ACADEMIE
DES SCIENCES

INSTITUT DE FRANCE

Comptes Rendus

Mathématique

Seyf Alemam, Hazhir Homei and Saralees Nadarajah
Some puzzles appearing in statistical inference
Volume 362 (2024), p. 1243-1252

Online since: 5 November 2024

https://doi.org/10.5802/crmath.636

[cO=2mmmm This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

<

MERSENNE

The Comptes Rendus. Mathématique are a member of the
Mersenne Center for open scientific publishing
www.centre-mersenne.org — e-ISSN : 1778-3569


https://doi.org/10.5802/crmath.636
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org

ACADEMIE Comptes Rendus. Mathématique
DES SCIENCES 2024, Vol. 362, p. 1243-1252
https://doi.org/10.5802/crmath.636

INSTITUT DE FRANCE

Research article / Article de recherche
Statistics / Statistiques

Some puzzles appearing in statistical
inference

Quelques énigmes apparaissant dans l'inférence
statistique

Seyf Alemam ¢, Hazhir Homei ¢ and Saralees Nadarajah *?

@ Department of Statistics, University of Tabriz, P. O. Box 51666-17766, Tabriz, Iran

b Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

E-mails: saif.alemams@gmail.com, homei@tabrizu.ac.ir,
mbbsssn2@manchester.ac.uk
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1. Introduction

Fisher [6] introduced sufficient statistics in 1920; since then sufficient statistics have been used
more and more in statistical inference. We should understand them better to derive uniformly
minimum variance unbiased estimators. Statisticians have cleverly embedded sufficient statis-
tics into estimators, which is the main idea of Rao-Blackwell theorem; see [2] and [16]. Uniformly
minimum variance unbiased estimators can be calculated by complete sufficient statistics, lead-
ing to Lehmann-Scheffé theorem; see [7, 10] and [11]. The application of these theorems is still
seen in the literature; see [7]. However, when a complete sufficient statistic is lacking, there may
be nonconstant functions that can be uniformly minimum variance unbiased estimators.

Some researchers focus on the examples given by [16, Problem 5.11] or [10, 11, p. 76-77] and
try to solve these kinds of problems by the following theorem.

Theorem 1 (Lehmann-Scheffé theorem). Let X = [X],..., X;,] and suppose Xy, ..., X,, are random
variables having distribution Py, 6 € ©. A necessary and sufficient condition for a statistic T(X) to
be uniformly minimum variance unbiased estimator of its mean is that E[T(X)U(X)] = 0 for all
0 €0 and all U € Uy, where 9 denotes the set of all the unbiased estimators of 0.

This theorem can be used widely when there are no complete sufficient statistics. It is a strong
competitor to the theorem of Rao-Blackwell.

This fact is very seldom pointed out and exemplified in undergraduate or graduate textbooks;
see, for example, [3]. The motivation to introduce a new concept of sufficient statistic called
¢ -sufficient statistic comes from the above discussion. We investigate the properties of .77-
sufficient statistic and compare them with those of sufficient statistic. Then Rao-Blackwell
theorem (RBT) and Lehmann-Scheffé theorem (LST) will be generalized in a way which can solve
some of the problems where UMVUE exists but there are no complete sufficient statistics; cf. [17,
Problem 5.11], [8, p. 76-77], [20, Example 3.7, p. 167], [18, Example 10, p. 366], [14, Section 7.6.1,
p- 3771, [15, p. 243], [19, Section 12.4, p. 293 ] and [13, p 330-331, Remark]. Some of the theorems
are restated and proved by using the newly introduced .7#-sufficient statistic.

Some researchers [4] state that: “If a minimal sufficient statistic is not complete, then by the
suggestion of Fisherian tradition we should consider condition on ancillary statistics for the
purposes of inference. This approach runs into problems because there are many situations
where several ancillary statistics exists but there are no maximal ‘ancillaries’. Of course, when
a complete sufficient statistic exists, Basu’s theorem assures us that we need not worry about
conditioning on ancillary statistics since they are all independent of the complete sufficient
statistic”. We suggest complete 7 -sufficient statistics for the purposes of inference when there
are no complete sufficient statistics. Theorem 1 assures that we need not worry about ancillary
statistics since they are all uncorrelated of complete .77 -sufficient statistics.

1.1. The main contribution

If the minimal sufficient statistic is not complete, then the RBT and LST will not be of much use,
as has been explicitly stated in various books and articles. The main contribution of this article
is a generalization of RBT and LST, resulting in the use of the newly introduced .7#-sufficient
statistics. This enables us to obtain uniformly minimum variance unbiased estimators even
when the minimal sufficient statistic is not complete, in which case RBT and LST are not directly
applicable.

1.2. Definitions

Consider a statistical model (2, &/,2 = {Py :0 € ©}). We assume here that the family of prob-
ability measures on the sample space 2" has the form {Py:0 € ®}. A random element in 2 is
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denoted by X = [Xj,..., X;;]. The probability measure Py € £ is called the population. The ran-
dom element X = [Xj,..., X;] that produces the data is called a sample from {Pg :0e ®}. Let X :
Z — Z denote the identity mapping, (%;. %) a measurable space, and T: 2 — % a o/ — B—
measurable mapping (that is, T~'B € <7 for all B € %). Here, T(X) is called a statistic to (%; %),
and we write T: (2, ) — (¥; B).

To understand the role that a 7#-sufficient statistic plays in inference, we first need to define
some basic concepts.

Definition 2. Let X = [Xj,..., X;;] and suppose Xj, ..., X;; are random variables from an unknown
population Py € & and a a real valued parameter, a: ® — R, related to Py. An estimator 6 (X),
6:Z — R, of ais unbiased if and only if E [§(X)] = a for every Py € Z.

If there exists an unbiased estimator of a, then a is called a U-estimable parameter.

Definition3. Let X = [Xj,..., X;;] and suppose Xj,..., X;; are random variables from an unknown
population P € 2. A statistic T(X), T: 2 — R, is said to be complete for P € & if and only if for
any Borel-measurable function f from R to R, E [ f (T)] =0 for all P € 22 implies f(T) = 0 almost
surely 2.

Definition4. Let X = [Xj,..., X;;] and suppose Xj,..., X;; are random variables from an unknown
population Py € &2. An unbiased estimator T(X) of a is called a uniformly minimum variance
unbiased estimator (UMVUE) if and only if Var[T(X)] < Var[d (X)] for every Py € &2 (or for every
0 € ©) and any other unbiased estimator 6 (X) of a.

Throughout this note we assume that X = [Xj,..., X;] and suppose Xj,..., X, are random
variables from an unknown population Py € 2 and there exists an unbiased estimator for a. Let
9, denote the class of unbiased estimators §: 2 — R for a; and % (77%) is the set of all the
unbiased estimators of 0, which is a function of .77 -sufficient statistics for a, see Definition 8. all
the considered estimators are assumed to have finite variances. The space used in this note is R"
and the elements of 28 are Borel sets. For related notation and discussions, we refer the reader
to [20].

2. Sufficient statistics

The concept of sufficient statistic plays a fundamental role in all areas of statistical inference;
see [5].

Definition 5. Let X = [Xj,..., X;;] and suppose Xj,..., X;; are random variables from an unknown
population Py € &2, where & is a family of populations. A statistic T(X) is called a sufficient
statistic for £ (or for 0) if there exists a Markov kernel k: ¥ x € — [0, 1] such that for every 6 € ©,
k is a version of a regular conditional distribution of X given T(X) under Py.

Two weaker concepts of sufficiency, which are tailored to a given unbiased estimable aspect
a:® — R are introduced and discussed in the following. Some properties of these statistics are
studied in the sequel.

2.1. A -sufficient statistic in distribution

Definition 6. Let X =[X],..., X,] and suppose Xj,..., X}, are random variables from an unknown
population Py € 2. A statistic T(X) is called a .7/ -sufficient in distribution for a if for all
0(X) € %, there is a Markov kernel kq5(x) : T x B (R) — [0,1] such that for every 0 € 0, kq s is
aversion of a regular conditional distribution of § (X) given T'(X) under Py.
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Example 7 (Example of [12]). Let X be a Poisson random variable with E(X) = 1. We note that
k(-1)¥ is a s -sufficient statistic in distribution for e‘z’l, where k is a constant. We can check
that (-1)% is a UMVUE for e~?4.

2.2. J-sufficient statistic

To derive UMVUEs when there are no complete sufficient statistics, we need to introduce a new
concept named 77’-sufficient statistic for a. It is defined as follows.

Definition8. Let X = [Xj,..., X;;] and suppose Xj,..., X;; are random variables from an unknown
population Py € 2. A statistic T(X) is called .7 -sufficient for a if for all §(X) € %, there is a
measurable mapping f4,s : ¥ — R such that for every 6 € © we have Ey [6(X) | T] = hq 50 T almost
surely Py.

Example 9. Let X be a discrete random variable from Py with the probability mass function
Pp(X=-1)=6, Pp(X=k) =(1-0)20% k=0,1,2,...,

where 0 € (0,1) is unknown. We note that Iy (X) is a .7 -sufficient statistic for (1 —8)? since for
every @ € (0,1) and every a € R, we have

Eg [Lioy(X) + aX | Iip (X)] = [0y (X)

almost surely Pyg. Here, X is not complete, although it is still a minimal sufficient statistic for
(1-6)2. We also note that Ij;(X) is not a ##-sufficient statistic in distribution for (1 - 0)?.

Some properties of .7Z-sufficient statistics are discussed in the following.

Theorem 10. Let & = {Py : 0 € ©} be a family of distributions. Consider

() a sufficient statistic for 2 (or0),
(i) a2 -sufficient statistic in distribution for a,
(i) a2 -sufficient statistic for a.
Then, we have

(@) any sufficient statistic for 2 is a 7€ -sufficient statistic in distribution for a;
(b) any 7 -sufficient statistic in distribution for a is a ¢ -sufficient statistic for a;
(c) any sufficient statistic for 2 is a 7€ -sufficient statistic for a.

Proof. Since the conditional distribution of samples given a sufficient statistic does not depend
on 0, the conditional expectation of any statistic given a sufficient statistic does not depend on 6.
So, (c) follows. The proofs of (a) and (b) are similar. O

Remark 11. In general, the converse of none of the three parts of Theorem 10 hold (see
Examples 7 and 9).

It is clear from Theorem 10 and Remark 11 that the class of .7#-sufficient statistics for a
contains sufficient statistics for 8. Also we can conclude from Theorem 10 that the jointly
sufficient statistics are .7# -sufficient statistics.

Proposition 12. Let X = [Xy,...,X,] and suppose Xi,...,X,, are random variables from an
unknown population Py € 2. If an unbiased estimator T(X) is unique for a, then T(X) is a 7 -
sufficient statistic for a.

Proof. Itis obvious that Eg [T(X) | T(X)] = T(X) almost surely 2. O
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Proposition 13. Let X = [Xy,...,X,] and suppose Xi,..., X, are random variables from an
unknown population Pg € 2. Let T(X) be a ¢ -sufficient statistic for a such that S(X) = g (T (X)),
where S(X) is another statistic and g is a one-to-one measurable function. Then S(X) is a 7 -
sufficient statistic for a.

Proof. Let U(X) be an arbitrary unbiased estimator for a. Then, we have Eg [U(X) | S(X)] =
Eg [U(X) | T(X)] almost surely &2, which shows that Ey [U(X) | S(X)] does not depend on the
parameter. O

Remark 14. Let X = [X;,..., X;] and suppose Xj,..., X, are random variables from an unknown
population Pg € 2. Let S(X) be a 57 -sufficient statistic for a and U(X) another statistic such that
S(X) = g (U(X)) for a measurable function g. We expect U(X) to be a s#-sufficient statistic for
a, but actually it is not. Consider Example 9 again: Let S(X) = Ip(X) and U(X) =1, 0 and 2 (or
any value other than 0 and 1) for x = 0,—1 and x > 1, respectively. Then, verify that (i) S(X) is
77 -sufficient, (i) S(X) is a function of U(X), but (iii) U(X) is not ##-sufficient.

3. A generalization of RBT and LST

We now apply the RBT for arbitrary .#’-sufficient statistics for a to obtain a better estimator.

Theorem 15. Let X = [X},..., X;] and suppose X;,..., X, are random variables from an unknown
population Py € 2 = {Py :0' €©}. Let H(X) be a  -sufficient statistic for a. Let §(X) be an
unbiased estimator of a U-estimable a, and the loss function L(8, (X)) be a strictly convex function
of 6(X). Then, if 6(X) has finite expectation and risk, we have R (0,6(X)) = EL[0,6(X)] < oo,
and ify () = E[6(X) | H(X) = b] then the risk of the estimator y (H(X)) satisfies R (0,y (H(X))) <
R(0,6(X)) unless 6 (X) = v (H(X)) almost surely 2.

Proof. The proofis an easy application of Jensen’s inequality and Definition 8; see [9]. g
We now reexpress Lemma 1.10 in [9] within the new framework.

Lemma 16. Let X = [X;,..., X,] and suppose Xi,..., X, are random variables from an unknown
population 2 = {Py:0 €©}. Let H(X) be a complete 5 -sufficient statistic for a. Then, every
U-estimable a has one and only one unbiased estimator that is a function of H(X). Of course,
uniqueness here means that any two such functions agree almost surely 2.

Proof. The uniqueness of the unbiased estimator follows from completeness of H(X);
see [9]. O

The generalization of LST [10, Theorem 5.1] by using a complete .77’-sufficient statistic for a is
as follows.

Theorem 17. Let X =[X;,..., X,] and suppose X;, ..., X, are random variables from an unknown
population 2 = {Py :0 € ©}. Suppose that H(X) is a complete 7 -sufficient statistic for a. Then
we have the following:

() For every U-estimable a, there exists an unbiased estimator that uniformly minimizes the
risk for any loss function L(6,0) which is convex in §; therefore, this estimator in particular
is UMVUE of a.

(i) The UMVU estimator of (i) is a unique unbiased estimator and is a function of H(X); it is
a unique unbiased estimator with minimum risk, provided its risk is finite and L(8,0) is
strictly convexiné.

Proof. (i) is obvious by Theorem 15. For (ii), see [9] and Lemma 16. O
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Theorem 18. Let X =[X,..., X,] and suppose X;,..., X, are random variables from an unknown
population Py, 6 € ©. Let T(X) be an unbiased estimator for a and H(X) a 7¢ -sufficient statistic for
a such that T(X) = g (H(X)) for a measurable function g. Then a necessary and sufficient condition
for T(X) to bea UMVUE of a is that Eg [T (X)U™* (X)] =0 forall U* (X) € Uy (7¢3) and 6 € ©.

Proof. Let %, (7¢;) and U(X) be in %. Suppose that U(X) € %,. Then the result follows from
the fact that we have Ey [U(X) | H(X)] € % (7¢,) and the following identities hold

Eg[T(X)U(X)] = Eg{Ep [g (HX))UX) | HX)|} = Eg {g (H(X)) B [UX) | HX)1},

where U(X) is an unbiased estimator of 0. Note that Ey [U(X) | H(X)] is a statistic since Ey
{T(X)-[T(X)-U(X)]| H(X)} dose not depend on 6. The converse is obvious. O

Theorem 19. Let X =[X;,..., X,] and suppose X3, ..., X, are random variables from an unknown
population Py, 0 € ©. Let H(X) be a 57 -sufficient statistic for a. In addition, suppose for every
unbiased estimator T (X) for a there is a measurable function g such that T(X) = g(H(X)). Then
T(X) isa UMVUE if Eg [U(X) | H(X)] = 0 almost surely Py for every U(X) € Uy and every 0 € ©.

Proof. For U(X) € %,, we have Eg [T(X)U(X)] = Ey {g(H(X))E[U(X) | H(X)]} = 0 since Ep
[U(X) | H(X)] = 0 almost surely Py. So, T'(X) isa UMVUE. O

4. Complete 77 -sufficient statistic

We are interested in finding a 7 -sufficient statistic with the simplest structure. Therefore, we
define a minimal .77-sufficient statistic as a .#’-sufficient statistic which is a function of any other
¢ -sufficient statistic.

Definition 20 (Minimal 7 -sufficient statistics). Let X = [X],..., X,,] and suppose Xy, ..., X, are
random variables from an unknown population 2 = {Py:0 € ©}. Let T(X) be a 7 -sufficient
statistic for a. A statistic T(X) is called a minimal ¢ -sufficient statistic for a if and only if, for
any other statistic S(X) that is a 7€ -sufficient for a, there exists a measurable function v such that
T(X) =w (S(X)) almost surely 2.

Theorem 21. Let X =[X,..., X,] and suppose X;,..., X, are random variables from an unknown
population 2 = {Pg 10 € @}. Let T(X) be a complete sufficient statistic for 2 (or @) such that T(X),
T: 2 — R, has mean a. Then any ¢ -sufficient statistic for a is a sufficient statistic for  (or0).

Proof. Let H(X) be a /7 -sufficient statistic for a, then var {E [(T(X) | H(X)]} < var[T(X)]. Since
T(X) isaUMVUE, T(X) = E[T(X) | H(X)] almost surely 2. So, there is a measurable function g
such that T'(X) = go H(X) almost surely 22, and thus H(X) is a sufficient statistic. O

Thus, we can apply 77 -sufficient statistics for a in case complete sufficient statistics do not
exist. Intuitively, a 7# -sufficient statistic with the complete property will be a minimal Z-
sufficient statistic. The following theorem, a version of the main theorem (Bahadur’s theorem),
see [1], states an important property of minimal .7#-sufficient statistics.

Theorem 22. LetX = [Xj,...,X;] and suppose X,,..., X, are random variables from an unknown
population 2 = {Py:0€®}. IfT(X), T: 2 — R, is a complete 7 -sufficient statistic for a then
T(X) is a minimal 77 -sufficient statistic for a.

Proof. Let S(X) be a 77 -sufficient statistic for a. Then T(X) = E[T(X) | S(X)] almost surely &
since T(X) is a UMVUE. O

We illustrate by an example that the complete 77 -sufficient statistic may not exist.
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Example 23 (Complete .77 -sufficient statistics may not exist). Let X be a random variable with
2 = {Bin(0,0.5):0 € {1,2,...}}. Then X is a J#-sufficient statistic for 8. But a complete 7 -
sufficient statistic for 8 dose not exist. Otherwise, for every k € R and some k( € R, we would
have E[2X + k(-1D)X*! | g(X)] = 2X + ko(—1)**! almost surely 22, where g(X) is assumed to be a
complete 77 -sufficient statistic for 8; but this is not true. We also note that there does not exist
any UMVUE for 6.

5. Some applications

In this section, some examples are presented for which Theorem 15 and Theorem 17 are
applicable.

5.1. When the minimal sufficient statistic is not complete

Consider a case where UMVUE exists, but the minimal sufficient statistics are not complete. LST
cannot be used to obtain UMVUEs. We illustrate through some examples that we can find a
UMVUE without having complete sufficiency. Therefore, some worries in the literature on the
inadequacy of the LST and RBT for obtaining UMVUEs can be removed, and the seemingly
unbeatable obstacles can be overcome by using .77 -sufficient statistics.

Example 24 (Example of [10]). Let X be a discrete random variable from Py with the probability
mass function Pg(X =-1)=0, Ppg(X =k)=(1 —9)20k, k=0,1,2,..., where 0 € (0,1) is unknown.
We note that Ijo;(X) is a complete and minimal .#-sufficient statistic for (1 - 6)? since, for every
6 € (0,1) and every a € R, we have Ep [Ij0;(X) + aX | Ijo;(X)] = I;(X) almost surely Py. Hence, by
Theorem 17, I;p;(X) is a UMVUE for (1 - 6)? and thus Alj;(X) + B is a UMVUE for A(1 - 6)? + B.

For an alternative, note that, for every 8 € (0,1) and a € R, we have Ey [aX | Iioy (X)] =0 almost
surely Pg and thus the same result can be obtained by using Theorem 19.

So far, Examples 7 and 9 have shown usefulness of .77-sufficiency. However, in both cases,
the considered estimation problem is a rather esoteric one. The following examples seem more
reasonable.

Example 25. Let X,..., X, be independent and identical random variables from an unknown
population Py with the probability density function

X—p{ _xn
e 0 Iy e0) (),

fpo)=—
o
where 6 = (u,0) € R x R* is an unknown parameter.

Suppose now that u is known. So, X is a complete sufficient statistic for o. By using the RBT,
we can see that X is a 77 -sufficient statistic for ©+20 since Ey [6 X)X ] = X almost surely Py for
every 6(X) € %125 We note that X is a complete and minimal .77 -sufficient statistic for u +20.

Hence, from Theorem 17, X is a UMVUE for p + 2. Then any function of X is a UMVUE.

Example 26. Let X;,..., X, be independent and identical random variables from an unknown
population Py with the probability density function

x —
F6p0) =27 e (),

where 6 = (1,0) € R x R* is an unknown parameter. By the same argument as in Example 25,
2n

we can see that max (Xj, ..., X;) is a complete and minimal .7# -sufficient statistic for u + 570
Hence, by Theorem 17, max(Xj,...,X;) is a UMVUE for u + 2,21’110. Then any function of

max (Xi,...,X;,) isa UMVUE.
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5.2. When a complete and sufficient statistic is not available

Even though, there exist complete sufficient statistics in the following examples, namely max
[1,max (Xj,...,X,)] and X Invgm,m+1; (X), we can apply Theorems 15 and 17 for obtaining their
UMVUEs.

Example 27 (Example of [20]). Let Xj,..., X,, be independent and identical random variables
from Py, the uniform distribution on the interval (0, 8) with ©® = [1,00). Then X(,, is not complete,
although it is still sufficient for 8. Thus, the RBT and LST are not applicable. We now illustrate how
to use Theorem 15 to find a UMVUE of 6. Let U (X)) be an unbiased estimator of 0 in % (X))

We can show that H (X)) = Tjo,1) (X)) + 22 X(n I1,00) (X)) is a complete and 7 -sufficient
statistic for 6, though we need only

n+1
Eg | Tio1) (X)) + TX(nJ I1,00) (X)) + U (Xmy)

H(Xy)

= H(Xn)

almost surely Py for every 6 € ©. Hence, Ijo,1] (X(n)) + 22 X(n) I(1,00) (X(y) is @ UMVUE for 6.

Example 28 (Example of [21]). Let X be a random variable having the discrete uniform distri-
bution with the probability mass function given by
P N7l ifx=1,...,N,
X) =
N 0, otherwise.
We have excluded the value N = m for some fixed m = 1 from {Py:N=1}. Let P =
{Pn:N=1,N # m}. We can see that

2X-1, ifX#mX#m+1,

H(X)= .
2m, ifX=mX=m+1

is a complete and .77 -sufficient statistic for IV, and also it is a UMVUE for N, which can be proved
similarly to the above example.

5.3. A note on the structure of UMVUE

We now show that the structure of UMVUE depends on a 7 -sufficient statistic for E(UMVUE).

Theorem 29. Let & = {Py:0 € ®} be a family of distributions. Suppose that there is a sufficient
statistic S(X) for & and a € -sufficient statistic H(X) for a. For any function such as a (S(X))
which is a UMVUE there exists a function 3 (H(X)) so that a (S(X)) = B (H(X)) almost surely 2.

Proof. The proof is an easy consequence of Theorem 15, where Ey [UMVUE | S(X)] and Ep
[UMVUE | H(X)] are UMVUEs. The proof follows by the uniqueness of UMVUE:s. O

6. Conclusions

Sufficient statistics are of central concern for statisticians. They play a fundamental role in the
theorems of Rao-Blackwell and Lemann-Scheffé. By Theorem 15, every sufficient statistic is a
27 -sufficient statistic. The class of .7-sufficient statistics contains all of the sufficient statistics
and also some statistics that are not necessarily sufficient. So, the factorization theorem, and
its corollaries, should not hold generally for 57 -sufficient statistics. The concepts closest to 7 -
sufficient statistics are those of “partial sufficient” and “sufficient subspace”. But they are slightly
different.
More research based on the concept of 7#-sufficiency are under investigation. They are

o Generalizing 7 -sufficiency to multi-parameter cases.
o How to find 7 -sufficient statistics.
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