Ω)(ξ) :=
∫
S1

|Ω(θ)| log
1

|〈ξ,θ〉| dθ.

Clearly, |K̂Ω(ξ)| ≤ m(Ω)(ξ).
We choose cIk such that m(wk )( xk

|xk | ) = 1.

It is not difficult to see that cIk and K̂wk ( xk
|xk | ) are independent of k. Moreover, we have the

following estimates,

Proposition 3. For k = 1, . . . ,2n, the following holds true,

(1) There exists an absolute constant c > 0 such that N
c log N ≤ cIk ≤ cN

log N .

(2) 1≲ supx |K̂wk (x)| =
∣∣∣K̂wk

(
xk
|xk |

)∣∣∣≤ supx m(wk )(x) = 1.

(3) Let Jk be the arc centered at the point xk
|xk | and of length 1

100n . Then for x ∈ S1 lying in

second quadrant between the lines y-axis and y =−x with x ∉⋃3
i=0R iπ

2
(Jk ), we have

m(wk )(x)≲
logn

log N
. (3)

(4) For 1 ≤ k ≤ n and x ∈ S1 lying in second quadrant between the lines y-axis and y = −x
with x ∉ (⋃3

i=0R iπ
2

(J2k )
)∪ (⋃3

i=0R iπ
2

(J2k−1)
)
, we have

|K̂w2k (x)− K̂w2k−1 (x)|≲
(
n log N

∣∣∣∣ x

|x| −
x2k

|x2k |
∣∣∣∣)−1

. (4)

Proof. First, we observe that it is enough to prove (2) for x ∈S1 as
∫ 2π

0 wk (eiθ)dθ = 0. Since, wk

is even, we have that for any 0 ≤ γ< 2π,

K̂wk (eiγ) =
∫ 2π

0
wk (eiθ) log

1

|eiθ ·eiγ | dθ

=
∫ 2π

0
wk (eiθ) log

1

|cos(θ−γ)| dθ

= cIk

[
−

∫
Ak

+
∫

Ak+ π
2

−
∫

Ak+π
+

∫
Ak+ 3π

2

]
log

1

|cos(θ−γ)| dθ

=−2cIk

∫ |Ak |
2

− |Ak |
2

log | tan(θ+θk −γ)|dθ,

(5)

where eiθk = xk
|xk | and Ak be the interval in (0, π4 ) such that Ik − xk

|xk | = {eiθ : θ ∈ Ak }. Similarly, we
obtain that,

c−1
Ik

∼−
∫ |Ak |

2

− |Ak |
2

log|sinθ|dθ

=−2
∫ |Ak |

2

0
logsinθdθ

∼−
∫ |Ak |

2

0
log t dt

∼ |Ak ||log |Ak || ∼
log N

N
,

where we used the fact that sinθ ∼ θ for θ ∈ (0, π4 ). Thus, we obtain (1) and the estimate (2) follows
similarly from (5).
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The estimate (3) follows from the fact that for γ ∈ (2Ik )c ∩ (0, π4 ), we have

|m(w Ik )(e iγ)|≲ |log |γ− x̃k ||
|log |Ik ||

.

Indeed, for θ ∈ Ik , we have |γ− x̃k | < |θ− x̃k | + |θ−γ| < |Ik |
2 + |θ−γ| < |γ− x̃k |/2+ |θ−γ|. Thus

|x̃k−γ|
2 < |θ−γ| and it follows that

|m(w Ik )(eiγ)|≲−cIk

∫
Ik

log|sin(θ−γ)|dθ

≤ cIk |Ik ||log

∣∣∣∣sin

( |γ− x̃k |
2

)∣∣∣∣
≲

|log |γ− x̃k ||
|log |Ik ||

.

We now prove the estimate (4). Let eiθ2k = x2k
|x2k | , eiγ = x

|x| and A2k be the interval in (−π
4 , π4 ) such

that I2k − x2k
|x2k | = {eiθ : θ ∈ A2k }. By using mean value theorem twice and the fact that |θ2k −θ2k−1|

is small, we have

eq|K̂w2k (x)− K̂w2k−1 (x)|≲ cI2k

∫
A2k

(
log

1

|tan(θ+θ2k −γ)| − log
1

|tan(θ+θ2k−1 −γ)|
)

dθ

≲ cI2k

∫
A2k

|tan(θ+θ2k −γ)− tan(θ+θ2k−1 −γ)|
|tan(θ+θ2k −γ)| dθ

≲ cI2k

∫
A2k

|θ2k −θ2k−1|
|θ+θ2k −γ|

dθ

≲
cI2k

n

∫
A2k

1

|γ−θ2k |
dθ

≲
(
n log N

∣∣∣∣ x

|x| −
x2k

|x2k |
∣∣∣∣)−1

,

where we have used |γ−θ2k | ≤ 2|θ+θ2k −γ| and tanθ ∼ θ away from odd multiples of π
2 . □

Step 3. The calculation of the |||Ωn |||Φ(L)(S1) and the Lp -norms of TΩn . In this step, we compute
the Φ(L)−Orlicz norm of Ωn and the Lp− norm of the corresponding operator TΩn . We begin by
choosing n as follows,

n =
 N

16Φ
(

cN
log N

)
+1, (6)

where c > 0 is as in Proposition 3(1). By hypothesis (2), we have n → ∞ as N → ∞. Moreover,
we have N−1 ≲ n−1 as Φ is an increasing function. This implies that the corresponding arcs
Ik , k = 1, . . . ,2n, are disjoint. Hence, we have

∥Ωn∥Φ(L)(S1) =
2n∑

k=1

3∑
l=0

∫
Ak+ lπ

2

Φ

(
|ϵ[ k+1

2

]cIk |
)

dθ

≤ 8n

N
Φ

(
cN

log N

)
≤ 1.

Thus, by the definition of the Luxemburg norm ||| · |||Φ(L), we have

|||Ωn |||Φ(L)(S1) ≤ 1. (7)
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We estimate the quantity ∥m(Ωn)∥L∞(S1) by employing Proposition 3(3). Indeed, we have

∥m(Ωn)∥L∞(S1) ≲ 1+ n logn

log N
≤ logn

8c

cN
log N

Φ
(

cN
log N

) ≲ logn, (8)

where we used that Φ(t )
t is a non-decreasing function in the last step.

We now compute the Lp -norms of the corresponding operator TΩn . The space of Lp multipli-
ers M p (T) and M p (R2) are defined as

M p (T) =
{

a = {an} ∈ l∞(Z) : Ta f (x) = ∑
n∈Z

an f̂ (n)e2πinx is bounded on Lp (T)

}
,

M p (R2) =
{
γ ∈ L∞(R2) : Tγ f (x) =

∫
R2
γ(ξ) f̂ (ξ)e2πi x·ξ dξ is bounded on Lp (R2)

}
.

We define ∥a∥M p (T) = ∥Ta∥Lp (T)→Lp (T) and ∥γ∥M p (R2) = ∥Tγ∥Lp (R2)→Lp (R2).
We state two lemmas from [7] that will be useful in estimating the Lp -norms of TΩn . The first

lemma states that there exist a sequence of multipliers {{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . } : n ∈ N} on T
whose Lp -norm blows up as n tends to infinity for p ̸= 2. This was achieved in [7] by employing
the fact that {e2πikx , k ∈Z} is not an unconditional basis for Lp (T), p ̸= 2. Moreover, the quantity

∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) grows atleast of the order n| 1
2 − 1

p |. To justify this growth, we invoke
Theorem 1 from [15],

For n ∈N, there exists {ϵk }n
k=1 with ϵk =±1 such that ∥∑n

k=1 ϵk e2πikx∥L∞(T) ≤ 5n
1
2 ,

and the well-known fact (Exercise 3.1.6 from [6]) that the Lp -norm of the Dirichlet kernel
satisfies the following estimate:∥∥∥∥∥ n∑

k=1
e2πikx

∥∥∥∥∥
Lp (T)

∼ n1− 1
p for 1 < p <∞.

Thus, we have,

∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) ≥

∥∥∥∑n
k=1 ϵ

2
k e2πikx

∥∥∥
Lp (T)∥∥∥∑n

k=1 ϵk e2πikx
∥∥∥

Lp (T)

≥

∥∥∥∑n
k=1 ϵ

2
k e2πikx

∥∥∥
Lp (T)∥∥∥∑n

k=1 ϵk e2πikx
∥∥∥

L∞(T)

≳ n
1
2 − 1

p .

The inequality ∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) ≳ n
1
p − 1

2 follows from

∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) = ∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥
M

p
p−1 (T)

for 1 < p <∞.

Lemma 4 ([7]). For p ̸= 2 and fixed n ∈ N, there exists finite sequences {ak }n
k=1 and {ϵk }n

k=1
(depending on n) with ϵk ∈ {−1,1} such that∥∥∥∥∥ n∑

k=1
ϵk ak e2πikx

∥∥∥∥∥
Lp (T)

≥ cp n| 1
2 − 1

p |
∥∥∥∥∥ n∑

k=1
ak e2πikx

∥∥∥∥∥
Lp (T)

,

where cp > 0 depends only on p. Consequently, ∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) ≳ n| 1
2 − 1

p |. More-
over, we can choose ϵk such that

∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) = sup
{∥{. . . ,0,δ1,δ2, . . . ,δn ,0, . . . }∥M p (T) : |δk | ≤ 1

}
.
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The second lemma (stated below) along with an application of Lemma 4 provides us with a
sequence of multipliers on the plane such that their Lp -norm blows up as n tends to infinity for
p ̸= 2. This lemma is based on a classical transference result of de Leeuw [12]. For a proof of the
lemma, we refer to [7].

Lemma 5 ([7]). Let 1 < p <∞ and γ ∈ M p (R2) be continuous on an arithmetic progression {xk }n
k=1

in R2 (i.e. there exists vector v ∈ R2 such that xk − xk−1 = v). Then there exists a constant Cp > 0
such that

∥γ∥M p (R2) ≥Cp∥{. . . ,0,γ(x1),γ(x2), . . . ,γ(xn),0, . . . }∥M p (T).

Now we turn to the estimate of Lp−bounds of TΩn . We claim that

∥TΩn∥Lp (R2)→Lp (R2) ≳ n| 1
2 − 1

p |. (9)

For 1 ≤ k ≤ n, we have

K̂Ωn (x2k ) = (−1)2k K̂w2k (x2k )ϵk +
∑

1≤i ̸=2k≤2n
(−1)i ϵ[ i+1

2

]K̂wi (x2k ) = Dϵk +δk ,

where D = K̂w2k (x2k ) and δk =∑
1≤i ̸=2k≤2n(−1)i ϵ[ i+1

2

]K̂wi (x2k ).

Using Proposition 3(3) for the term i = 2k −1 and Proposition 3(4) for the remaining terms (in
pair), we get

|δk | ≤C

(
logn

log N
+ 1

log N

2n∑
i=1

1

i

)
≤ C ′ logn

log N
≤ |D|

4
(for large n).

Hence, by the choice of Lemma 4, we have

1

2
∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) ≥

∥∥∥∥{
. . . ,0,

δ1

D
,
δ2

D
, . . . ,

δn

D
,0, . . .

}∥∥∥∥
M p (T)

.

Since K̂Ωn (θ) is a circular convolution of a L1(S1) and L∞(S1), it is continuous at the points
x2k ,k = 1, . . . ,n, and applying Lemma 5, we have

∥TΩn∥Lp (R2)→Lp (R2) = ∥K̂Ωn∥M p (R2)

≳ ∥{. . . ,0, K̂Ωn (x2), K̂Ωn (x4), . . . , K̂Ωn (x2n),0, . . . }∥M p (T)

≳ |D|
(
∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T) −

∥∥∥∥{
. . . ,0,

δ1

D
,
δ2

D
, . . . ,

δn

D
,0, . . .

}∥∥∥∥
M p (T)

)
≥ |D|

2
∥{. . . ,0,ϵ1,ϵ2, . . . ,ϵn ,0, . . . }∥M p (T)

≳ n| 1
2 − 1

p |,

where we used Lemma 4 in the last step.

Step 4. The uniform boundedness principle and the conclusion. We conclude the proof by an
application of uniform boundedness principle. Indeed, We define the space,

B :=
{
Ω :S1 −→R is even :

∫
Ω= 0 and ∥Ω∥B′ = |||Ω|||Φ(L)(S1) +∥m(Ω)∥L∞(S1) <∞

}
.

The space B forms a Banach space.
Fix p ̸= 2. For F = { f ∈ Lp (R2) : ∥ f ∥p = 1}, we define a collection of operators Θ f : B→ Lp as

Θ f (Ω) = TΩ( f ). Suppose we have

∥TΩ∥Lp (R2)→Lp (R2) = sup
f ∈F′

∥TΩ f ∥Lp (R2) <∞, ∀Ω ∈B.

Then by uniform boundedness principle, there exists M > 0 such that

∥TΩ∥Lp (R2)→Lp (R2) = sup
f ∈F

∥Θ f (Ω)∥Lp (R2) < M∥Ω∥B,
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which along with (7), (8) and (9) implies that

n| 1
2 − 1

p | ≲ ∥TΩn∥Lp (R2)→Lp (R2)

≲ |||Ωn |||Φ(L)(S1) +∥m(Ωn)∥L∞(S1)

≲ logn.

This is a contradiction for large n and p ̸= 2 and that concludes the proof of Theorem 2.
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