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Abstract. Rough paths theory allows for a pathwise theory of solutions to differential equations driven by
highly irregular signals. The fundamental observation of rough paths theory is that if one can define “iterated
integrals” above a signal, then one can construct solutions to differential equations driven by the signal.

The typical examples of the signals of interest are stochastic processes such as (fractional) Brownian
motion. However, rough paths theory is not inherently random and therefore can treat irregular deterministic
driving signals such as a (vector-valued) Weierstrass function. This note supplies a construction of a rough
path above vector-valued Weierstrass functions.

Résumé. La théorie des chemins rugueux fournit une théorie trajectorielle des solutions aux équations
différentielles gouvernées par des signaux très irréguliers. L’observation fondamentale de la théorie des
chemins rugueux est que si l’on peut définir des “intégrales itérées” au-dessus d’un signal donné, alors on
peut construire des solutions aux équations différentielles gouvernées par ce signal. Les exemples typiques
de signaux d’intérêt sont des processus stochastiques tels le mouvement brownien (fractionnaire). Ceci dit,
la théorie des chemins rugueux n’est pas intrinsèquement probabiliste et peut donc traiter des signaux
déterministes irréguliers tels les fonctions de Weierstrass (à valeurs vectorielles). Cette note fournit une
construction d’un chemin rugueux au-dessus de fonctions de Weierstrass (à valeurs vectorielles).
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1. Introduction

Rough paths theory allows for a pathwise theory of solutions to differential equations driven by
highly irregular signals. Rough paths are concerned with differential equations of the form

dY (t ) = b(Y (t ), t )dt + c(Y (t ), t )dX (t ), (1.1)

where b,c are nice enough functions and X is some “driving” signal X (t ) = (X 1(t ), . . . , X d (t ))
with bad regularity, in particular X lacking differentiability. In this case, we may interpret
equation (1.1) as the integral equation

Y (t ) = Y (0)+
∫ t

0
b(Y (s), s)ds +

∫ T

0
c(Y (s), s)dX (s). (1.2)
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However, if X is not of bounded variation the last integral in equation (1.2) might not be well-
defined as a Riemann–Stieltjes integral. In cases where X is a stochastic process (in particular a
martingale), the celebrated Itô calculus can make sense of the last integral in equation (1.2). Itô
theory averages over paths or takes limits in probability, thus making it unsuitable for pathwise
calculus. Rough paths theory takes an alternative approach to the Itô calculus: by “enhancing”
X with some “extra information” encoding an integration theory, we can construct pathwise
solutions to (1.2).

The fundamental observation of rough paths theory is that the issue of defining solutions
to (1.2) can be reduced to defining the iterated integrals

∫ t
s (X i (r )− X i (s))dX j (r ) for 1 ≤ i , j ≤ d .

The pair
(
X (t )−X (s),

∫ t
s (X (r )−X (s))⊗ dX (r )

)
, where

∫ t
s (X (r ) − X (s)) ⊗ dX (r ) is the matrix of

iterated integrals of the form
∫ t

s (X i (r ) − X i (s))dX j (r ), is called a rough path above the signal
X (see Definition 4).

Rough paths have been extensively applied to stochastic differential equations where X is a
stochastic process. Examples of stochastic driving signals include fractional Brownian motion
or more general Gaussian processes. However, there is nothing inherently random about rough
paths theory. Even in the case of stochastic driving signals, solutions to (1.2) are defined pathwise,
that is for each realization of the process. Thus even when the driving signal is random, the
solution theory can be seen as deterministic. However, in the literature the application of rough
paths theory to equations driven by deterministic signals has been limited. This note works out
the case when X is a vector-valued Weierstrass function.

Given that defining solutions to (1.2) can be reduced to defining a rough path (iterated
integral) above the driving signal, there has been considerable interest in the construction of
rough paths above various signals. If the driving signal is scalar-valued, then we can make the
simple definition that

∫ t
s (X (r )− X (s))dX (r ) := 1

2 (X (t )− X (s))2. This is a completely acceptable
definition for any X , so the primary interest is in defining rough paths above vector-valued
signals.

In [15], the authors show that any signal that isα-Hölder (or has finite p-variation) has a rough
path lift. However, their construction is fairly abstract and hence there is a lot of interest in more
natural constructions, in particular from natural approximations. A more natural construction
for generalα-Hölder paths can be found in [3]. The construction of a rough path above fractional
Brownian motion using Volterra’s representation is given in [16]. In [5], the authors constructed
rough paths above very general Gaussian signals.

Weierstrass functions are real-valued functions which have been identified as the “determin-
istic analogue” of Brownian motion (this is the perspective taken in [14], for example). In partic-
ular, Weierstrass functions have similar analytic properties to the types of stochastic processes
that rough paths theory was invented to handle. The analytic properties of Weierstrass functions
have been studied extensively. For example, see [1, 2, 8, 10, 13, 17] for discussion of the Haus-
dorff dimension of the graphs of Weierstrass functions. Another interesting instance in which a
Weierstrass function is used in place of a stochastic process is given in [14], where a deterministic
version of the Schramm–Loewner evolution is considered, driven by a Weistrass function rather
than by a Brownian motion.

We emphasize that rough paths theory for scalar-valued functions is somewhat trivial in the
sense mentioned above. Therefore, we will consider a vector-valued Weierstrass function. By this,
we mean an Rd -valued function whose components are scalar-valued Weierstrass functions with
possibly different parameters. A two dimensional Weierstrass function has been studied in [11,
12]. In [12, Example 2.8], the authors consider the two dimensional Weierstrass function

W : t 7−→
( ∞∑

k=0
ak cos(2kπt ),

∞∑
k=0

ak sin(2kπt ))

)
,
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where they show that the iterated integrals over (−1,1) of the approximating finite sums diverge
(therefore the most natural approximation scheme to W will not lead to a rough path above W ).
Furthermore, in [11] they discuss the smoothness of the SBR measure.

We consider a similar signal but of any dimension and with only cosines (or only sines)
instead of mixed cosines and sines. We construct a rough path above a vector-valued Weierstrass
function without any of the probabilistic technicalities generally present in rough paths theory
to demonstrate the power of rough paths theory beyond the setting of stochastic differential
equations.

The main result is the following theorem. See Theorem 14 for a full version.

Theorem 1 (Main theorem, simplified version). Let 0 < a1, . . . , ad < 1 and let b1, . . . ,bd ≥ 2 be
integers with a1b1 > 1, . . . , ad bd > 1. Let

W (t ) = (W 1(t ), . . . ,W d (t )) =
( ∞∑

k=0
ak

1 cos(bk
1πt ), . . . ,

∞∑
k=0

ak
d cos(bk

dπt )

)
and let

WN (t ) = (W 1
N (t ), . . . ,W d

N (t )) =
(

N∑
k=0

ak
1 cos(bk

1πt ), . . . ,
N∑

k=0
ak

d cos(bk
dπt )

)
.

Then for 1 ≤ i , j ≤ d and 0 ≤ s ≤ t ≤ 1 the limit

I i , j (s, t ) := lim
N→∞

∫ t

s
(W i

N (r )−W i
N (s))dW j

N (r )

exists. Furthermore, if we assume that − ln ai
lnbi

> 1/3 for 1 ≤ i ≤ d, then the matrix with entries

I i , j (s, t ) defines a geometric rough path above W .

Again, we emphasize that we construct the rough path above a vector-valued Weierstrass
function because for a scalar-valued Weierstrass function we can always define

∫ t
s (W (r ) −

W (s))dW (r ) := 1
2 (W (t )−W (s))2. The technical challenge is defining

∫ t
s (W i (r )−W i (s))dW j (r )

where W i and W j are two different one-dimensional Weierstrass functions. For an example of
vector-valued Weierstrass functions, see Figure 1.

2. Background on Rough Paths

In this section, we give a brief introduction to rough paths theory. See [6, 7] for two excellent
introductions to rough paths.

Rough paths theory treats Hölder continuous driving signals (or in the case of stochastic dif-
ferential equations, stochastic processes that are almost surely Hölder). We recall the definition
of Hölder continuity below.

Definition 2. Letα ∈ (0,1]. We denote by Cα([0,T ],Rd ) the space ofα-Hölder functions f : [0,T ] →
Rd equipped with the norm ∥ f ∥α := supt ̸=s

| f (t )− f (s)|
|t−s|α .

In order to solve equation (1.2) through some type of Picard iteration, one must first make
sense of integrals of the form ∫ t

0
c(X (s), s)dX (s). (2.1)

The following result by Young is classical.
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Figure 1. Top panel: two Weierstrass functions with parameters b1 = 2, a1 = 18
25 (in red)

and b2 = 3, a2 = 3
5 (in blue) so that α1 ≈ 0.473931 and α2 ≈ 0.464974 are in the range

prescribed by Theorems 1 and 14. Bottom panel: the curve [0,1] → R2 given by t 7→
(W18/25,2(t ),W3/5,3(t )). Note that on the interval [1,2] the path is the same as for [0,1] but
run backwards.
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Theorem 3 (Young [18]). Let f ∈ Cα([0,T ],Rd ) and let g ∈ Cβ([0,T ],Rd ) with α+β > 1. Let
Pn = {0 = t0 < t1 < ·· · < tn = T } be a sequence of partitions whose mesh size tends to 0. Then
the limit ∫ T

0
f (s)dg (s) = lim

n→∞
n∑

k=0
f (tk )(g (tk+1)− g (tk )) (2.2)

exists and is independent of the sequence of partitions. The integral in equation (2.2) is known as
the Young or Riemann–Stieltjes integral.

Therefore if we assume that c is smooth, then the integral in equation (2.1) makes sense as a
Young integral if X ∈ Cα([0,T ],Rd ) for α > 1/2. However, for lower regularity driving signals, the
Riemann–Stieltjes integral defined in equation (2.2) needs to include extra terms which represent
the “iterated integrals” of X against itself. We provide a heuristic derivation below.

Heuristic Derivation of Rough Integral. If X is a signal that is α-Hölder continuous with α ∈
(1/3,1/2] and F is a smooth function, then for a partition of [0, t ], P = {0 = t0 < ·· · < tn = t } we
have that (the a-priori ill defined) integral∫ t

0
F (X (r ))dX (r )

=
n∑

k=0

∫ tk+1

tk

F (X (r ))dX (r )

=
n∑

k=0

∫ tk+1

tk

(
F (X (tk ))+F ′(X (tk ))(X (r )−X (tk ))+O(|r − tk |2α)

)
dX (r )

=
n∑

k=0

(
F (X (tk ))(X (tk+1)−X (tk ))+F ′(X (tk ))

∫ tk+1

tk

(X (r )−X (tk ))dX (r )+O(|tk+1 − tk |3α)

)
.

As 3α> 1, the remainder term should tend to 0 as the mesh size of the partition |P | = max
0≤k≤n−1

(tk+1−
tk ) tends to 0.

Note that we restricted α ∈ (1/3,1/2]. This is purely for exposition - for lower α we would need
more iterated integrals. In particular, if α ∈ ( 1

n+1 , 1
n

]
then we need n −1 additional terms so that

α(n +1) > 1. In the rest of this note, we will stick to α ∈ (1/3,1/2] for convenience.

This heuristic reduces the problem of defining the integral
∫ t

0 F (X (r ))dX (r ) to just defining∫ tk+1
tk

(X (r ) − X (tk ))dX (r ). However, if X is irregular then the iterated integral does not exist
“canonically” as a Riemann–Stieltjes integral and therefore must be postulated. There are two
main properties we would like such a definition to satisfy - one analytic and one algebraic.

A rough path above a signal X ∈ Cα([0,T ],Rd ) is therefore a pair Xs,t = (Xs,t ,Xs,t ) where
Xs,t = X (t ) − X (s) is the increment of X and Xs,t is a definition or postulation of the iterated
integral

∫ t
s (X (r )−X (s))⊗ dX (r ) where again we note that

∫ t
s (X (r )−X (s))⊗ dX (r ) represents the

matrix whose (i , j )th entry is
∫ t

s (X i (r )−X i (s))dX j (r ). We give a precise definition below.

Definition 4. Let T > 0 and let ∆(0,T )
2 = {(s, t ) : 0 ≤ s ≤ t ≤ T } denote the 2-simplex. Given a signal

X ∈Cα([0,T ],Rd ) withα ∈ (1/3,1/2] we say X = (X ,X) :∆(0,T )
2 →Rd ⊕Rd×d is a rough path above X

if for all s,u, t ∈ [0,T ] we have

(i) Xs,t = X (t )−X (s)
(ii) Xs,t −Xs,u −Xu,t = Xs,u ⊗Xu,t

(iii) ∥X∥α,2α := supt ̸=s
|Xs,t |
|t−s|α + supt ̸=s

|Xs,t |
|t−s|2α <+∞,

where | · | denotes any of the (equivalent) norms on either Rd or Rd×d . We denote the space of rough
paths by C α. The topology generated by the seminorm ∥ ·∥α,2α is called the rough topology.

Remark 5. It should be stressed that in Definition 4 there is no reference to any iterated integrals.
The second order processX intuitively encodes a notion of iterated integral but formally,X is just
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some process that takes values in Rd×d . Once we have this purely abstract objectXwe may make
the definition ∫ t

s
(X (r )−X (s))⊗dX (r ) :=Xs,t . (2.3)

Remark 6. The difference of iterated integrals

Li , j (s, t ) :=
∫ t

s
X i (r )dX j (r )−

∫ t

s
X j (r )dX i (r )

is often referred to as the Lévy area. The reason for this terminology is that if X i and X j were
piecewise smooth, then by Green–Stokes theorem, the (signed) area swept by the curve (X i , X j )
in R2 from time s to time t would be twice Li , j (s, t ).

One can check that if X ∈C∞ and
∫ t

s (X (r )−X (s))dX (r ) is the Riemann–Stieltjes integral, then
Xs,t := (

X (t )−X (s),
∫ t

s (X (r )−X (s))dX (r )
)

satisfies Definition 4. In this sense, there is a natural
embedding of C∞ smooth functions into the space of rough paths. The closure of these functions
under the rough topology is the space of geometric rough paths.

Definition 7. For α ∈ (1/3,1/2], denote by C̊ α
g the image of the embedding ι : C∞([0,T ],Rd ) →

C α where ι( f )s,t = (
f (t )− f (s),

∫ t
s ( f (r )− f (s)) f ′(r )dr

)
. Let C α

g be the closure of C̊ α
g under the

seminorm ∥ ·∥α,2α defined in Definition 4. We call C α
g the space of geometric rough paths.

Remark 8. The space of rough paths C α, although a subset of the vector space Rd ⊕Rd×d is not
itself a vector space because of the nonlinear relation (ii) in Definition 4. However, the seminorm
∥ ·∥α,2α can be used to define a metric – thus C α is a metric space.

We can transfer pointwise convergent sequence of approximations to a rough path to conver-
gence in the rough topology using the following “interpolation” theorem.

Theorem 9 (see [6, Exercise 2.9]). Let (XN ,XN ) ∈ C β for some β ∈ (1/3,1,2] and every N ≥ 1.
Suppose that the following uniform bounds hold

sup
N

∥XN∥β <∞,

sup
N

∥XN∥2β <∞.

Suppose that, as N →∞, XN (t ) → X (t ) andXN (0, t ) →X(0, t ) pointwise for all t . Then (X ,X) ∈C β

and (XN ,XN ) converges to (X ,X) in C α
g as N →∞ for all 1/3 <α<β.

3. Weierstrass Function

Let b ≥ 2 be an integer and 0 < a < 1 with ab > 1. Define the (scalar-valued) Weierstrass
function by

Wa,b(t ) :=
∞∑

n=0
an cos(bnπt ). (3.1)

In 1872 Weierstrass proved that Wa,b is nowhere differentiable when b is odd and ab > 1+ 3π
2 . The

range of parameters a,b for which the nondifferentiability holds was enlarged by several authors,
culminating in the work of Hardy [9]. For the parameters we are considering, Hardy proved
that Wa,b is nowhere differentiable and α-Hölder continuous with α = − ln a

lnb ([9, Theorems 1.31
and 1.32]). That is, according to Definition 2, Wa,b ∈Cα([0,T ],R) for every T > 0. Withα as above,
we write the equivalent representation

Wb,α(t ) :=
∞∑

n=0
b−nα cos(bnπt ). (3.2)
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Also define its truncated version

Wb,α,N (t ) :=
N∑

n=0
b−nα cos(bnπt ). (3.3)

Even though it is well known that the Weierstrass function is Hölder continuous, for expository
reasons we will include a short proof here.

In the proof of Proposition 10 and Proposition 11, we will write “≲” to denote “≤ K ” where K is
some unspecified absolute constant whose value may change from line to line. This is equivalent
to Vinogradov’s “≪” notation.

For simplicity, instead of working on an arbitrary interval [0,T ], we henceforth set T = 1.

Proposition 10. Let Wb,α be a Weierstrass function. Then Wb,α ∈Cα([0,1],R) for α=− logb(a).

Proof. Consider some pair (s, t ) and choose N so that b−(N+1) < |t − s| ≤ b−N . Then we have that

|Wb,α(t )−Wb,α(s)| ≤
∞∑

n=0
b−nα|cos(bnπt )−cos(bnπs)|

=
N∑

n=0
b−nα|cos(bnπt )−cos(bnπs)|+

∞∑
n=N+1

b−nα|cos(bnπt )−cos(bnπs)|

≤
N∑

n=0
b−nαbnπ|t − s|+

∞∑
n=N+1

b−nα2

≲ b(1−α)(N+1)b−N +b−αN

≲ b−αN

≲ |t − s|α. □

The primary technical barrier to constructing a rough path above a vector-valued function is
the uniform bound on the Hölder norm of the iterated integrals of the approximating sequence.
Thus, the following Proposition 11 is the primary technical contribution of this paper. We use a
similar idea of the proof of Proposition 10 of splitting the sum into a bulk and a tail. However,
as there is a double sum we will need to apply two cutoffs and four separate bounds. The bound
involving the tail of each sum is the most interesting, and involves various cases depending on
whether b1,b2 are multiplicatively independent or not, see bound (iv) below.

Proposition 11. Let Wb1,α1 and Wb2,α2 be two Weierstrass functions with truncated versions
Wb1,α1,N and Wb2,α2,N . Let ε> 0 be such that ε< min{α1,α2}. Define the approximating sequence
of iterated integrals as

I N (s, t ) = I N
(b1,α1),(b2,α2)(s, t ) :=

∫ t

s
(Wb1,α1,N (r )−Wb1,α1,N (s))dWb2,α2,N (r ). (3.4)

Then there exists some constant C :=C (α1,α2,b1,b2,ε), independent of N so that∣∣I N (s, t )
∣∣≤C |t − s|α1+α2−2ε, (3.5)

for all 0 ≤ s ≤ t ≤ 1.

We will need the following result due to N.I. Fel’dman.

Lemma 12 ([4, Theorem 1.8]). Let b1,b2 ≥ 2 be two integers that are multiplicatively independent
(i.e. ln(b1)/ ln(b2) is irrational). Let n,ℓ ≥ 1 be two integers. Then there exists a constant P > 0,
depending only on b1,b2 such that

|bn
1 −bℓ2 | ≥

max{bn
1 ,bℓ2 }

(max{3,n,ℓ})P
.
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Proof of Proposition 11. Recalling that αi =− ln(ai )
ln(bi ) for i = 1,2, we may rewrite I N (s, t ) as

I N (s, t ) =
N∑

n=0

N∑
ℓ=0

an
1 aℓ2 J n,ℓ(s, t ), (3.6)

where

J n,ℓ(s, t ) :=
∫ t

s

(
cos(bn

1πr )−cos(bn
1πs)

)
dcos(bℓ2πr ). (3.7)

We will need four bounds for J .

Bound (i). Differentiating the integrator of J n,ℓ(s, t ) gives that

|J n,ℓ(s, t )| =
∣∣∣∣∫ t

s

(
cos(bn

1πr )−cos(bn
1πs)

)
πbℓ2 sin(bℓ2πr )dr

∣∣∣∣
≤

∫ t

s

∣∣∣(cos(bn
1πr )−cos(bn

1πs)
)
πbℓ2 sin(bℓ2πr )

∣∣∣dr

≲ bn
1 bℓ2

∫ t

s
(r − s)dr

≲ bn
1 bℓ2 (t − s)2,

where the second to last inequality is due to the Lipschitz property of cosine and the trivial bound
|sin(x)| ≤ 1.

Bound (ii). Using the trivial bounds |sin(x)|, |cos(x)| ≤ 1 we have

|J n,ℓ(s, t )| ≤
∫ t

s

∣∣∣(cos(bn
1πr )−cos(bn

1πs)
)
πbℓ2 sin(bℓ2πr )

∣∣∣dr

≲ bℓ2 (t − s).

Bound (iii). We can apply integration by parts to the Riemann–Stieltjes integral J to get that

J n,ℓ(s, t ) = (
cos(bn

1πt )−cos(bn
1πs)

)
cos(bℓ2πt )− (

cos(bn
1πs)−cos(bn

1πs)
)

cos(bℓ2πs)

−
∫ t

s
cos(bℓ2πr )d cos(bn

1πr )

= (
cos(bn

1πt )−cos(bn
1πs)

)
cos(bℓ2πt )−

∫ t

s
cos(bℓ2πr )d cos(bn

1πr )

= (
cos(bn

1πt )−cos(bn
1πs)

)
cos(bℓ2πt )+bn

1π

∫ t

s
cos(bℓ2πr )sin(bn

1πr )dr.

By the triangle inequality, Lipschitz property of cosine and the bounds |cos(x)| ≤ 1, |sin(x)| ≤ 1 we
have that

|J n,ℓ(s, t )|≲ bn
1 (t − s).

Bound (iv). We will split this into three cases. First, when bn
1 = bℓ2 . Second, when bn

1 ̸= bℓ2 and
logb1

(b2) is irrational. Third, when bn
1 ̸= bℓ2 but logb1

(b2) is rational.

Case 1 (bn
1 = bℓ2 ). If bn

1 = bℓ2 then

J n,ℓ(s, t ) = 1

2
(cos(bn

1πt )−cos(bn
1πs))2 = 1

2
(cos(bℓ2πt )−cos(bℓ2πs))2. (3.8)

Therefore

|J n,ℓ(s, t )|≲ 1. (3.9)
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For bn
1 ̸= bℓ2 we can evaluate the integral as

J n,ℓ(s, t ) =−bℓ2π

(
cos(t (bn

1 −bℓ2 ))

2(bn
1 −bℓ2 )

− cos(s(bn
1 −bℓ2 ))

2(bn
1 −bℓ2 )

− cos(t (bn
1 +bℓ2 ))

2(bn
1 +bℓ2 )

+ cos(s(bn
1 +bℓ2 ))

2(bn
1 +bℓ2 )

)
−cos(bn

1πs)(cos(bℓ2πt )−cos(bℓ2πs)),

using the indefinite integral formula∫
cos(mr )sin(nr )dr = cos(r (m −n))

2(m −n)
− cos(r (m +n))

2(m +n)
+C .

Therefore we have that

|J n,ℓ(s, t )|≲ bℓ2
|bℓ2 −bn

1 |
+1.

Case 2 (b1,b2 multiplicatively independent). Now let logb1
(b2) be irrational. Then, using

Lemma 12 we have that there exists some constant P > 0 depending only on b1,b2 so that

|J n,ℓ(s, t )|≲ bℓ2
max{bn

1 ,bℓ2 }
(max{3,n,ℓ})P +1

≲ nPℓP .

Recall that 0 < ε < min{α1,α2}. There exists some constants C 1(ε),C 2(ε) > 0 depending on P , ε
and on b1,b2 so that nP ≤ C 1(ε)bεn

1 for all n and ℓP ≤ C 2(ε)bεℓ2 for all ℓ. Therefore we have that
bound

|J n,ℓ(s, t )|≲ bεn
1 bεℓ2 . (3.10)

Case 3 (b1,b2 multiplicatively dependent). Finally, let logb1
(b2) be rational. Then there exists

some positive integers b, q1, q2 so that b1 = bq1 and b2 = bq2 . Then without loss of generality
letting ℓq1 > nq2 we have that

|J n,ℓ(s, t )|≲ bℓ2
|bℓ2 −bn

1 |
+1

= bℓq1

bℓq1 −bnq2
+1

= bℓq1−nq2

bℓq1−nq2 −1
+1

≤ bℓq1−nq2

bℓq1−nq2 − 1
2 bℓq1−nq2

+1

≲ 1.

Putting cases 1,2,3 together yields bound (iv)

|J n,ℓ(s, t )|≲ bεn
1 bεℓ2 . (3.11)

Using these four bounds we can show the Hölder regularity. Similarly to the proof of Proposi-
tion 10, let N1, N2 be two nonnegative integers so that

b−(N1+1)
1 < |t − s| ≤ b−N1

1

b−(N2+1)
2 < |t − s| ≤ b−N2

2 .
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Without loss of generality, we may assume N > N1, N2. Indeed, if N ≤ N1 or N ≤ N2 then

|I N (s, t )| ≤
N∑

n=0

N∑
ℓ=0

an
1 aℓ2 |J n,ℓ(s, t )|

≤
max{N1,N }∑

n=0

max{N2,N }∑
ℓ=0

an
1 aℓ2 |J n,ℓ(s, t )|

and the argument below will bound I N as well. With this assumption in hand, we can split I N as

I N (s, t ) =
N1∑

n=0

N2∑
ℓ=0

an
1 aℓ2 J n,ℓ(s, t )+

N∑
n=N1+1

N2∑
ℓ=0

an
1 aℓ2 J n,ℓ(s, t )

+
N1∑

n=0

N∑
ℓ=N2+1

an
1 aℓ2 J n,ℓ(s, t )+

N∑
n=N1+1

N∑
ℓ=N2+1

an
1 aℓ2 J n,ℓ(s, t )

=: I+ II+ III+ IV.

Applying bound (i) to I, bound (ii) to II, bound (iii) to III, and bound (iv) to IV yields that

|I|≲
N1∑

n=0

N2∑
ℓ=0

an
1 aℓ2 bn

1 bℓ2 (t − s)2 =
(

N1∑
n=0

an
1 bn

1 (t − s)

)(
N2∑
ℓ=0

aℓ2 bℓ2 (t − s)

)
,

|II|≲
N∑

n=N1+1

N2∑
ℓ=0

an
1 aℓ2 bℓ2 (t − s) =

(
N∑

n=N1+1
an

1

)(
N2∑
ℓ=0

aℓ2 bℓ2 (t − s)

)
,

|III|≲
N1∑

n=0

N∑
ℓ=N2+1

an
1 aℓ2 bn

1 (t − s) =
(

N1∑
n=0

an
1 bn

1 (t − s)

)(
N∑

ℓ=n2+1
aℓ2

)
,

|IV|≲
N∑

n=N1+1

N∑
ℓ=N2+1

an
1 aℓ2 bεn

1 bεℓ2 =
(

N∑
n=N1+1

an
1 bεn

1

)(
N∑

ℓ=N2+1
aℓ2 bεℓ2

)
.

By the choice of N1, N2 and standard bounds for geometric series we obtain the following
estimates:

N1∑
n=0

an
1 bn

1 (t − s)≲ aN1
1 bN1

1 (t − s) ≤ aN1
1 = b−α1N1

1 ≲ |t − s|α1 ,

N2∑
ℓ=0

aℓ2 bℓ2 (t − s)≲ |t − s|α2 ,

N∑
n=N1+1

an
1 ≤

∞∑
n=N1+1

an
1 ≲ aN1

1 ≲ |t − s|α1

N∑
ℓ=N2+1

aℓ2 ≲ |t − s|α2 ,

N∑
n=N1+1

an
1 bεn

1 ≲ aN1
1 bεN1

1 ≲ |t − s|α1−ε,

N∑
ℓ=N2+1

aℓ2 bεℓ2 ≲ |t − s|α2−ε.

Collecting these six bounds proves the relation (3.5). □

Corollary 13. For all (s, t ) with 0 ≤ s ≤ t ≤ 1, the limit

lim
N→∞

I N
(b1,α1),(b2,α2)(s, t ) =: I(b1,α1),(b2,α2)(s, t ) (3.12)

exists.
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Proof. Let ε> 0 be such that ε< min{α1,α2}. Applying bound (iv) to I N shows that

|I N (s, t )|≲
N∑

n=0

N∑
ℓ=0

an
1 aℓ2 bεn

1 bεℓ2

=
N∑

n=0

N∑
ℓ=0

b−nα1
1 b−ℓα2

2 bεn
1 bεℓ2 .

Absolute convergence follows. □

With both the pointwise convergence and the uniform estimate (3.5) we can show conver-
gence in the rough topology and even give a geometric rate of convergence.

Theorem 14. Let t 7→ W (t ) = (Wb1,α1 (t ), . . . ,Wbd ,αd
(t )) be a d-dimensional Weierstrass function

where α1, . . . ,αd > 1/3. Let α= min{α1, . . . ,αd }.
For every N ∈ N, consider the vector-valued function WN : ∆(0,1)

2 → Rd by setting WN (t ) :=(
Wb1,α1,N (t ), . . . ,Wbd ,αd ,N (t )

)
. Similarly, consider the matrix-valued function AN : ∆(0,1)

2 → Rd×d ,

defined entrywise by means of the iterated integrals (3.4) by setting Ai , j
N (s, t ) := I N

(bi ,αi ),(b j ,α j )(s, t )

for 1 ≤ i , j ≤ d. Let WN : ∆(0,1)
2 → Rd ⊕ Rd×d , WN (s, t ) = (WN (t )−WN (s),AN (s, t )). Finally,

define A : ∆(0,1)
2 → Rd×d entrywise as Ai , j (s, t ) := lim

N→∞
A

i , j
N (s, t ) and let W : ∆(0,1)

2 → Rd ⊕Rd×d ,

W(s, t ) = (W (t )−W (s),A(s, t )). Then for every ε ∈ (0,α) we have that W ∈C α−ε
g .

Furthermore, for everyβ ∈ (α−ε,α) let us set κ := 1− α−ε
β ∈ (0,1). Then for every ε′ ∈ (0,α), setting

ρ = (
max

{
b−α1+ε′

1 , . . . ,b−αd+ε′
d

})κ ∈ (0,1), we have the estimate

∥W−WN∥α−ε,2α−2ε≲ ρN . (3.13)

In other words, WN converges to W geometrically fast in the rough topology as N →∞.

Proof. We may use the interpolation inequality (see [7, Proposition 5.5])

∥W−WN∥α−ε,2α−2ε ≤ ∥W−WN∥1−κ
β,2β∥W−WN∥κ∞.

Thanks to the uniform bound on the β rough-path distance given in Proposition 11 we just
need to bound the supremum norm of W − WN . For the Weierstrass function Wbi ,αi we have
the estimate

sup
s,t∈[0,1]

∣∣∣∣∣ ∞∑
n=N+1

b−nαi
i (cos(bn

i πt )−cos(bn
i πs))

∣∣∣∣∣≤ sup
s,t∈[0,1]

2
∞∑

n=N+1
b−nαi

i ≲ b−Nαi
i . (3.14)

For the iterated integral I N
(bi ,αi ),(b j ,α j ) we need to estimate

sup
s,t∈[0,1]

∣∣∣∣∣ ∞∑
n=1

∞∑
ℓ=N+1

b−nαi
i b

−ℓα j

j J n,ℓ(s, t )+
∞∑

n=N+1

∞∑
ℓ=1

b−nαi
i b

−ℓα j

j J n,ℓ(s, t )

+
∞∑

n=N+1

∞∑
ℓ=N+1

b−nαi
i b

−ℓα j

j J n,ℓ(s, t )

∣∣∣∣∣ .

The triangle inequality, bound (iv) given in (3.11) and the standard tail estimates for geometric
series give the estimate

sup
s,t∈[0,1]

|I(bi ,αi ),(b j ,α j )(s, t )− I N
(bi ,αi ),(b j ,α j )(s, t )|≲ b(−αi+ε′)N

i b
(−α j +ε′)N
j (3.15)

for any ε′ with min{αi ,α j } > ε′ > 0. Using estimates (3.14) and (3.15) along with the bound (3.5)
on the norm ∥W−WN∥β,2β yields the claimed relation (3.13). □
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Remark 15. Note that we prove everything for Weierstrass functions with cos. However, the
same arguments work with little difference if we replace every cosine with sine. However, as
shown in [12] and further studied in [11], if we replace one cosine with sine, the arguments above
no longer work.

Theorem 14 is optimal in the sense that one cannot remove the −ε factor. Indeed, the partial
sums of the first order process do not even converge in the function space Cα([0,1],Rd ). We
include a proof of this fact for expository reasons, although we suspect it is well known.

Proposition 16. The partial sums Wb,α,N do not converge in Cα([0,1],Rd ) to Wb,α.

Proof. First, let b be odd. In this case by selecting t = b−N and s = 0 in the definition of the Hölder
norm we get

∥Wb,α−Wb,α,N∥α := sup
t ̸=s∈[0,1]

|(Wb,α−Wb,α,N )(t )− (Wb,α−Wb,α,N )(s)|
|t − s|α

≥ |(Wb,α−Wb,α,N )(b−N )− (Wb,α−Wb,α,N )(0)|
|b−N |α .

Using the definition of Wb,α and Wb,α,N yields

|(Wb,α−Wb,α,N )(b−N )− (Wb,α−Wb,α,N )(0)|| =
∣∣∣∣∣ ∞∑
n=N+1

b−αn(cos(bn−Nπ)−cos(0))

∣∣∣∣∣
=

∣∣∣∣∣ ∞∑
n=N+1

b−αn(−1−1)

∣∣∣∣∣
=

∣∣∣∣ ∞∑
n=1

b−α(n−N )2

∣∣∣∣
= b−Nα 2b−α

1−b−α ,

where we used that b was odd in the second line. Therefore

∥Wb,α−Wb,α,N∥α ≥ b−Nα 2b−α

1−b−α bNα

= 2b−α

1−b−α
/−→ 0.

Now, let b be even. In this case we can let t = b−N−1 and s = 0 to get

∥Wb,α−Wb,α,N∥α := sup
t ̸=s∈[0,1]

|(Wb,α−Wb,α,N )(t )− (Wb,α−Wb,α,N )(s)|
|t − s|α

≥ |(Wb,α−Wb,α,N )(b−N−1)− (Wb,α−Wb,α,N )(0)|
|b−N−1|α .

Again using the definition of Wb,α and Wb,α,N yields

|(Wb,α−Wb,α,N )(b−N−1)− (Wb,α−Wb,α,N )(0)| =
∣∣∣∣∣ ∞∑
n=N+1

b−αn(cos(bn−N−1π)−cos(0))

∣∣∣∣∣
= 2b−α(N+1)

where we used that cos(bn−N−1π)−cos(0) = 0 for all n > N +1 (thanks to b being even) and is −2
if n = N +1. Therefore

∥Wb,α−Wb,α,N∥α ≥ 2b−α(N+1)bα(N+1)

= 2

/−→ 0. □
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3.1. Pointwise Convergence

The power of our main Theorem 14 is the convergence in the rough topology of the approximat-
ing iterated integrals. We used the estimate (3.5) in order to get convergence in the rough topol-
ogy and we needed an estimate on the supremum norm to get the rate of convergence. However,
if we are interested only in pointwise convergence, the following proposition addresses a broad
class of functions defined as trigonometric series.

Proposition 17. Let {αn}n∈N and {βn}n∈N be two sequences of positive real numbers. Define

f (t ) =
∞∑

n=1
cn eiαn t , g (t ) =

∞∑
n=1

dn eiβn t ,

where {cn}n∈N and {dn}n∈N are two sequences of complex numbers so that
∞∑

n=1
|cn | <∞,

∞∑
n=1

|dn | <∞.

Define, for N ∈N, the partial sums

fN (t ) =
N∑

n=1
cn eiαn t , gN (t ) =

N∑
n=1

dn eiβn t .

Then for every s, t ∈R the limit

lim
N→∞

∫ t

s
fN (r )dgN (r )

exists.

Proof. As gN is smooth we can write∫ t

s
fN (r )dgN (r ) =

∫ t

s
fN (r )g ′

N (r )dr

and by linearity

g ′
N (r ) =

N∑
n=1

(iβn)dn eiβn r .

For N > M we can write

fN (r )g ′
N (r )− fM (r )g ′

m(r ) = fN (r )
(
g ′

N (r )− g ′
M (r )

)+ g ′
M (r )

(
fN (r )− fM (r )

)
.

We have that∫ t

s
fN (r )(g ′

N (r )− g ′
M (r ))dr =

∫ t

s

N∑
n1=1

N∑
n2=M+1

cn1 (iβn2 )dn2 eir (αn1+βn2 ) dr

=
N∑

n1=1

N∑
n2=M+1

cn1 (iβn2 )dn2

eit (αn1+βn2 )−eis(αn1+βn2 )

i(αn1 +βn2 )
.

Crucially, as αn and βn are positive, we get that∣∣∣∣∣(iβn2 )
eit (αn1+βn2 )−eis(αn1+βn2 )

i(αn1 +βn2 )

∣∣∣∣∣≤ 2.

Using this bound we obtain the estimate∣∣∣∣∫ t

s
fN (r )(g ′

N (r )− g ′
M (r ))dr

∣∣∣∣≤ 2
N∑

n1=1
|cn1 |

N∑
n2=M+1

|dn2 |.

As M , N →∞ the right hand side of this inequality goes to 0. Analogously we get that∣∣∣∣∫ t

s
g ′

M (r )( fN (r )− fM (r ))dr

∣∣∣∣≤ 2
N∑

n1=M+1
|cn1 |

N∑
n2=1

|dn2 |,

with again the right hand side going to 0 as M , N →∞. □
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One important consequence of Proposition 17 is to consider the “complex” Weierstrass func-
tions

f (t ) =
∞∑

n=1
b−α1n

1 eibn
1 πt

and

g (t ) =
∞∑

n=1
b−α2n

2 eibn
2 πt .

In this case, Proposition 17 implies that the limit

lim
N→∞

∫ t

s
fN (r )dgN (r )

exists. Define

F1(t ) =
∞∑

n=1
b−α1n

1 cos(bn
1πt ), F2(t ) =

∞∑
n=1

b−α1n
1 sin(bn

1πt )

and

G1(t ) =
∞∑

n=1
b−α2n

2 cos(bn
2πt ), G2(t ) =

∞∑
n=1

b−α2n
2 sin(bn

2πt )

so that f = F1+F2i and g =G1+G2i . Proposition 17 along with taking the imaginary part implies
that one can make sense of the integral∫ t

s
F1(r )dG2(r )+

∫ t

s
F2(r )dG1(r ).

However as was shown in [12] one cannot make sense of the integral∫ t

s
F1(r )dG2(r )−

∫ t

s
F2(r )dG1(r )

as a limit of integrals of partial sums. Our Theorem 14 along with Remark 15 show that one can
make sense of ∫ t

s
F1(r )dG1(r )

and ∫ t

s
F2(r )dG2(r ).

4. An Example

One of the benefits of rough paths theory is a robust approximation theory. By standard approx-
imation theory for rough differential equations (see [6, Chapter 8]), we can approximate solu-
tions to rough differential equations (RDEs) driven by a vector-valued Weierstrass function by a
RDE/ODE driven by the smooth truncated sums WN . Let d = 2 and

M(Y ) =
(

0 Y2/3
Y1/2 0

)
. (4.1)

Figure 2 shows the solutions YN = (Y1,N ,Y2,N ) of the ordinary differential equation dY =
M(Y )dWN driven by WN = (Wb1,α1,N ,Wb2,α2,N ) where b1,b2,α1,α2 are as in Figure 1. Due to
standard approximation theory, YN converges as N →∞ to the solution of the rough differential
equation

dY = M(Y )dW, (4.2)

where W = (W,A) is as in Theorem 14.
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Figure 2. The approximate solutions to (4.2) with M as in (4.1), and initial condition
Y1(0) = 1, Y2(0) = 0, where N = 4,8,12 and b1 = 2,α1 = − ln18/25

ln2 and b2 = 3,α2 = − ln3/5
ln3

as in Figure 1.
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