

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Comptes Rendus

Mathématique

Ankit Bhojak

On Sharpness of *L* **log** *L* **Criterion for Weak Type (1, 1) boundedness of rough operators**

Volume 362 (2024), p. 1205-1213

Online since: 5 November 2024

<https://doi.org/10.5802/crmath.633>

 $\left[\infty\right]$ are This article is licensed under the Creative Commons Attribution 4.0 International License. <http://creativecommons.org/licenses/by/4.0/>

The Comptes Rendus. Mathématique *are a member of the Mersenne Center for open scientific publishing* www.centre-mersenne.org — e-ISSN : 1778-3569

ACADÉMIE DES SCIENCES **INSTITUT DE FRANCE**

Research article / *Article de recherche* Harmonic analysis / *Analyse harmonique*

On Sharpness of *L* log *L* Criterion for Weak Type (1,1) boundedness of rough operators

Sur la netteté du critère L log *L pour les faibles de type* (1,1) *continuité des opérateurs rugueux*

Ankit Bhojak *^a*

^a Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal-462066, India.

E-mail: ankitb@iiserb.ac.in

Abstract. In this note, we show that the $\Omega \in L \log L$ hypothesis is the strongest size condition on a function Ω on the unit sphere with mean value zero, which ensures that the corresponding singular integral *T*Ω defined by

$$
T_{\Omega} f(x) = p.v. \int \frac{1}{|x - y|^{d}} \Omega\left(\frac{x - y}{|x - y|}\right) f(y) \, dy,
$$

maps $L^1(\mathbb{R}^d)$ to weak $L^1(\mathbb{R}^d)$, provided T_Ω is bounded in $L^2(\mathbb{R}^d)$.

Résumé. Dans cette note, nous montrons que l'hypothèse Ω ∈ *L* log*L* est la condition de taille la plus forte sur une fonction Ω sur la sphère unitaire de valeur moyenne zéro, qui assure que l'intégrale singulière correspondante *T*Ω définie par

$$
T_{\Omega}f(x) = p.v.\int \frac{1}{|x-y|^d} \Omega\left(\frac{x-y}{|x-y|}\right) f(y) \, \mathrm{d}y,
$$

est borné de $L^1(\mathbb{R}^d)$ dans $L^1(\mathbb{R}^d)$ faibles, à condition que T_Ω soit bornée dans $L^2(\mathbb{R}^d)$.

Keywords. Singular Integrals, Orlicz spaces.

Mots-clés. Intégrales singulières, espaces d'Orlicz.

2020 Mathematics Subject Classification. 42B20.

Funding. The author is supported by Science and Engineering Research Board, Department of Science and Technology, Govt. of India, through the scheme Core Research Grant, file no. CRG/2021/000230. *Manuscript received 24 July 2023, revised 22 January 2024 and 23 March 2024, accepted 23 March 2024.*

1. Introduction

Let $\Omega \in L^1(\mathbb{S}^{d-1})$ with $\int_{\mathbb{S}^{d-1}}\Omega(\theta)\text{d}\theta=0$, where $\text{d}\theta$ is the surface measure on $\mathbb{S}^{d-1}.$ Calderón and Zygmund [\[2\]](#page-8-0) considered the rough singular integrals defined as,

$$
T_{\Omega}f(x) = p.v.\int \frac{1}{|x-y|^d} \Omega\left(\frac{x-y}{|x-y|}\right) f(y) \, dy,
$$

They showed that $\Omega \in L \log L(\mathbb{S}^{d-1})$ i.e. $\int_{\mathbb{S}^1} |\Omega(\theta)| \log(e+|\Omega(\theta)|) < \infty$ implies that T_{Ω} is bounded on $L^p(\mathbb{R}^d)$ for $1 < p < \infty$. The singular integral T_{Ω} was shown to be of weak type (1,1) using

 TT^* arguments by Christ and Rubio de Francia [\[3\]](#page-8-1) in dimension $d = 2$ (and independently by Hofmann [\[10\]](#page-8-2)). The case of general dimensions was resolved by Seeger [\[16\]](#page-9-0) by showing that *T*^Ω is of weak type $(1, 1)$ for $\Omega \in L \log L(\mathbb{S}^{d-1})$.

It is of interest to know other sufficient conditions on Ω that ensures the weak type boundedness of the operator *T*Ω. In fact, during the inception of this problem, Calderón and Zygmund [\[2\]](#page-8-0) showed that $Ω ∈ LlogL$ is "almost" a necessary size condition for $T_Ω$ to be L^2 bounded. If we drop the condition that Ω ∈ *L* log*L*, then Calderón and Zygmund [\[2\]](#page-8-0) pointed out that *T*^Ω may even fail to be *L* ² bounded. Infact, the examples of Ω constructed in [\[18\]](#page-9-1) lies outside the space *L* log*L* and the corresponding operator T_Ω is unbounded on $L^2(\mathbb{R}^d)$. Later on, it was shown in [\[5,](#page-8-3) [13\]](#page-8-4) that $Ω ∈ H¹(\mathbb{S}^1)$ in the sense of Coifman and Weiss [\[4\]](#page-8-5) implies $TΩ: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), 1 < p < ∞$. For a detailed proof, we refer to [\[8,](#page-8-6) [9,](#page-8-7) [14\]](#page-9-2). It is still an open problem if T_{Ω} is of weak type (1, 1) for $Ω ∈ H^1(S^1)$. A partial result assuming additional conditions on H^1 -atoms in dimension two was obtained by Stefanov [\[17\]](#page-9-3).

In [\[7,](#page-8-8) [11\]](#page-8-9), it was shown that T_{Ω} distinguishes L^p spaces by considering a suitable quantity based on the Fourier transform of Ω . However, we would like to know if there exists an Orlicz space $X \supsetneq L \log L$ which would ensure that the L^2 boundedness of T_{Ω} implies the weak (1,1) boundeness of *T*_Ω when $Ω ∈ X$. We will show that no such *X* exists. To state our main result, we introduce the Orlicz spaces and discuss some of its basic properties.

Definition 1 ([\[1\]](#page-8-10)). *Let* Φ : [0, ∞) \to [0, ∞) *be a Young's function i.e. there exists an increasing and left continuous function* ϕ : $[0,\infty) \to [0,\infty)$ *with* $\phi(0) = 0$ *such that* $\Phi(t) = \int_0^t \phi(u) du$. We say $\Omega \in \Phi(L)(\mathbb{S}^1)$, if the quantity

$$
\|\Omega\|_{\Phi(L)} = \int_{\mathbb{S}^1} \Phi(|\Omega(\theta)|) \,d\theta \tag{1}
$$

is finite.

We note that the function $\frac{\Phi(t)}{t}$ is non-decreasing.

The quantity in [\(1\)](#page-2-0) fails to be a norm and $\Phi(L) (\mathbb{S}^1)$ is not even a linear space. To remedy that, we define the set

$$
L^{\Phi}(\mathbb{S}^1) = \{ \Omega : \mathbb{S}^1 \longrightarrow \mathbb{R} : \exists k > 0 \text{ such that } ||k^{-1}\Omega||_{\Phi(L)} < \infty \}.
$$

We define the Luxemburg norm as

$$
\|\Omega\|_{\Phi(L)} = \inf\{k > 0 : \|k^{-1}\Omega\|_{\Phi(L)} \le 1\}.
$$

It is well-known that the Orlicz space $L^\Phi(\mathbb{S}^1)$ forms a Banach space with this norm. For details, we refer to [\[1\]](#page-8-10).

2. Main result

We state our main result for dimension two but the same also holds for higher dimensions using the methods in [\[7,](#page-8-8) [18\]](#page-9-1). Our main result is the following,

Theorem 2. *Let* Φ *be a Young's function such that*

$$
\Psi(t) = \frac{t \log(e+t)}{\Phi(t)} \longrightarrow \infty, \quad \text{as } t \longrightarrow \infty,
$$
 (2)

Then there exists an $\Omega \in \Phi(L)(\mathbb{S}^1)$ *such that* T_{Ω} *is L^p bounded iff* $p = 2$ *. In particular,* T_{Ω} *does not* $map L^1(\mathbb{R}^2)$ to $L^{1,\infty}(\mathbb{R}^2)$.

We note that using the geometric construction in [\[11\]](#page-8-9), one can obtain the above theorem for the space $L(\log L)^{1-\epsilon}(\mathbb{S}^1)$, $0 < \epsilon \le 1$. To obtain the general case, we will employ the construction in [\[7\]](#page-8-8) with a suitable modification to ensure that the resulting Ω lies in the required Orlicz space.

The proof of Theorem [2](#page-2-1) is contained in Section [3.](#page-3-0) We will require the following notations throughout the paper. We say $X \leq Y$ if there exists an absolute constant $C > 0$ (not depending on *X* and *Y*) such that *X* ≤ *CY*. Similarly, we say *X* \geq *Y* if there exists an absolute constant *C* > 0 (not depending on *X* and *Y*) such that *X* ≥ *CY*. We say *X* ~ *Y* if *X* \le *Y* and *X* \ge *Y*.

3. Proof of Theorem [2](#page-2-1)

To prove Theorem [2,](#page-2-1) we will construct a sequence of even functions $\{\Omega_n\} \in \Phi(L)$ with mean value zero such that the L^p norm of T_{Ω_n} is large for $p \neq 2$ while having bounded $\Phi(L)$ −Orlicz norm uniformly in *n*. Moreover, the quantity ∥*m*(Ω*n*)∥*L*[∞] grows slowly in terms of *n*. More precisely, we will show that $Ω_n$ satisfies,

$$
||T_{\Omega_n}||_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)} \gtrsim n^{|\frac{1}{2}-\frac{1}{p}|},
$$

and

$$
\|\Omega_n\|_{\Phi(L)(\mathbb{S}^1)} + \|m(\Omega_n)\|_{L^\infty(\mathbb{S}^1)} \lesssim \log n.
$$

This will lead to a contradiction by an application of uniform boundedness principle. The proof is divided into four crucial steps described below.

Step 1. The geometric construction of functions w_k and Ω_n . We will construct even functions w_k and a sequence of even functions Ω_n on the unit circle \mathbb{S}^1 with mean value zero in this step.

We fix a large $N \in \mathbb{N}$. Let $n \in \mathbb{N}$ be a number depending on N to be chosen later (see [\(6\)](#page-5-0)).

Let *s_n* ∈ $\mathbb N$ and *t*₁, *t*₂, ..., *t*_{2*n*} ∈ $\mathbb Z$ be such that,

- The numbers *t^k* are in arithmetic progression, i.e. *tk*+¹ − *t^k* = *t^k* − *tk*−1.
- Let $x_k = (t_k, s_n) \in \mathbb{R}^2$. Then x_k , $k = 1, ..., 2n$, lies in the second quadrant between the lines *y*-axis and *y* = −*x*.

•
$$
\left| \frac{x_{k+1}}{|x_{k+1}|} - \frac{x_k}{|x_k|} \right| \sim \frac{1}{n}
$$
.

(We note that the points $x_k = (-kn, 10n^2)$, $k = 1, ..., 2n$, satisfies the above properties.)

We denote \tilde{x}_k to be the point on \mathbb{S}^1 obtained by rotating the point $\frac{x_k}{|x_k|}$ by $\frac{\pi}{2}$ radians clockwise. We consider I_k , $k = 1,...,2n$, to be the arc on \mathbb{S}^1 with centre $\tilde{\chi}_k$ and arc length N^{-1} and denote $\Re_{\alpha}(I_k)$ to be the arc obtained by rotating I_k by α radians counterclockwise. We note that the arcs I_k , $k = 1, \ldots, 2n$, are disjoint for our choice of *n*; we will justify this in [Step 3.](#page-5-1)

We define w_k as

$$
w_k(\theta) = c_{I_k}(-\chi_{I_k}(\theta) + \chi_{\mathfrak{R}_{\frac{\pi}{2}}(I_k)}(\theta) - \chi_{\mathfrak{R}_{\pi}(I_k)}(\theta) + \chi_{\mathfrak{R}_{\frac{3\pi}{2}}(I_k)}(\theta)),
$$

where the constants c_{I_k} are determined in [Step 2.](#page-3-1)

We now set

$$
\Omega_n = \sum_{k=1}^{2n} (-1)^k \epsilon_{\left[\frac{k+1}{2}\right]} w_k,
$$

where [] denotes the integer part and the coefficients $\epsilon_{1,1}$ are as in Lemma [4](#page-6-0) in [Step 3.](#page-5-1) It is easy to see that w_k and Ω_n are even functions with mean value zero for all $k = 1, \ldots, 2n$.

Step 2 Auxiliary properties of $m(w_k)$ **.** In this step, we will obtain some basic estimates for the quantity $m(w_k)$ and the Fourier transform of w_k . We recall that the Fourier transform of the kernel in T_Ω for any even Ω with mean value zero is given by

$$
\widehat{K}_{\Omega}(\xi) = \int_{\mathbb{S}^1} \Omega(\theta) \log \frac{1}{|\langle \xi, \theta \rangle|} \, d\theta.
$$

We define the larger quantity $m(\Omega)$ which will be useful for our purpose.

$$
m(\Omega)(\xi) := \int_{\mathbb{S}^1} |\Omega(\theta)| \log \frac{1}{|\langle \xi, \theta \rangle|} d\theta.
$$

Clearly, $|\widehat{K}_{\Omega}(\xi)| \leq m(\Omega)(\xi)$.

We choose c_{I_k} such that $m(w_k)(\frac{x_k}{|x_k|}) = 1$.

It is not difficult to see that c_{I_k} and $\hat{K}_{w_k}(\frac{x_k}{|x_k|})$ are independent of *k*. Moreover, we have the following estimates,

Proposition 3. *For k* = 1,...,2*n, the following holds true,*

- (1) *There exists an absolute constant* $c > 0$ *such that* $\frac{N}{c \log N} \le c_{I_k} \le \frac{cN}{\log N}$ *.*
- $|\hat{K}_{w_k}(x)| = |\hat{K}_{w_k}(\frac{x_k}{|x_k|})| \le \sup_x m(w_k)(x) = 1.$
- (3) Let J_k be the arc centered at the point $\frac{x_k}{|x_k|}$ and of length $\frac{1}{100n}$. Then for $x \in \mathbb{S}^1$ lying in *second quadrant between the lines y-axis and* $y = -x$ *with* $x \notin \bigcup_{i=0}^{3} \Re_{\frac{i\pi}{2}}(J_k)$ *, we have*

$$
m(w_k)(x) \lesssim \frac{\log n}{\log N}.\tag{3}
$$

(4) *For* $1 \le k \le n$ *and* $x \in \mathbb{S}^1$ *lying in second quadrant between the lines y-axis and* $y = -x$ $with x \notin (\bigcup_{i=0}^{3} \Re_{\frac{i\pi}{2}}(J_{2k}) \cup (\bigcup_{i=0}^{3} \Re_{\frac{i\pi}{2}}(J_{2k-1})\big)$ *, we have*

$$
|\widehat{K}_{w_{2k}}(x) - \widehat{K}_{w_{2k-1}}(x)| \lesssim \left(n \log N \left| \frac{x}{|x|} - \frac{x_{2k}}{|x_{2k}|} \right| \right)^{-1} . \tag{4}
$$

Proof. First, we observe that it is enough to prove [\(2\)](#page-4-0) for $x \in \mathbb{S}^1$ as $\int_0^{2\pi} w_k(e^{i\theta}) d\theta = 0$. Since, w_k is even, we have that for any $0 \le \gamma < 2\pi$,

$$
\hat{K}_{w_k}(\mathbf{e}^{i\gamma}) = \int_0^{2\pi} w_k(\mathbf{e}^{i\theta}) \log \frac{1}{|\mathbf{e}^{i\theta} \cdot \mathbf{e}^{i\gamma}|} d\theta \n= \int_0^{2\pi} w_k(\mathbf{e}^{i\theta}) \log \frac{1}{|\cos(\theta - \gamma)|} d\theta \n= c_{I_k} \left[-\int_{A_k} + \int_{A_k + \frac{\pi}{2}} - \int_{A_k + \pi} + \int_{A_k + \frac{3\pi}{2}} \right] \log \frac{1}{|\cos(\theta - \gamma)|} d\theta \n= -2c_{I_k} \int_{-\frac{|A_k|}{2}}^{\frac{|A_k|}{2}} \log |\tan(\theta + \theta_k - \gamma)| d\theta,
$$
\n(5)

,

where $e^{i\theta_k} = \frac{x_k}{|x_k|}$ and A_k be the interval in $(0, \frac{\pi}{4})$ such that $I_k - \frac{x_k}{|x_k|} = \{e^{i\theta} : \theta \in A_k\}$. Similarly, we obtain that,

$$
c_{I_k}^{-1} \sim -\int_{-\frac{|A_k|}{2}}^{\frac{|A_k|}{2}} \log|\sin\theta| \,d\theta
$$

$$
= -2\int_0^{\frac{|A_k|}{2}} \log\sin\theta \,d\theta
$$

$$
\sim -\int_0^{\frac{|A_k|}{2}} \log t \,dt
$$

$$
\sim |A_k| |\log|A_k| |\sim \frac{\log N}{N}
$$

where we used the fact that $\sin\theta \sim \theta$ for $\theta \in (0, \frac{\pi}{4})$. Thus, we obtain [\(1\)](#page-4-1) and the estimate [\(2\)](#page-4-0) follows similarly from [\(5\)](#page-4-2).

The estimate [\(3\)](#page-4-3) follows from the fact that for $\gamma \in (2I_k)^c \cap (0, \frac{\pi}{4})$, we have

$$
|m(w_{I_k})(e^{i\gamma})| \lesssim \frac{|\log|\gamma - \widetilde{x}_k||}{|\log|I_k||}.
$$

Indeed, for $\theta \in I_k$, we have $|\gamma - \tilde{x}_k| < |\theta - \tilde{x}_k| + |\theta - \gamma| < \frac{|I_k|}{2} + |\theta - \gamma| < |\gamma - \tilde{x}_k|/2 + |\theta - \gamma|$. Thus $\frac{|\tilde{x}_k - \gamma|}{2} < |\theta - \gamma|$ and it follows that

$$
|m(w_{I_k})(e^{i\gamma})| \lesssim -c_{I_k} \int_{I_k} \log|\sin(\theta - \gamma)| d\theta
$$

\n
$$
\leq c_{I_k} |I_k| |\log \left|\sin\left(\frac{|\gamma - \tilde{x}_k|}{2}\right)\right|
$$

\n
$$
\lesssim \frac{|\log|\gamma - \tilde{x}_k||}{|\log|I_k||}.
$$

We now prove the estimate [\(4\)](#page-4-4). Let $e^{i\theta_{2k}} = \frac{x_{2k}}{|x_{2k}|}$, $e^{i\gamma} = \frac{x}{|x|}$ and A_{2k} be the interval in $(-\frac{\pi}{4}, \frac{\pi}{4})$ such that $I_{2k} - \frac{x_{2k}}{|x_{2k}|} = \{e^{i\theta} : \theta \in A_{2k}\}$. By using mean value theorem twice and the fact that $|\theta_{2k} - \theta_{2k-1}|$ is small, we have

$$
|\widehat{K}_{w_{2k}}(x) - \widehat{K}_{w_{2k-1}}(x)| \lesssim c_{I_{2k}} \int_{A_{2k}} \left[\log \frac{1}{|\tan(\theta + \theta_{2k} - \gamma)|} - \log \frac{1}{|\tan(\theta + \theta_{2k-1} - \gamma)|} \right] d\theta
$$

\n
$$
\lesssim c_{I_{2k}} \int_{A_{2k}} \frac{|\tan(\theta + \theta_{2k} - \gamma) - \tan(\theta + \theta_{2k-1} - \gamma)|}{|\tan(\theta + \theta_{2k} - \gamma)|} d\theta
$$

\n
$$
\lesssim c_{I_{2k}} \int_{A_{2k}} \frac{|\theta_{2k} - \theta_{2k-1}|}{|\theta + \theta_{2k} - \gamma|} d\theta
$$

\n
$$
\lesssim \frac{c_{I_{2k}}}{n} \int_{A_{2k}} \frac{1}{|\gamma - \theta_{2k}|} d\theta
$$

\n
$$
\lesssim \left(n \log N \left| \frac{x}{|x|} - \frac{x_{2k}}{|x_{2k}|} \right| \right)^{-1},
$$

where we have used $|\gamma - \theta_{2k}| \leq 2|\theta + \theta_{2k} - \gamma|$ and $\tan \theta \sim \theta$ away from odd multiples of $\frac{\pi}{2}$. □

 $\bf Step~3.$ The calculation of the $\| \Omega_n \|_{\Phi(L)(\mathbb{S}^1)}$ and the L^p -norms of T_{Ω_n} . In this step, we compute the Φ(*L*)−Orlicz norm of $Ω_n$ and the L^p − norm of the corresponding operator $T_{Ω_n}$. We begin by choosing *n* as follows,

$$
n = \left[\frac{N}{16\Phi\left(\frac{cN}{\log N}\right)}\right] + 1,\tag{6}
$$

where $c > 0$ is as in Proposition [3\(](#page-4-5)[1\)](#page-4-1). By hypothesis [\(2\)](#page-2-2), we have $n \to \infty$ as $N \to \infty$. Moreover, we have $N^{-1} \leq n^{-1}$ as Φ is an increasing function. This implies that the corresponding arcs I_k , $k = 1, \ldots, 2n$, are disjoint. Hence, we have

$$
\|\Omega_n\|_{\Phi(L)(\mathbb{S}^1)} = \sum_{k=1}^{2n} \sum_{l=0}^{3} \int_{A_k + \frac{l\pi}{2}} \Phi\left(|\epsilon_{\left[\frac{k+1}{2}\right]} c_{I_k}|\right) d\theta
$$

\n
$$
\leq \frac{8n}{N} \Phi\left(\frac{cN}{\log N}\right)
$$

\n
$$
\leq 1.
$$

Thus, by the definition of the Luxemburg norm $\|\!|\cdot|\!|\!|_{\Phi(L)}$, we have

$$
\|\Omega_n\|_{\Phi(L)(\mathbb{S}^1)} \le 1. \tag{7}
$$

We estimate the quantity [∥]*m*(Ω*n*)∥*L*∞(S¹) by employing Proposition [3\(](#page-4-5)[3\)](#page-4-3). Indeed, we have

$$
||m(\Omega_n)||_{L^{\infty}(\mathbb{S}^1)} \lesssim 1 + \frac{n \log n}{\log N} \le \frac{\log n}{8c} \frac{\frac{cN}{\log N}}{\Phi\left(\frac{cN}{\log N}\right)} \lesssim \log n, \tag{8}
$$

 λ

where we used that $\frac{\Phi(t)}{t}$ is a non-decreasing function in the last step.

 ϵ

We now compute the L^p -norms of the corresponding operator T_{Ω_n} . The space of L^p multipliers $M^p(\mathbb{T})$ and $M^p(\mathbb{R}^2)$ are defined as

$$
M^{p}(\mathbb{T}) = \left\{ \mathbf{a} = \{a_{n}\} \in l^{\infty}(\mathbb{Z}) : T_{\mathbf{a}}f(x) = \sum_{n \in \mathbb{Z}} a_{n}\hat{f}(n) e^{2\pi i nx} \text{ is bounded on } L^{p}(\mathbb{T}) \right\},
$$

$$
M^{p}(\mathbb{R}^{2}) = \left\{ \gamma \in L^{\infty}(\mathbb{R}^{2}) : T_{\gamma}f(x) = \int_{\mathbb{R}^{2}} \gamma(\xi) \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi \text{ is bounded on } L^{p}(\mathbb{R}^{2}) \right\}.
$$

 $\mathsf{W}\mathbf{e}$ define $\|\mathbf{a}\|_{M^p(\mathbb{T})} = \|T_{\mathbf{a}}\|_{L^p(\mathbb{T}) \to L^p(\mathbb{T})}$ and $\|\gamma\|_{M^p(\mathbb{R}^2)} = \|T_{\gamma}\|_{L^p(\mathbb{R}^2) \to L^p(\mathbb{R}^2)}$.

We state two lemmas from [\[7\]](#page-8-8) that will be useful in estimating the L^p -norms of T_{Ω_n} . The first lemma states that there exist a sequence of multipliers $\{\{\ldots,0,\epsilon_1,\epsilon_2,\ldots,\epsilon_n,0,\ldots\} : n \in \mathbb{N}\}$ on $\mathbb T$ whose L^p -norm blows up as *n* tends to infinity for $p \neq 2$. This was achieved in [\[7\]](#page-8-8) by employing the fact that { $e^{2\pi i kx}$, $k \in \mathbb{Z}$ } is not an unconditional basis for $L^p(\mathbb{T}),\ p\neq 2.$ Moreover, the quantity $\|\{...,0,\epsilon_1,\epsilon_2,...,\epsilon_n,0,...\}\|_{M^p(\mathbb{T})}$ grows at least of the order $n^{|\frac{1}{2}-\frac{1}{p}|}$. To justify this growth, we invoke Theorem 1 from [\[15\]](#page-9-4),

For $n \in \mathbb{N}$, there exists $\{\epsilon_k\}_{k=1}^n$ with $\epsilon_k = \pm 1$ such that $\|\sum_{k=1}^n \epsilon_k e^{2\pi i kx}\|_{L^\infty(\mathbb{T})} \leq 5n^{\frac{1}{2}}$,

and the well-known fact (Exercise 3.1.6 from [\[6\]](#page-8-11)) that the L^p -norm of the Dirichlet kernel satisfies the following estimate:

$$
\left\|\sum_{k=1}^n e^{2\pi i kx}\right\|_{L^p(\mathbb{T})} \sim n^{1-\frac{1}{p}} \text{ for } 1 < p < \infty.
$$

Thus, we have,

$$
\|\{\ldots, 0, \epsilon_1, \epsilon_2, \ldots, \epsilon_n, 0, \ldots\}\|_{M^p(\mathbb{T})} \ge \frac{\left\|\sum_{k=1}^n \epsilon_k^2 e^{2\pi i kx}\right\|_{L^p(\mathbb{T})}}{\left\|\sum_{k=1}^n \epsilon_k e^{2\pi i kx}\right\|_{L^p(\mathbb{T})}} \ge \frac{\left\|\sum_{k=1}^n \epsilon_k e^{2\pi i kx}\right\|_{L^p(\mathbb{T})}}{\left\|\sum_{k=1}^n \epsilon_k e^{2\pi i kx}\right\|_{L^\infty(\mathbb{T})}} \ge n^{\frac{1}{2} - \frac{1}{p}}.
$$

The inequality $\|\{ \ldots, 0, \epsilon_1, \epsilon_2, \ldots, \epsilon_n, 0, \ldots \} \|_{M^p(\mathbb{T})} \gtrsim n^{\frac{1}{p} - \frac{1}{2}}$ follows from

$$
\|\{\ldots,0,\epsilon_1,\epsilon_2,\ldots,\epsilon_n,0,\ldots\}\|_{M^p(\mathbb{T})}=\|\{\ldots,0,\epsilon_1,\epsilon_2,\ldots,\epsilon_n,0,\ldots\}\|_{M^{\frac{p}{p-1}}(\mathbb{T})}
$$

for $1 < p < \infty$.

Lemma 4 ([\[7\]](#page-8-8)). For $p \neq 2$ and fixed $n \in \mathbb{N}$, there exists finite sequences $\{a_k\}_{k=1}^n$ and $\{e_k\}_{k=1}^n$ *(depending on n)* with $\epsilon_k \in \{-1, 1\}$ *such that*

$$
\left\| \sum_{k=1}^{n} \epsilon_k a_k e^{2\pi i k x} \right\|_{L^p(\mathbb{T})} \ge c_p n^{\left|\frac{1}{2} - \frac{1}{p}\right|} \left\| \sum_{k=1}^{n} a_k e^{2\pi i k x} \right\|_{L^p(\mathbb{T})}
$$

,

 \mathcal{L} where $c_p > 0$ depends only on p. Consequently, $\|\{ \ldots, 0, \epsilon_1, \epsilon_2, \ldots, \epsilon_n, 0, \ldots \}\|_{M^p(\mathbb{T})} \gtrsim n^{|\frac{1}{2} - \frac{1}{p}|}.$ More*over, we can choose* ϵ_k *such that*

 $\| {\dots, 0, ε_1, ε_2, \dots, ε_n, 0, \dots} \|_{M^p(\mathbb{T})} = \sup \{ \| {\dots, 0, δ_1, δ_2, \dots, δ_n, 0, \dots} \|_{M^p(\mathbb{T})} : |\delta_k| \leq 1 \}.$

The second lemma (stated below) along with an application of Lemma [4](#page-6-0) provides us with a sequence of multipliers on the plane such that their *L p* -norm blows up as *n* tends to infinity for $p \neq 2$. This lemma is based on a classical transference result of de Leeuw [\[12\]](#page-8-12). For a proof of the lemma, we refer to [\[7\]](#page-8-8).

Lemma 5 ([\[7\]](#page-8-8)). Let $1 < p < \infty$ and $\gamma \in M^p(\mathbb{R}^2)$ be continuous on an arithmetic progression $\{x_k\}_{k=1}^n$ *in* \mathbb{R}^2 (*i.e. there exists vector v* ∈ \mathbb{R}^2 such that $x_k - x_{k-1} = v$). Then there exists a constant $C_p > 0$ *such that*

$$
\|\gamma\|_{M^p(\mathbb{R}^2)}\geq C_p\|\{\ldots,0,\gamma(x_1),\gamma(x_2),\ldots,\gamma(x_n),0,\ldots\}\|_{M^p(\mathbb{T})}.
$$

Now we turn to the estimate of L^p −bounds of T_{Ω_n} . We claim that

$$
\|T_{\Omega_n}\|_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)} \gtrsim n^{|\frac{1}{2}-\frac{1}{p}|}.
$$
 (9)

For $1 \leq k \leq n$, we have

$$
\widehat{K}_{\Omega_n}(x_{2k}) = (-1)^{2k} \widehat{K}_{w_{2k}}(x_{2k}) \epsilon_k + \sum_{1 \le i \ne 2k \le 2n} (-1)^i \epsilon_{\left[\frac{i+1}{2}\right]} \widehat{K}_{w_i}(x_{2k}) = D\epsilon_k + \delta_k,
$$

where $D = \widehat{K}_{w_{2k}}(x_{2k})$ and $\delta_k = \sum_{1 \le i \ne 2k \le 2n} (-1)^i \epsilon_{\left[\frac{i+1}{2}\right]} \widehat{K}_{w_i}(x_{2k}).$

Using Proposition [3](#page-4-5)[\(3\)](#page-4-3) for the term $i = 2k - 1$ and Proposition [3\(](#page-4-5)[4\)](#page-4-4) for the remaining terms (in pair), we get

$$
|\delta_k| \le C \left(\frac{\log n}{\log N} + \frac{1}{\log N} \sum_{i=1}^{2n} \frac{1}{i} \right) \le \frac{C' \log n}{\log N} \le \frac{|D|}{4} \text{ (for large } n\text{)}.
$$

Hence, by the choice of Lemma [4,](#page-6-0) we have

$$
\frac{1}{2} \left\| \left\{ \ldots, 0, \epsilon_1, \epsilon_2, \ldots, \epsilon_n, 0, \ldots \right\} \right\| M^p(\mathbb{T}) \ge \left\| \left\{ \ldots, 0, \frac{\delta_1}{D}, \frac{\delta_2}{D}, \ldots, \frac{\delta_n}{D}, 0, \ldots \right\} \right\|_{M^p(\mathbb{T})}.
$$

Since $\widehat{K}_{\Omega_n}(\theta)$ is a circular convolution of a $L^1(\mathbb{S}^1)$ and $L^\infty(\mathbb{S}^1)$, it is continuous at the points x_{2k} , $k = 1, \ldots, n$, and applying Lemma [5,](#page-7-0) we have

$$
\|T_{\Omega_n}\|_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)} = \|\widehat{K}_{\Omega_n}\|_{M^p(\mathbb{R}^2)}\geq \|\{\dots, 0, \widehat{K}_{\Omega_n}(x_2), \widehat{K}_{\Omega_n}(x_4), \dots, \widehat{K}_{\Omega_n}(x_{2n}), 0, \dots\}\|_{M^p(\mathbb{T})}\geq |D|\left(\|\{\dots, 0, \epsilon_1, \epsilon_2, \dots, \epsilon_n, 0, \dots\}\|_{M^p(\mathbb{T})} - \left\|\{\dots, 0, \frac{\delta_1}{D}, \frac{\delta_2}{D}, \dots, \frac{\delta_n}{D}, 0, \dots\}\right\|_{M^p(\mathbb{T})}\right)\geq \frac{|D|}{2}\|\{\dots, 0, \epsilon_1, \epsilon_2, \dots, \epsilon_n, 0, \dots\}\|_{M^p(\mathbb{T})}\geq n^{\left|\frac{1}{2}-\frac{1}{p}\right|},
$$

where we used Lemma [4](#page-6-0) in the last step.

Step 4. The uniform boundedness principle and the conclusion. We conclude the proof by an application of uniform boundedness principle. Indeed, We define the space,

$$
\mathfrak{B} := \left\{ \Omega : \mathbb{S}^1 \longrightarrow \mathbb{R} \text{ is even}: \int \Omega = 0 \text{ and } \|\Omega\|_{\mathfrak{B}'} = \|\Omega\|_{\Phi(L)(\mathbb{S}^1)} + \|m(\Omega)\|_{L^{\infty}(\mathbb{S}^1)} < \infty \right\}.
$$

The space $\mathfrak B$ forms a Banach space.

Fix $p \neq 2$. For $\mathfrak{F} = \{f \in L^p(\mathbb{R}^2) : ||f||_p = 1\}$, we define a collection of operators $\Theta_f : \mathfrak{B} \to L^p$ as Θ_f (Ω) = *T*_Ω(*f*). Suppose we have

$$
\|T_\Omega\|_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)}=\sup_{f\in\mathfrak{F}'}\|T_\Omega f\|_{L^p(\mathbb{R}^2)}<\infty,\ \forall \Omega\in\mathfrak{B}.
$$

Then by uniform boundedness principle, there exists $M > 0$ such that

$$
\|T_\Omega\|_{L^p(\mathbb{R}^2)\to L^p(\mathbb{R}^2)}=\sup_{f\in\mathfrak{F}}\|\Theta_f(\Omega)\|_{L^p(\mathbb{R}^2)}
$$

which along with [\(7\)](#page-5-2), [\(8\)](#page-6-1) and [\(9\)](#page-7-1) implies that

$$
n^{|\frac{1}{2}-\frac{1}{p}|} \lesssim \|T_{\Omega_n}\|_{L^p(\mathbb{R}^2) \to L^p(\mathbb{R}^2)}
$$

\$\lesssim \|\Omega_n\|_{\Phi(L)(\mathbb{S}^1)} + \|m(\Omega_n)\|_{L^\infty(\mathbb{S}^1)}\$
$$
\lesssim \log n.
$$

This is a contradiction for large *n* and $p \neq 2$ and that concludes the proof of Theorem [2.](#page-2-1)

Acknowledgement

The author would like to thank Prof. Parasar Mohanty and Prof. Adimurthi for various useful discussions regarding the problem. The author is grateful to the anonymous referee for various useful comments and improving the exposition of the paper.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization that could benefit from this article, and have declared no affiliations other than their research organizations.

References

- [1] C. Bennett and R. Sharpley, *Interpolation of operators*, Academic Press Inc., 1988, pp. xiv+469.
- [2] A. Calderón Alberto P.; Zygmund, "On singular integrals", *Am. J. Math.* **78** (1956), pp. 289– 309.
- [3] M. Christ and J. L. Rubio de Francia, "Weak type (1,1) bounds for rough operators. II", *Invent. Math.* **93** (1988), no. 1, pp. 225–237.
- [4] R. R. Coifman and G. Weiss, "Extensions of Hardy spaces and their use in analysis", *Bull. Am. Math. Soc.* **83** (1977), no. 4, pp. 569–645.
- [5] W. C. Connett, "Singular integrals near *L* 1 ", in *Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1*, American Mathematical Society, 1979, pp. 163–165.
- [6] L. Grafakos, *Classical Fourier analysis*, Third edition, Springer, 2014, pp. xviii+638.
- [7] L. Grafakos, P. Honzík and D. Ryabogin, "On the *p*-independence boundedness property of Calderón-Zygmund theory", *J. Reine Angew. Math.* **602** (2007), pp. 227–234.
- [8] L. Grafakos and A. Stefanov, "L^p bounds for singular integrals and maximal singular integrals with rough kernels", *Indiana Univ. Math. J.* **47** (1998), no. 2, pp. 455–469.
- [9] L. Grafakos and A. Stefanov, "Convolution Calderón–Zygmund singular integral operators with rough kernels", in *Analysis of divergence (Orono, ME, 1997)*, Birkhäuser, 1999, pp. 119– 143.
- [10] S. Hofmann, "Weak (1,1) boundedness of singular integrals with nonsmooth kernel", *Proc. Am. Math. Soc.* **103** (1988), no. 1, pp. 260–264.
- [11] P. Honzík, "On *p* dependent boundedness of singular integral operators", *Math. Z.* **267** (2011), no. 3-4, pp. 931–937.
- [12] K. de Leeuw, "On *L^p* multipliers", *Ann. Math.* **81** (1965), pp. 364–379.
- [13] F. Ricci and G. Weiss, "A characterization of *H* 1 (Σ*n*−1)", in *Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1*, American Mathematical Society, 1979, pp. 289–294.
- [14] B. Rubin and D. Ryabogin, "Singular integral operators generated by wavelet transforms", *Integral Equations Oper. Theory* **35** (1999), no. 1, pp. 105–117.
- [15] W. Rudin, "Some theorems on Fourier coefficients", *Proc. Am. Math. Soc.* **10** (1959), pp. 855– 859.
- [16] A. Seeger, "Singular integral operators with rough convolution kernels", *J. Am. Math. Soc.* **9** (1996), no. 1, pp. 95–105.
- [17] A. Stefanov, "Weak type estimates for certain Calderón-Zygmund singular integral operators", *Stud. Math.* **147** (2001), no. 1, pp. 1–13.
- [18] M. Weiss and A. Zygmund, "An example in the theory of singular integrals", *Stud. Math.* **26** (1965), pp. 101–111.