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Abstract. In the recent work [Cruz-Uribe et al. (2021)] it was obtained that

|{x ∈Rd : w(x)|G( f w−1)(x)| >α}|≲
[w]2

A1

α

∫
Rd

| f |dx

both in the matrix and scalar settings, where G is either the Hardy–Littlewood maximal function or any
Calderón–Zygmund operator. In this note we show that the quadratic dependence on [w]A1 is sharp. This
is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the
corresponding bounds for the Hilbert transform and maximal function are exactly quadratic.

Résumé. Dans le récent travail [Cruz-Uribe et al. (2021)], il a été démontré

|{x ∈Rd : w(x)|G( f w−1)(x)| >α}|≲
[w]2

A1

α

∫
Rd

| f |dx

à la fois dans les contextes matriciel et scalaire, où G est soit la fonction maximale de Hardy-Littlewood ou tout
opérateur de Calderón-Zygmund. Dans cette note, nous démontrons que la dépendance quadratique par
rapport à [w]A1 est optimale. Cela est réalisé en construisant une séquence de poids à valeurs scalaires avec
des caractéristiques d’éclatements, de sorte que les bornes correspondantes à la transformation de Hilbert et
la fonction maximale soient exactement quadratiques.
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1. Introduction

Recall that a non-negative locally integrable function w satisfies the A1 condition if there exists a
constant C > 0 such that for every cube Q ⊂Rd ,

1

|Q|
∫

Q
w ≤C essinf

Q
w.

The smallest constant C for which this property holds is denoted by [w]A1 .
In the 70s, Muckenhoupt and Wheeden [10] established weighted weak type (1,1) bounds of

the form

|{x ∈R : w(x)|T ( f w−1)(x)| >α}|≲ Cw

α

∫
R
| f |dx, (1)

where T is either the Hilbert transform H or the Hardy–Littlewood maximal operator M . They
showed as well that w ∈ A1 is a sufficient condition for those inequalities to hold, even though it
is not necessary. Muckenhoupt and Wheeden observed that (1) could be regarded as a first step
to settle inequalities of the form

u1−r ({
ur |T f | >α})

≲
1

α

∫
R
| f |w dx, (2)

where u, w are non-negative functions and r ∈ [0,1]. Note that for u = w , for r = 0 this inequality
is the standard weak type inequality and in the case r = 1 it reduces to (1). Their idea was
to combine (2) with interpolation with change of measures in order to obtain two weighted
estimates.

Pushing forward that idea, Sawyer [13] showed that

uv

({
M( f v)

v
>α

})
≲Cu,v

1

α

∫
R
| f |uv dx, (3)

where u, v ∈ A1. This estimate combined with interpolation with change of measures allowed
him to reprove Muckenhoupt’s maximal theorem.

Since the aforementioned papers a number of works have been devoted to estimates related
to the ones above, that are known in the literature as mixed weak type estimates. Some worth
mentioning are [3] where (3) is extended to higher dimensions and further operators such as
Calderón–Zygmund operators via extrapolation, or [9] where it is shown that u ∈ A1 and v ∈ A∞
is sufficient for (3) to hold.

In terms of quantitative estimates for Cu,v in (3), and up to very recently for Cw in (1), as we
will mention soon, not very much is known. Some results are provided in the aforementioned
work [9] or in some other papers such as [12] or [1] for Cu,v in (3). The purpose of this note is
to provide some insight on Cw in (1). However, before presenting our main result we would like
to connect this problem with the matrix weighted setting. We devote the following lines to that
purpose.

In the last years quantitative matrix weighted estimates have attracted the attention of a
number of authors. Up until now only few sharp quantitative results in the matrix weight
setting are known. Among them the sharp Lp (W ) bounds for the maximal operator [7], the
sharp L2(W ) bound for the square function [6], and also the sharp Lp (W ) bounds in terms
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of the [W ]Aq constants with 1 ≤ q < p obtained in [8] for the maximal operator, Calderón–
Zygmund operators and commutators. Very recently Domelevo, Petermichl, Treil and Volberg [4]
showed the sharpness of the L2(W ) bound by [W ]3/2

A2
for Calderón–Zygmund operators obtained

previously in [11].
Making sense of endpoint matrix weighted estimates is a tricky problem. Quite recently, Cruz-

Uribe et al. [2] managed to obtain the first quantitative endpoint estimates in that setting. In
order to state this result, we first give several definitions.

Assume that W is a matrix weight, that is, W is an n×n self-adjoint matrix function with locally
integrable entries such that W (x) is positive definite for a.e. x ∈Rd . Define the operator norm of
W by

∥W (x)∥ := sup
e∈Cn :|e|=1

|W (x)e|.
We say that W ∈ A1 if

[W ]A1 := sup
Q

esssup
y∈Q

1

|Q|
∫

Q
∥W (x)W (y)−1∥dx <∞.

It is easy to see that the matrix A1 constant [W ]A1 coincides with [w]A1 when n = 1.
Given a matrix weight W , a vector-valued function f⃗ : Rd → Cn and a Calderón–Zygmund

operator T , define
TW f⃗ (x) :=W (x)T (W −1 f⃗ )(x).

Next, define the maximal operator by

MW f⃗ (x) := sup
Q∋x

1

|Q|
∫

Q
|W (x)W −1(y) f⃗ (y)|dy.

The operators above have the obvious interpretation in the scalar setting.

Theorem A ([2]). We have∣∣{x ∈Rd : |TW f⃗ (x)| >α}∣∣≲ [W ]2
A1

α

∫
Rd

| f⃗ |dx, (4)

and the same holds for MW .

At this point we are in the position to state the main result of this note.

Theorem 1. In the scalar-valued setting the quadratic dependence on [w]A1 in (4) is sharp for Tw

and for Mw .

As a direct consequence of Lemma 2 below, this result shows the sharpness of [W ]2
A1

in
Theorem A in the matrix setting as well.

An interesting phenomenon here is the contrast between the strong L2(W ) and the weak
L1(W ) bounds for Calderón–Zygmund operators. As we mentioned above, the recent work [4]
establishes the sharpness of [W ]3/2

A2
in the matrix setting. Comparing this with the linear A2 bound

in the scalar case [5], we see that the sharp weighted L2 bounds for Calderón–Zygmund operators
are different in the matrix and scalar settings. However, Theorem 1 shows that the sharp weighted
weak L1 bounds are the same in both settings.

2. Proof of Theorem 1

2.1. Connection between the scalar and the matrix weighted estimates

Lemma 2. Assume that GW stands either for TW or for MW . Then if∣∣{x ∈Rd : |GW f⃗ (x)| >α}∣∣≤ cϕ
(
[W ]A1

) 1

α

∫
Rd

| f⃗ |dx,
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we have that for every w ∈ A1∣∣{x ∈Rd : |Jw f (x)| >α}∣∣≤ cϕ
(
[w]A1

) 1

α

∫
Rd

| f |dx,

where Jw stands, respectively, for wT ( f w−1) or for w M( f w−1).

Proof. Let w ∈ A1. It is clear that W = w In is a matrix A1 weight. Furthermore,

[W ]A1 = [w]A1 .

Now given a scalar function f , we build f⃗ = ( f ,0, . . . ,0)t . Note that for these choices of f⃗ and W ,
clearly ∣∣GW f⃗ (x)

∣∣= |Jw f (x)|.
This ends the proof. □

2.2. Construction of a family of weights providing the lower bound

We prove Theorem 1 via the following result.

Theorem 3. For any integer N > 20, there exists a scalar weight w ∈ A1(R) satisfying the following
properties:

(1)
∫ 1

0 w = 1;
(2) [w]A1 ≃ N ;
(3) |{x ∈ (1,∞) : w(x) > x}|≳ N 2.

Observe that Theorem 3 implies Theorem 1 immediately because if we take f =χ[0,1], then for
x > 1,

M f (x) = 1

x
, H f (x) =

∫
f (y)

x − y
dy > 1

x
.

Hence, if T is either M or H , then

∥wT f ∥L1,∞ ≥ ∣∣{x ∈ (1,∞) : w(x)|T f (x)| > 1
}∣∣

≥
∣∣∣∣{x ∈ (1,∞) : w(x) · 1

x
> 1

}∣∣∣∣
≳ N 2 ≃ [w]2

A1
∥ f ∥L1(w).

The rest of this section will be devoted to proving Theorem 3.

Proof of Theorem 3. For k = 2,3, . . . , N we denote Jk = [2k ,2k+1). We will split Jk into small
intervals. Set Ik = [2k ,2k + k) and Lk = Jk \ Ik = [2k + k,2k+1). Let L−

k and L+
k be the left and

right halves of Lk , respectively. Next we define (L−
k )1 to be the right half of L−

k and (L+
k )1 the left

half of L+
k . Then

• when
(
L−

k

) j = [
a j

k ,b j
k

)
is defined, let

(
L−

k

) j+1 = [
a j+1

k ,b j+1
k

)
satisfy that

b j+1
k = a j

k ,
∣∣(L−

k ) j+1∣∣= 1

2

∣∣(L−
k ) j ∣∣;

• when
(
L+

k

) j = [
c j

k ,d j
k

)
is defined, let

(
L+

k

) j+1 = [
c j+1

k ,d j+1
k

)
satisfy that

c j+1
k = d j

k ,
∣∣(L+

k ) j+1∣∣= 1

2

∣∣(L+
k ) j ∣∣.
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The process is stopped when we have (L−
k )k−1 and (L+

k )k−1 defined, and we simply define

(L−
k )k =

[
2k +k,2k +k + |L−

k |
2k−1

)
, (L+

k )k =
[

2k+1 − |L+
k |

2k−1
,2k+1

)
.

Now we have split Jk into disjoint intervals, namely,

Jk = Ik ∪
k⋃

j=1
(L−

k ) j ∪
k⋃

j=1
(L+

k ) j .

I4 L4

(L−
4 )1 (L+

4 )1(L−
4 )2 (L+

4 )2

(L−
4 )3 (L+

4 )3

(L−
4 )4 (L+

4 )4

Figure 1. Component intervals of J4.

Define

wk = 2k+1χIk +
k∑

j=1
2 jχ(L−

k ) j ∪(L+
k ) j

and our weight on [0,2N+2] is

w(x) =


χ[0,4)(x)+∑N

k=2 wk (x), x ∈ [0,2N+1),

2N , x = 2N+1,

w(2N+2 −x), x ∈ [2N+1,2N+2].

Figure 2. Graph of w4

Finally we extend w(x) from [0,2N+2] toRperiodically with period 2N+2. Such a weight trivially
satisfies

∫ 1
0 w = 1. Moreover, since w(x) > x on Ik , we have∣∣{x ∈ (1,∞) : w(x) > x}

∣∣≥ N∑
k=2

|Ik | =
N∑

k=2
k ≃ N 2.

Hence it remains to check that [w]A1 ≃ N . Since w is periodic on R and symmetrical on
[0,2N+2], it suffices to prove that

sup
I⊂[0,2N+1]

w(I )

|I |essinf
x∈I

w(x)
≃ N

(we use the standard notation w(E) = ∫
E w).
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Figure 3. Joint graph of w4, w5 and w6.

Observe that |L−
k | = |L+

k | = 1
2 (2k −k). Further,∣∣(L−

k ) j ∣∣= ∣∣(L+
k ) j ∣∣= 1

2 j+1
(2k −k), j = 1, . . . ,k −1,

and ∣∣(L−
k )k ∣∣= ∣∣(L+

k )k ∣∣= 1

2k
(2k −k).

Hence,

wk (Jk ) = 2k+1|Ik |+
k∑

j=1
2 j

(∣∣(L−
k ) j ∣∣+ ∣∣(L+

k ) j ∣∣)
= 2k+1k + (k −1)(2k −k)+2(2k −k) ≃ k2k .

From this, when I = [0,2N+1] we have

w(I )

|I | = 2−(N+1)

(
4+

N∑
k=2

wk (Jk )

)
≃ 2−(N+1)

(
4+

N∑
k=2

k2k

)
≃ N = N essinf

x∈I
w(x).

Therefore, we are left to prove that for any I ⊂ [0,2N+1],

w(I )

|I | ≲ N essinf
x∈I

w(x). (5)

At this point we will make the following elementary observation. Our weight w is a step
function, and for each two adjacent intervals from its definition, the “jump" of w is at most 2.
Since the “jumps" are multiplicative we have the following.

Claim A. If I intersects at most m intervals from the definition of w, then

w(I )

|I | ≤ max
x∈I

w(x) ≤ 2m min
x∈I

w(x) = 2m essinf
x∈I

w(x).

In what follows we will prove (5) according to the size of I .

Case 1. |I | ≤ 4. In this case, note that in each Jk (k ≥ 2), (L−
k )k−1, (L−

k )k and (L+
k )k−1, (L+

k )k are the
smallest intervals, and∣∣(L−

k )k−1∣∣= ∣∣(L−
k )k ∣∣= ∣∣(L+

k )k−1∣∣= ∣∣(L+
k )k ∣∣= 1− k

2k
≥ 1

2
.

Hence I intersects at most 9 intervals from the definition of w , and we are in position to apply
Claim A with m = 9.
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Case 2. |I | > 4. In this case, we may assume |I | ∈ (2k0 ,2k0+1] with some k0 ≥ 2. We may further
assume k0 < N −10 as otherwise

w(I )

|I | ≲ 2−N w([0,2N+1]) ≃ N essinf
x∈I

w(x).

Case 2a. I ⊂ [0,2k0+10]. Then similarly to above,
w(I )

|I | < 2−k0 w([0,2k0+10]) ≃ k0 essinf
x∈I

w(x).

Case 2b. I ̸⊂ [0,2k0+10]. Then I ⊂ [2k0+9,2N+1]. Denote by ck the center of Lk .

Case 2b-a. I contains some ck with k ≥ k0 +9. Then the estimate is trivial since I ⊂ (L−
k )1 ∪ (L+

k )1

and we apply Claim A with m = 2.

Case 2b-b. I does not contain any ck . In this case we may assume I ⊂ (cℓ,cℓ+1) for some
k0 +8 ≤ ℓ≤ N .

Suppose that I = [a,b] and a ∈ (L+
ℓ

) j for some j . If j ≤ ℓ−k0 −4, then∣∣(L+
ℓ ) j+1∣∣= |L+

ℓ |2−( j+1) = 2ℓ−ℓ
2 j+2

> 2k0+1,

so that I will intersect at most (L+
ℓ

) j and (L+
ℓ

) j+1 and we again apply Claim A with m = 2.
If j ≥ ℓ−k0 −3, note that then

I ⊂
ℓ⋃

j=ℓ−k0−3
(L+
ℓ ) j ∪

ℓ+1⋃
i=ℓ−k0−2

(L−
ℓ+1)i ∪ Iℓ+1.

Here i ≥ ℓ−k0 −2 since∣∣(L−
ℓ+1)ℓ−k0−2∣∣= 2ℓ+1 − (ℓ+1)

2ℓ−k0−1
> 2ℓ

2ℓ−k0−1
= 2k0+1 ≥ ℓ(I ).

Hence we have

w(I )

|I |essinf
x∈I

w(x)
≤

∑ℓ
j=ℓ−k0−3 w

(
(L+
ℓ

) j
)+∑ℓ+1

i=ℓ−k0−2 w
(
(L−
ℓ+1)i

)+w(Iℓ+1)

2k0 2ℓ−k0−3

≲

∑ℓ
j=ℓ−k0−3 2 j ·2ℓ− j +∑ℓ+1

i=ℓ−k0−2 2i ·2ℓ+1−i + (ℓ+1)2ℓ+2

2ℓ
≲ ℓ.

It remains to consider the case a ∈ Iℓ+1 ∪ L−
ℓ+1. However, in this case we just need to discuss

whether b ∈ (L−
ℓ+1) j with some j ≤ ℓ−k0 −3 or not, which is completely similar. This completes

the proof. □
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