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Abstract. For the class of Gorenstein projective (resp. injective and flat) modules, we investigate and settle
the questions when the middle class is tilting and the other ones are cotilting. The applications have in three
directions. The first is to obtain the coincidence between the 1-tilting and silting property, as well as the 1-
cotilting and cosilting property of such classes respectively. The second is to characterize Gorenstein modules
via finitely generated modules, which provides a proof of that left Noetherian rings with finite left Gorenstein
global dimension satisfy First Finitistic Dimension Conjecture and a result related to a question posed by
Bazzoni in [J. Algebra 320 (2008) 4281-4299]. The last is to give some new characterizations of Dedekind and
Prüfer domains and commutative Gorenstein Artin algebras as well as general (possibly not commutative)
Gorenstein rings and Ding–Chen rings.

Résumé. Pour la classe des modules Gorenstein-projectifs (respectivement G-injectifs et G-plats), nous
étudions et réglons les questions de savoir quand la seconde est basculante et les autres cobasculantes. Les
applications vont dans trois directions. La première est d’obtenir la coïncidence entre les propriétés de ces
classes d’être, respectivement, 1-basculante et bousculante, ainsi que la propriété d’être 1-cobasculante et
cobousculante. La deuxième consiste à caractériser les modules de Gorenstein via des modules finiment
engendrés, ce qui prouve que les anneaux noethériens à gauche de dimension globale de Gorenstein gauche
finie satisfont la première conjecture de la dimension finitiste et un résultat lié à une question posée par
Bazzoni dans [J. Algebra 320 (2008) 4281-4299]. Le dernier objectif est de donner de nouvelles caractérisations
des domaines de Dedekind et de Prüfer et des algèbres d’Artin de Gorenstein commutatives, ainsi que des
anneaux de Gorenstein généraux (éventuellement non commutatifs) et des anneaux de Ding–Chen.
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1. Introduction

Enochs, Jenda and Torrecillas [25, 28] introduced Gorenstein projective, injective and flat mod-
ules for any ring and then established Gorenstein homological algebra. Such a relative homolog-
ical algebra has been developed rapidly during the past several decades and now becomes a rich
theory. Tilting theory has its origin as Morita equivalence for derived categories, and becomes an
important tool to deal with many famous conjecture in homological algebra and algebra repre-
sentation theory, such as “Telescope Conjecture for Modules categories” (see [6]) and “Finitistic
Dimension Conjecture” (see [7]) and so on. The goal of this manuscript is to investigate some
connections between Gorenstein homological algebra theory and tilting theory. Such a work can
go back to the construction of Bass (co)tilting modules over Gorenstein rings, and was extensively
studied by Angeleri Hügel, Herbera, Trlifaj, Wang, Li, Hu, Di, Wei, Zhang, Chen, Moradifar, Saroch
and Yassemi in [3, 20, 37, 38, 42, 46].

Given a ring R, we denote by GP (R) (resp. GI (R), GF (R)) the class of all Gorenstein
projective (resp. injective and flat) left R-modules. For the corresponding classes of right R-
modules, we use the notation GP (Rop) and so on, where Rop is the oppositive ring of R. Recall
that a class X of modules is tilting (resp. cotilting) if X is an n-tilting (resp. n-cotilting) class for
some nonnegative integer n, that is, there is an n-tilting (resp. n-cotilting) module T such that
X = {T }⊥ (resp. X = ⊥{T }). Such properties for a general class X were classified by Angeleri
Hügel, Trlifaj, Göbel and Bazzoni in [3, 9, 32]. In particular, the properties for the classes of
Gorenstein modules were classified in [3]. Let R be a two-sided Noetherian ring. Then [3,
Theorem 3.4] proved that the classes GI (R) and GI (Rop) are tilting if and only if the class GI (R)
is tilting and the class GF (R) is cotilting, if and only if R is Gorenstein. If R is an Artin algebra,
then [3, Corollary 3.8] showed that the class GP (R) is cotilting if and only if R is Gorenstein.
Motivated by these results, the following questions are posed naturally:

Question 1. When does the class GP (R) (resp. GF (R)) form a cotilting class ?

Question 2. When does the class GI (R) form a tilting class ?

Our main results are as follows, which give a thorough-paced answer to Questions 1 and 2.

Theorem 3 (see Theorems 33 and 34). The following are equivalent for any ring R:

(1) The class GP (R) (resp. GF (R)) is cotilting.
(2) R is a right coherent and left perfect (resp. right coherent) ring admitting finite left Goren-

stein global dimension (resp. finite Gorenstein weak global dimension).

Theorem 4 (see Theorem 35). The following are equivalent for any ring R:

(1) The class GI (R) is tilting.
(2) R is a left Noetherian ring admitting finite left Gorenstein global dimension.

It is well-known that, injective and flat modules can be characterized by finitely generated
modules over a ring. As the first application of the preceding theorems, we characterize Goren-
stein projective (resp. injective and flat) modules by finitely generated modules having finite pro-
jective dimension over left Noetherian rings with finite left Gorenstein global dimension (see The-
orem 45 and Lemma 47). On one hand, the characterizations provides us a proof that any left
Noetherian ring with finite left Gorenstein global dimension satisfies “First Finitistic Dimension
Conjecture” (see Corollary 46). It covers the same result for Gorenstein rings [3, Theorem 3.2] (see
Christensen, Estrada, and Thompson [17, Remark 3.11] for the fact of that Gorenstein rings can
be described as two-sided Noetherian rings with finite left Gorenstein global dimension and see
Example 39 for the existence of a left Noetherian ring with finite left Gorenstein global dimension
which is not Gorenstein). On the other hand, the characterizations provides us a result related to
a question posed by Bazzoni in [9, Question 1(1)].
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Silting modules was introduced by Angeleri Hügel, Marks and Vitória [5], which provide a
common generalization of 1-tilting modules and support τ-tilting modules, and correspond
bijectively to the two-terms silting complexes. Cosilting modules, as the dual notion, was
introduced by Breaz and Pop [14]. Recall that a class X of modules is silting (resp. cosilting)
if there is a silting (resp. cosilting) module T such that X = GenT (resp. X = CogenT ). Note
from [32, Lemma 6.1.2] (resp. [32, Lemma 8.2.2]) that a class X is 1-tilting (resp. 1-cotilting)
if and only if there is a 1-tilting (resp. 1-cotilting) module T such that X = GenT (resp. X =
CogenT ). Since the inclusions {1-tilting modules} ⊆ {silting modules} and {1-cotilting classes} ⊆
{cosilting classes} are strict, it is a routine to check that the another one {1-tilting classes} ⊆
{silting classes} and {1-cotilting classes} ⊆ {cosilting classes} are strict as well. As the second
application of the preceding theorems, we completely settle the questions when the classes
GP (R) and GF (R) are cosilting and when the class GI (R) is silting (see Propositions 54, 55
and 56). These results shows that the silting (resp. cosilting) and 1-tilting (resp. 1-cotilting)
property for the classes GP (R) and GF (R) (resp. the class GI (R)) coincide.

As an example of Gorenstein rings, Gorenstein Artin algebras play an important role in
representation theory of Artin algebras. On the other hand, many authors, such as Ding, Chen,
Mao, Li and Gillespie [22, 23, 29, 31], pointed out that Ding–Chen rings are natural generalizations
of Gorenstein rings. The third application of the theorems is to give some characterizations
of Gorenstein rings (including Gorenstein Artin algebras) and Ding–Chen rings. Note that
Corollary 5 below is a slight improvement of [3, Theorem 3.4].

Corollary 5 (see Theorem 37 and Corollary 38). A ring R is Gorenstein if and only if both the
classes GI (R) and GI (Rop) are tilting. In particular, a commutative (or two-sided Noetherian)
ring R is Gorenstein if and only if the class GI (R) is tilting.

Corollary 6 (see Theorem 40 and Corollary 41). A ring R is Ding–Chen if and only if both the
classes GF (R) and GF (Rop) are cotilting. In particular, a commutative (or two-sided coherent)
ring R is Ding–Chen if and only if the class GF (R) is cotilting.

Corollary 7 (see Theorem 42). A commutative ring R is a Gorenstein Artin algebra if and only if
the class GP (R) is cotilting.

As shown in [32], both the (co)tilting modules and classes over a Dedekind (resp. Prüfer)
domain have a nice description. The last application of the theorems is to characterize Dedekind
and Prüfer domains using some special (co)tilting classes.

Corollary 8 (see Theorems 60 and 61). Let R be a domain. Then the following hold:

(1) R is Dedekind if and only if the class GI (R) is 1-tilting and GI (R) =I (R).
(2) R is Prüfer if and only if the class GF (R) is 1-cotilting and GF (R) =F (R).

Here I (R) (resp. F (R)) denotes the class of all injective (resp. flat) left R-modules.

We conclude this section by summarizing the contents of this paper. Section 2 contains some
notations, definitions and lemmas for use throughout this paper. Section 3 is devoted to proving
Theorems 3 and 4. Section 4 gives some applications of Theorems 3 and 4.

2. Preliminaries

Throughout this article, all rings R are assumed to be associative rings with identity and all
modules are unitary. By an “R-module” we always mean a left R-module, for a right R-module,
we view it as an Rop-module, where Rop is the oppositive ring of R.

In this section we mainly recall some necessary notions and facts, which will be used in the
paper. Let R be a ring. As usual, denote by R-Mod the class of all R-modules; by P (R) (resp.
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I (R) and F (R)) its subclass of all projective (resp. injective and flat) R-modules; by pdR (M)
(resp. idR (M) and fdR (M)) the projective (resp. injective and flat) dimension of an R-module M ;
by gldim(R) (resp. wgldim(R)) the left global (resp. weak global) dimension of R. In addition, we
write M+ = HomR (M ,Q/Z).

For an R-module M , denote by Add M (resp. Prod M) the class of all R-modules that are
isomorphic to a direct summand of a copy coproduct (resp. product) of M ; by Gen M (resp.
Cogen M) is the class formed by all R-modules that are isomorphic to the epimorphic images
of some R-module in Add M (resp. to the submodules of some R-module in Prod M).

2.1. Cotorsion pairs and induced dimensions

Let R be a ring and X ,Y classes of R-modules. A pair (X ,Y ) is called a cotorsion pair if X ⊥ =Y

and ⊥Y = X . Here X ⊥ = {M ∈ R-Mod | Ext1
R (X , M) = 0,∀X ∈ X }, and ⊥Y is defined dually. A

cotorsion pair (X ,Y ) is said to be hereditary if Extn
R (X ,Y ) = 0 for all X ∈ X , Y ∈ Y and n ≥ 1.

A cotorsion pair (X ,Y ) is called complete if for any M ∈ R-Mod, there are exact sequences of
R-modules 0 → Y → X → M → 0 and 0 → M → Y ′ → X ′ → 0 with X , X ′ ∈ X and Y ,Y ′ ∈ Y . A
cotorsion pair (X ,Y ) is said to be cogenerated (resp. generated) by a set if there is a set S of
R-modules in X (resp. Y ) such that S ⊥ =Y (resp. ⊥S =X ).

Given an R-module M and a class X of R-modules, a special X -preenvelope of M is defined
as a monic homomorphism α : M → X with X ∈ X and Cokerα ∈ ⊥X . A class X is said to be
special preenveloping if every R-module has a special X -preenvelope. A class X is injectively
coresolving if it is closed under extensions and cokernels of monic morphisms, and I (R) ∈ X .
Dually, we have the definitions of special X -precover and that X is special precovering (resp.
projectively resolving).

For an R-module M and a class X of R-modules, the X -projective dimension of M , denoted
by X -pdR (M), is defined as follows:

X -pdR (M) = inf{n ∈N | there is an exact sequence of R-modules

0 −→ Xn −→ ·· · −→ X1 −→ X0 −→ M −→ 0, where each Xi ∈X }.

If no such an exact sequence exists, then we set X -pdR (M) =∞. Dually, we have the definition
of X -injective dimension of M , X - idR (M).

Next two lemmas give some characterizations of relative projective dimensions of modules,
which are applied for the proof of Lemma 26.

Lemma 9. Let X be a class of R-modules such that (X ,X ⊥) is a complete and hereditary cotorsion
pair. Then the following are equivalent for any R-module M and any integer n ≥ 0:

(1) X -pdR (M) ≤ n.
(2) There is an exact sequence of R-modules 0 → Xn → Xn−1 → ··· → X1 → X0 → M → 0 with

each Xi ∈X .
(3) For any exact sequence of R-modules 0 → K → Xn−1 → ···→ X1 → X0 → M → 0, if each Xi

is in X , then so is K .
(4) Extn+1

R (M ,Y ) = 0 for all Y ∈X ⊥.

Proof.

(1) ⇔ (2). It is clear.

(2) ⇒ (3). Note that X is projectively resolving and closed under arbitrary direct sums and
summands, as (X ,X ⊥) forms a complete and hereditary cotorsion pair. So the result follows
from [8, Lemma 3.12].
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(3) ⇒ (4). Consider the exact sequence 0 → K → Pn−1 → ··· → P1 → P0 → M → 0 of R-modules
with each Pi projective. Then by (3) K is in X since so is each Pi . Now, for any Y ∈ X ⊥, by
dimension shifting one has 0 = Ext1

R (K ,Y ) ∼= Extn+1
R (M ,Y ).

(4) ⇒ (2). Consider an exact sequence 0 → Xn → Xn−1 → ··· → X1 → X0 → M → 0 of R-modules
with Xi ∈ X for all 0 ≤ i ≤ n − 1 (one can choose that all such Xi projective). Then, for any
Y ∈ X ⊥, by (4) and dimension shifting one has Ext1

R (Xn ,Y ) ∼= Extn+1
R (M ,Y ) = 0. Thus, Xn ∈ X

since (X ,X ⊥) is a cotorsion pair. □

Lemma 10. Let X be a class of R-modules such that (X ,X ⊥) is a complete and hereditary
cotorsion pair. Then the following are equivalent:

(1) sup{X -pdR (M) | M ∈ R-Mod} <∞.
(2) Every R-module in X ⊥ has finite injective dimension.
(3) X -pdR (M) <∞ for any R-module M.

Proof.

(1) ⇒ (3). It is obvious.

(2) ⇔ (3). It follows from Lemma 9.

(3) ⇒ (1). We first claim that

X -pdR

(∐
j∈J

M j

)
= sup{X -pdR (M j ) | j ∈ J }

for any family {M j | j ∈ J } of R-modules. Indeed, let sup{X -pdR (M j ) | j ∈ J } = m < ∞. Then
X -pdR (M j ) ≤ m for each j ∈ J . By Lemma 9, there exists an exact sequence of R-modules
0 → Xm, j →···→ X1, j → X0, j → M j → 0 with each Xi , j ∈X . This induces another exact sequence
of R-modules 0 → ∐

j∈J Xm, j → ··· → ∐
j∈J X1, j → ∐

j∈J X0, j → ∐
j∈J M j → 0 with each

∐
j∈J Xi , j ∈

X as X is closed under arbitrary direct sums. Hence, X -pdR (
∐

j∈J M j ) ≤ m by Lemma 9.
Conversely, let X -pdR (

∐
j∈J M j ) = m < ∞. Then Lemma 9 yields that Extm+1

R (
∐

j∈J M j ,Y ) = 0
for all Y ∈ X ⊥. So, using the isomorphism Extm+1

R (
∐

j∈J M j ,Y ) ∼= ∏
j∈J Extm+1

R (M j ,Y ) one has
Extm+1

R (M j ,Y ) = 0 for all j ∈ J . Thus, sup{X -pdR (M j ) | j ∈ J } ≤ m by Lemma 9. This shows
the claim.

Now assume that X -pdR (M) <∞ for any R-module M . If sup{X -pdR (M) | M ∈ R-Mod} =∞,
then there is an R-module Mn such that X -pdR (Mn) ≥ n for any integer n ≥ 0. This leads to a
contradiction:

∞= sup{X -pdR (Mn) | n ∈N}
the above claim======= X -pdR (⊕n∈NMn) <∞.

Consequently, sup{X -pdR (M) | M ∈ R-Mod} <∞. □

Lemmas 11 and 12 below are the dual of Lemmas 9 and 10 respectively, which are applied for
the proof of Lemma 27.

Lemma 11. Let X be a class of R-modules such that (⊥X ,X ) is a complete and hereditary
cotorsion pair. Then the following are equivalent for any R-module M and any integer n ≥ 0:

(1) X - idR (M) ≤ n.
(2) There is an exact sequence of R-modules 0 → M → X 0 → X 1 → ··· → X n → 0 with each

X i ∈X .
(3) For any exact sequence of R-modules 0 → M → X 0 → X 1 →···→ X n−1 →C → 0, if each X i

is in X , then so is C .
(4) Extn+1

R (Y , M) = 0 for all Y ∈ ⊥X .
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Lemma 12. Let X be a class of R-modules such that (⊥X ,X ) is a complete and hereditary
cotorsion pair. Then the following are equivalent:

(1) sup{X - idR (M) | M ∈ R-Mod} <∞.
(2) Every R-module in ⊥X has finite projective dimension.
(3) X - idR (M) <∞ for any R-module M.

2.2. Gorenstein homological modules and dimensions

An R-module M is said to be Gorenstein projective [25] if there exists a HomR (−,P (R))-exact exact
sequence of projective R-modules · · · → P1 → P0 → P 0 → P 1 → ··· such that M ∼= Im(P0 → P 0).
Dually we have the definition of Gorenstein injective [25] R-modules. An R-module M is said to
be Gorenstein flat [28] if there exists an exact sequence of flat R-modules · · · → F1 → F0 → F 0 →
F 1 →··· such that M ∼= Im(F0 → F 0) and that remains exact whenever the functor I⊗R− is applied
for any injective Rop-module I .

We denote by GP (R) (resp. GI (R) and GF (R)) the class of all Gorenstein projective (resp. in-
jective and flat) R-modules; by GpdR (M) (resp. GidR (M) and GfdR (M)) the Gorenstein projective
(resp. injective and flat) dimension of an R-module M , that is, GP (R)-projective (resp. GI (R)-
injective and GF (R)-projective) dimension of M .

As a refinement of the usual global (resp. weak global) dimension of rings, Gorenstein global
(resp. Gorenstein weak global) dimension of rings is defined as follows:

Definition 13.

(1) For any ring R, its left (resp. right) Gorestein global dimension, denoted by Ggldim(R) (resp.
Ggldim(Rop)), is defined via the following formula

sup{GpdR (M) | M ∈ R-Mod} =G-gldim(R) = sup{GidR (M) | M ∈ R-Mod}

(resp. sup{GpdR (M) | M ∈ Rop-Mod} =G-gldim(Rop) = sup{GidR (M) | M ∈ Rop-Mod}).

(2) We say that R admits finite left Gorenstein global dimension (resp. finite right Gorenstein
global dimension) if G-gldim(R) <∞ (resp. G-gldim(Rop) <∞).

Definition 14.

(1) For any ring R, its Gorestein weak global dimension, denoted by Gwgldim(R), is defined
via the following formula

sup{GfdR (M) | M ∈ R-Mod} = G-wgldim(R) = sup{GfdR (M) | M ∈ Rop-Mod}.

(2) We say that R admits finite Gorenstein weak global dimension if G-wgldim(R) <∞.

Remarks 15.

(1) For any ring R, the equality

sup{GpdR (M) | M ∈ R-Mod} = sup{GidR (M) | M ∈ R-Mod}

was proved by Bennis and Mahdou in [11] and by Emmanouil in [24] using different
method.

(2) For any ring R, the equality

sup{GfdR (M) | M ∈ R-Mod} = sup{GfdR (M) | M ∈ Rop-Mod}

was proved in [17]. Note from Šaroch and Št’ovíček [40, Theorem 4.11] that any ring
is left and right GF-closed (i.e., the class of all Gorenstein flat left or right R-modules
is closed under extensions). Such an equality can be also obtained by Bouchiba [12,
Theorem 6(2)], as noted in [45].
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It is well-known that wgldim(R) ≤ gldim(R) for any ring R. The corresponding inequality

G-wgldim(R) ≤ G-gldim(R)

for a right coherent ring R was proved in [17, Corollary 3.5]. Recently, the firstly named author
and coauthors [44] improved the result.

Lemma 16 ([44, Theorem 3.7 and Remark 3.12]). Let R be a ring.

(1) There is an inequality G-wgldim(R) ≤ G-gldim(R).
(2) The equality G-wgldim(R) = G-gldim(R) (resp. G-wgldim(R) = G-gldim(Rop )) holds true if

R is left perfect (resp. right perfect).

We end this section by the next lemma.

Lemma 17. Let R be a right coherent ring or a ring with G-wgldim(R) <∞ (in particular the case
G-gldim(R) <∞). Then GP (R) =GF (R) if and only if R is left perfect.

Proof. The “only if” part holds by [18, Proposition 3.1]. For the “if” part, we suppose that R is left
perfect. Then one has P (R) = F (R). If R is a right coherent ring, then GP (R) = GF (R) holds
by [43, Proposition 3.5]; in the other case, i.e., R is a ring with G-wgldim(R) < ∞, the equality
follows by [45, Theorems 2.3 and 2.9]. □

3. (Co)tilting classes and Gorenstein modules

In this section, we will give a thorough-paced answer to Questions 1 and 2 (from the introduc-
tion). We start with the following definitions.

Definition 18. A class X of R-modules is called definable if X is closed under pure submodules,
direct products and direct limits.

Remark 19. Note that a class X of R-modules is definable if and only if it is closed under
products, pure epimorphic images and pure submodules. Indeed, if X is definable, then clearly
it is closed under products and pure submodules. It is also closed under pure epimorphic
images by [9, Proposition 4.3(3)]. Conversely, suppose that X is closed under products, pure
epimorphic images and pure submodules. Since any direct limit of a family of R-modules is a
pure epimorphic image of the direct sum of such a family of R-modules and any direct sum of a
family of R-modules is a pure submodule of the direct product of such a family of R-modules, X

is also closed under direct limits, and hence is definable.

Definition 20. An R-module M is said to be of type FP∞ [3, 13] or compact [9] if M possesses a
projective resolution consisting of finitely generated R-modules.

Definition 21. A class X of R-modules is of finite type if X = ⊥(S ⊥), where S is a set of R-
modules of type FP∞. If furthermore the set S consists of R-modules of type FP∞ with finite
projective dimension, then we call that the class X = ⊥(S ⊥) is of strongly finite type.

Remarks 22.

(1) Clearly any class X of R-modules of strongly finite type is of finite type. Note that there
exists a class of R-modules of finite type which is not of strongly finite type. We also note
that Bazzoni, Göbel and Trlifaj in [9, 32] called that a class X is “of finite type”, is just of
strongly finite type in our sense.

(2) Let X be a class of R-modules which is of finite type. Then there is a complete and
hereditary cotorsion pair (X ,X ⊥) cogenerated by some set S of R-modules of type FP∞.
The cotorsion pair is said to be of finite type. Similarly, we have the notion of that a
cotorsion pair is of strongly finite type.
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Definition 23.

(1) An R-module T is called tilting if there is an integer n ≥ 0 such that T is an n-tilting R-
module, that is, T satisfies the following:

(T1) pdR (M) ≤ n.
(T2) Exti≥1

R (T,T (J )) = 0 for all set J .
(T3) There is an exact sequence of R-modules 0 → R → X 0 → X 1 →···→ X n → 0 with each

X i ∈ AddT .
(2) A class X of R-modules is called tilting if X is an n-tilting class for some n ≥ 0, that is,

there is an n-tilting R-module T such that X = {T }⊥.

Definition 24.

(1) An R-module T is called cotilting if there is an integer n ≥ 0 such that T is an n-cotilting
R-module, that is, T satisfies the following:

(CT1) idR (M) ≤ n.
(CT2) Exti≥1

R (T J ,T ) = 0 for all set J .
(CT3) There is an exact sequence of R-modules 0 → Xn →···→ X1 → X0 →W → 0 with each

Xi ∈ ProdT and W an injective cogenerator.
(2) A class X of R-modules is called cotilting if X is an n-cotilting class for some n ≥ 0, that

is, there is an n-cotilting R-module T such that X = ⊥{T }.

Remarks 25.

(1) Obviously 0-tilting (resp. 0-cotilting) R-modules coincide with projective generators
(resp. injective cogenerators). Thus, 0-tilting and 0-cotilting classes of R-modules are
just R-Mod.

(2) It is known from [32, Theorems 5.1.14 and 8.1.9] that any tilting or cotilting class is
definable.

(3) Following [9, Proposition 3.7(1)], we know that a class X (and hence a cotorsion pair
(X ,X ⊥)) of R-modules is tilting if and only if it is of strongly finite type.

(4) If given a tilting (resp. cotilting class X ), then we have a complete and hereditary
cotorsion pair (X ,X ⊥) (resp. (⊥X ,X )) which is cogenerated (resp. generated) by the
tilting (resp. cotilting) R-module T . The corresponding cotorsion pair (X ,X ⊥) (resp.
(⊥X ,X )) is called tilting (resp. cotilting).

Let n ≥ 0 be an integer. Recall from [9] that a class X of R-modules is closed under n-
submodules (resp. closed under n-images) provided that any R-module M is in X whenever there
is an exact sequence 0 → M → X0 → X1 → ··· → Xn−1 (resp. Xn−1 → ··· → X1 → X0 → M → 0) of
R-modules with each Xi ∈X .

By virtue of [9, Theorem 6.1], we know that a class X of R-modules is cotilting if and only if X

is is definable, projectively resolving and there is an integer n ≥ 0 such that X is closed under n-
submodules; we know from [9, Theorem 6.1] that a definable class X of R-modules is tilting if and
only if X is injective coresolving, special preenveloping and there is an integer n ≥ 0 such that X

is closed under n-images. These classification results for (co)tilting classes and their proof lead us
to obtain the next two lemmas, which play an important role in the proof Theorems 33, 34 and 35.

Lemma 26. Let R be a ring and X a class of R-modules. Then the following are equivalent:

(1) X is cotilting.
(2) X is definable, projectively resolving and sup{X -pdR (M) | M ∈ R-Mod} <∞.
(3) X is definable, projectively resolving and X -pdR (M) <∞ for any R-module M.

Proof. Let X be a cotilting or definable, and projectively resolving class of R-modules. Then
X is special precovering by the proof of [9, Theorem 6.1]. In other words, there is a complete
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and hereditary cotorsion pair (X ,X ⊥) in this case. Thus, (2) ⇔ (3) holds by Lemma 10. More-
over, combining [9, Theorem 6.1] with the implication (1) ⇔ (3) in Lemma 10, one can obtain
(1) ⇔ (2). □

Lemma 27. Let R be a ring and X a class of R-modules. Then the following are equivalent:

(1) X is tilting.
(2) X is definable, injectively coresolving, special preenveloping and there is a positive integer

n such that X is closed under n-images.
(3) X is definable, injectively coresolving, special preenveloping and X - idR (M) <∞ for any

R-module M.
(4) X is definable, injectively coresolving, special preenveloping and sup{X -pdR (M) | M ∈ R-

Mod} <∞.

Proof. Note from Remak 25(2) that any tilting class of R-modules is always definable. So (1) ⇔ (2)
holds by [9, Theorem 6.3]. Now let X be a class satisfying any one of (2), (3) and (4). Then there
is a complete and hereditary cotorsion pair (⊥X ,X ). Thus, (3) ⇔ (4) follows from Lemma 12 and
(2) ⇔ (3) comes from Lemma 11. □

Remarks 28.

(1) Note that the condition “X is tilting” (resp. “X is cotilting”) implies the one
“X -pdR (M) < ∞ for any R-module M” (resp. “X - idR (M) < ∞ for any R-module
M”) was proved in [2, Lemma 2.2(a)] (resp. [2, Lemma 2.2(b)]).

(2) According to [9, Proposition 7.2], we know that “special preenveloping” in (2), (3) and (4)
of Lemma 27 can not be omitted.

We know from [40, Proposition 4.13] that the class GF (R) is definable if and only if it is closed
under products, and that these equivalent conditions for R deduces that R is right coherent. The
next three results can be viewed as a continuation of such facts.

Lemma 29. Let R be a ring with G-wgldim(R) <∞. Then the following are equivalent:

(1) The class GF (R) is definable.
(2) The class GF (R) is closed under arbitrary direct products.
(3) R is right coherent.

Proof. Note that the implication (1) ⇔ (2) ⇒ (3) holds by [40, Proposition 4.13].
Let’s prove (3) ⇒ (2). Let {(G j ) j∈J } be a family of Gorenstein flat R-modules. Then for each

j ∈ J , there is an exact sequence of R-modules

0 −→G j −→ F 0
j −→ F 1

j −→ ·· ·
with each F i

j ∈F (R). Hence, one can obtain an exact sequence

0 −→ ∏
j∈J

G j −→
∏
j∈J

F 0
j −→

∏
j∈J

F 1
j −→ ·· ·

of R-modules with each
∏

j∈J F i
j ∈ F (R) since R is right coherent. Therefore,

∏
j∈J G j is

Gorenstein flat by [45, Theorem 2.9]. □

Lemma 30. Consider the following conditions for a ring R:

(1) The class GP (R) is definable.
(2) The class GP (R) is closed under arbitrary direct products.
(3) R is right coherent and left perfect.
(4) R is a right coherent ring such that GP (R) =GF (R).
(5) The class GF (R) is definable and GP (R) =GF (R).

Then (5) ⇒ (1) ⇒ (2) ⇒ (3) ⇔ (4) and (1)–(5) are equivalent if G-wgldim(R) <∞.
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Proof.

(5) ⇒ (1) ⇒ (2). It is clear.

(3) ⇔ (4). It holds by Lemma 17.

(2) ⇒ (3). Suppose that the class GP (R) is closed under arbitrary direct products. Then of course∏
j∈J P j is Gorenstein projective for any family {(P j ) j∈J } of projective R-modules. Thus, by the

definition, there is a short exact sequence of R-modules

0 −→ ∏
j∈J

P j −→Q −→G −→ 0

with Q projective and G Gorenstein projective. Thus Ext1
R (G ,

∏
j∈J P j ) ∼=∏

j∈J Ext1
R (G ,P j ) = 0. This

induces that the short sequence is split, and so
∏

j∈J P j is projective. It follows that R is right
coherent and left perfect.

Now let G-wgldim(R) <∞. In order to see that (1)–(5) are equivalent, it remains to show:

(3) ⇒ (5). For this, we assume that R is right coherent and left perfect. Then GP (R) =GF (R) by
Lemma 17. Besides, the class GF (R) is definable due to Lemma 29. □

Let R be a left coherent ring and M an Rop-module. Then there is a HomRop (−,F (Rop))-exact
complex

· · · −→ F1 −→ F0 −→ M −→ 0

with all Fi ∈F (Rop) and a HomRop (−,F (Rop))-exact complex

0 −→ M −→ F 0 −→ F 1 −→ ·· ·
with all F i ∈ F (Rop) (these complexes are called left and right F (Rop)-resolution of M respec-
tively, here we need not require the exactness of the complexes). It follows from [26, Defini-
tion 8.2.13] that HomRop (−,−) is left balanced by F (Rop)×F (Rop). This may construct left de-
rived functors of HomRop (−,−), denoted by ExtF (Rop)

m (−,−), which can be computed using a right
F (Rop)-resolution of the first variable or a left F (Rop)-resolution of the second variable.

Proposition 31. Consider the following conditions for a ring R:

(1) The class GI (R) is definable.
(2) The class GI (R) is closed under pure submodules and pure epimorphic images.
(3) The class GI (R) is closed under arbitrary sums.
(4) R is left Noetherian.
(5) An R-module M ∈GI (R) if and only if M+ ∈GF (Rop).
(6) An R-module M is in GI (R) if and only if so is M++.

Then (6) ⇐ (5) ⇒ (2) ⇔ (1) ⇒ (3) ⇒ (4) and (1)–(6) are equivalent if G-wgldim(R) <∞.

Proof.

(5) ⇒ (2). Assume that an R-module M is in GI (R) if and only if M+ is in GF (Rop). To see (2),
let 0 → A → N → B → 0 be a pure short exact sequence of R-modules with N Gorenstein injective.
Then there is a split short exact sequence of Rop-modules 0 → B+ → N+ → A+ → 0. By the
“only if part” of the assumption, N+ is in GF (Rop). Note from [10, Corollary 2.6] that the class
GF (Rop) is closed under any direct summands since any ring is (left and) right GF-closed by [40,
Theorem 4.11]. Thus, both A and B are in GF (Rop). It then follows from the “if part” of the
assumption that A and B are Gorenstein injective.

(2) ⇔ (1). It holds by Remark 19 since the class GI (R) is always closed under arbitrary direct
products (see [33, Theorem 2.6]).
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(1) ⇒ (3). It is clear since any direct sum is a certain direct limits.

(3) ⇒ (4). Suppose that the class GI (R) is closed under arbitrary direct sums. Then of course∐
j∈J I j is Gorenstein injective for any family {(I j ) j∈J } of injective R-modules. Thus, by the

definition, there is a short exact sequence of R-modules

0 −→G −→ H −→ ∐
j∈J

I j −→ 0

with H injective and G Gorenstein injective. It follows that Ext1
R (

∐
j∈J I j ,G) ∼=∏

j∈J Ext1
R (I j ,G) = 0.

This gives that the short sequence is split, and so,
∐

j∈J I j is injective. Thus, R is left Noetherian.

(5) ⇒ (6). Assume that an R-module M is in GI (R) if and only if M+ is in GF (Rop). Then R
is left Noetherian by what we have proved (i.e. (5) ⇒ (2) ⇔ (1) ⇒ (3) ⇒ (4)). In particular, R is
left coherent. So, for any R-module M , one has M ∈ GI (R) if and only if M++ ∈ GI (R) since
M++ ∈GI (R) ⇔ M+ ∈GF (Rop) by [33, Theorem 3.6].

Now let G-wgldim(R) <∞. In order to prove that (1)–(6) are equivalent, it remains to show the
implications (4) ⇒ (5) and (6) ⇒ (5).

(6) ⇒ (5). Suppose that R is a ring over which any R-module M is in GI (R) if and only if so is
M++. Since R is a right GF-closed ring with G-wgldim(R) = G-wgldim(Rop) <∞, [12, Theorem 4]
yields that, for any R-module M , M++ ∈ GI (R) if and only if M+ ∈ GF (Rop). Now the result
follows.

(4) ⇒ (5). Suppose that R is left Noetherian. For any M ∈ GI (R), there is an exact sequence of
R-modules

· · · −→ I1 −→ I0 −→ M −→ 0

with each Ii injective. This yields another exact sequence of Rop-modules

0 −→ M+ −→ (I0)+ −→ (I1)+ −→ ·· ·
with all (Ii )+ flat since R is left Noetherian. Thus, M+ is Gorenstein flat by [45, Theorem 2.9]
and the assumption G-wgldim(R) < ∞. Conversely, let M+ ∈ GF (Rop). Note that R is left
Noetherian. By [33, Theorem 3.6] there is a HomRop (−,F (Rop))-exact exact sequence of Rop-
modules

F = 0 −→ M+ −→ F 0 −→ F 1 −→ ·· ·
with all F i flat. Since I (R) is covering, there exists a HomR (I (R),−)-exact complex of R-modules

E = ·· · −→ I1 −→ I0 −→ M −→ 0

with all Ii injective. This enables us to obtain a HomRop (−,F (Rop))-exact complex of Rop-
modules

E+ = 0 −→ M+ −→ (I0)+ −→ (I1)+ −→ ·· ·
with all (Ii )+ flat. Using the facts ExtF (Rop)

i≥1 (RR , M+) = 0 and ExtF (Rop)
0 (RR , M+) ∼= M+ which are

guaranteed by the exact sequence F, we get that the complex E+ is exact, and then so is E. Thus,
M ∈GI (R) by [45, Theorem 2.6] and the assumption G-wgldim(R) <∞. □

Remark 32. Recall from Li, Wang, Geng and Hu [36] that a ring R is left Gorenstein hereditary if
G-gldim(R) ≤ 1 (so G-wgldim(R) ≤ 1 by Lemma 16(1)). According to [36, Theorem 1.2], we know
that a left Gorenstein hereditary ring is left Noetherian if and only if an R-module M is Gorenstein
injective if and only M+ is in GF (Rop). Note that this result is a special case of Proposition 31.

We are now in a position to give our main theorems below, which answer Questions 1 and 2
(from the introduction) thoroughly.
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Theorem 33. The following are equivalent for any ring R:

(1) The class GF (R) is cotilting.
(2) R is a right coherent ring with G-wgldim(R) <∞.
(3) R is a right coherent ring such that GfdR (M) <∞ for any R-module M.

Proof.

(1) ⇒ (2). Assume that GF (R) is cotilting. Then by Lemma 26, GF (R) is definable and admits
G-wgldim(R) = sup{GfdR (M) | M is an R-module} < ∞. Furthermore, R is right coherent by
Lemma 29.

(2) ⇒ (1). Suppose that R is a right coherent ring with G-wgldim(R) < ∞. Then GF (R) is
definable by Lemma 29. Note that GF (R) is always projectively resolving via [40, Corollary 4.12].
Thus, Lemma 26 yields that GF (R) is cotilting.

(2) ⇔ (3). According to [40, Corollary 4.12], we know that (GF (R),GF (R)⊥) is a complete and
hereditary cotorsion pair. Thus the result comes from Lemma 10. □

Theorem 34. The following are equivalent for any ring R:

(1) The class GP (R) is cotilting.
(2) R is a right coherent and left perfect ring with G-gldim(R) <∞.
(3) The class GF (R) is cotilting and GP (R) =GF (R).
(4) R is a right coherent and left perfect ring such that GpdR (M) <∞ for any R-module M.

Proof.

(3) ⇒ (1). It is trivial.

(1) ⇒ (2). Assume that GP (R) is cotilting. Then by Lemma 26, GP (R) is definable and admits
G-gldim(R) = sup{GpdR (M) | M is an R-module} <∞, and so G-wgldim(R) ≤ G-gldim(R) <∞ by
Lemma 16(1). At the same time, R is right coherent and left perfect by Lemma 30.

(2) ⇒ (3). Suppose that R is a right coherent and left perfect ring with G-gldim(R) < ∞. This
happens if and only if R is a right coherent and left perfect ring with G-wgldim(R) < ∞ by
Lemma 16(2). So GF (R) is cotilting due to Theorem 33. Moreover, the equality GP (R) =GF (R)
holds by Lemma 17.

(2) ⇔ (4). Suppose that R is a right coherent and left perfect ring. Then GP (R) = GF (R) by
Lemma 17. Now [40, Corollary 4.12] yields that (GP (R),GP (R)⊥) is a complete and hereditary
cotorsion pair. Hence the result follows from Lemma 10. □

Theorem 35. The following are equivalent for any ring R:

(1) The class GI (R) is tilting.
(2) R is left Noetherian ring with G-gldim(R) <∞.
(3) The class GF (Rop) is a cotilting class and an R-module M is in GI (R) if and only if so is

M++.
(4) R is a left Noetherian ring such that GidR (M) <∞ for any R-module M.

Proof.

(1) ⇒ (2). Assume that GI (R) is tilting. Then by Lemma 27, GI (R) is definable and
G-gldim(R) = sup{GidR (M) | M is an R-module} <∞, which deduces that G-wgldim(R) <∞ by
Lemma 16(1). Note that R is also left Noetherian by Proposition 31.
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(2) ⇒ (3). Suppose that R is a left Noetherian ring with G-gldim(R) < ∞. This happens if and
only if R is a left Noetherian ring with G-wgldim(R) = G-wgldim(Rop) <∞ by [12, Theorem 7]. It
follows from Theorem 33 that GF (Rop) is cotilting. Furthermore, the other assertion in (3) holds
by Proposition 31.

(3) ⇒ (1). Suppose that the following two conditions hold:

(I) The class GF (Rop) is cotilting, and
(II) An R-module M is in GI (R) if and only if M++ is in GI (R).

By Theorem 33, the condition (I) yields that R is left coherent ring with G-wgldim(R) = G-wgldim
(Rop) < ∞. Then according to Proposition 31, the condition (II) yields that R is also left Noe-
therian. Whence, GI (R) is definable again by Proposition 31. Notice further that GI (R) is al-
ways special preenveloping and injectively coresolving by [40, Theorem 5.6], it is tilting due to
Lemma 27.

(2) ⇔ (4). It holds by Lemma 12 since (⊥GI (R),GI (R)) is a complete and hereditary cotorsion
pair (see[40, Theorem 5.6]). □

Remarks 36. Let n ≥ 0 be an integer. By the proofs in Theorems 33, 34 and 35, one see that

(1) The class GF (R) is n-cotilting if and only if R is a right coherent ring with G-wgldim(R) ≤
n.

(2) The class GP (R) is n-cotilting if and only if R is a right coherent and left perfect ring with
G-gldim(R) ≤ n.

(3) The class GI (R) is n-tilting if and only if R is a left Noetherian ring with G-gldim(R) ≤ n
if and only if the class GF (Rop) is n-cotilting and an R-module is in GI (R) if and only if
so is M++.

4. Applications

This section is divided into four subsections, by which some applications of Theorems 33, 34
and 35 are given.

4.1. Characterizations of Gorenstein rings and Ding–Chen rings

Recall that a ring R is Gorenstein [34] (resp. Ding–Chen [22, 29]) if R is an n-Gorenstein ring (resp.
n-FC ring) for some nonnegative integer n, i.e., R is a two-sided Noetherian (resp. two-sided
coherent) ring with self-injective (resp. self-FP-injective) dimension at most n on both sides. In
particular, 0-Gorenstein ring and 0-FC ring is just QF ring and FC ring, respectively. Recall that an
Artin algebra R is Gorenstein if it is Gorenstein as a ring. In particular, 0-Gorenstein Artin algebra
is exactly self-injective Artin algebra.

As the first application of Theorems 33, 34 and 35, this subsection is devoted to give some
new characterizations for Gorenstein rings (including Gorenstein Artin algebras) and Ding–Chen
rings. Firstly, we characterize Gorenstein rings via the class GI (−) being tilting.

Theorem 37. The following are equivalent for any ring R:

(1) R is Gorenstein.
(2) R is a right Noetherian ring such that the class GI (R) is tilting.
(3) R is a left Noetherian ring such that the class GI (Rop) is tilting.
(4) Both the classes GI (R) and GI (Rop) are tilting.

In particular, a commutative ring R is Gorenstein if and only if the class GI (R) is tilting.
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Proof. According to Theorem 35, we know that the condition (2) (resp. (3)) happens if and and
only if R is a two-sided Noetherian ring with G-gldim(R) <∞ (resp. G-gldim(Rop) <∞), and that
the condition (4) happens if and and only if R is a two-sided Noetherian ring with G-gldim(R) <∞
and G-gldim(Rop) < ∞. Thus, the implication (1) ⇔ (2) (resp. (1) ⇔ (3) and (1) ⇔ (4)) follows
from [17, Remark 3.11].

The last statement is an immediate consequence of the implication (1) ⇔ (4). □

Corollary 38. Let R be a two-sided Noetherian ring. Then the following are equivalent:

(1) R is Gorenstein.
(2) Any one of the classes GI (R) and GI (Rop) is tilting.
(3) Any one of the classes GF (R) and GF (Rop) is cotilting.

Proof.

(1) ⇔ (2). It holds by the proof of (1) ⇔ (4) in Theorem 37.

(1) ⇔ (3). Using the assumption and Theorem 33, one has the condition (3) happens if and and
only if G-wgldim(R) <∞ or G-wgldim(Rop) <∞. Thus, the results follows by [17, Remark 3.11]
(see also [45, Lemma 1.2]). □

As mentioned in the introduction, Angeleri Hügel, Herbera and Trlifaj in [3, Theorem 3.4]
proved that a two-sided Noetherian ring R is Gorenstein if and only if both the classes GI (R)
and GI (Rop) are tilting, equivalently, if and only if the class GI (R) is tilting and the class GF (R)
is cotilting. Note that both Corollary 38 and the equivalence of (1) ⇔ (4) in Theorem 37 provide
a slight improvement of [3, Theorem 3.4]. On the other hand, the coming example shows that a
general ring R satisfying that the class GI (R) is tilting and the class GF (R) is cotilting may not
be Gorenstein.

Example 39. Let S =
(
Z Q
0 Q

)
. Then by Small [41], S is right Noetherian but not left Noetherian

ring with gldim(S) = 1 and gldim(Sop) = 2. Now we consider the ring R = Sop. It is then seen
that R is left Noetherian but not right Noetherian ring with gldim(R) = 2 and gldim(Rop) = 1.
Note that gldim(Rop) = 1 shows that R is right hereditary, and hence right coherent. Thus, R
is left Noetherian and right coherent ring with G-gldim(R) ≤ gldim(R) = 2 and G-wgldim(R) ≤
wgldim(R) ≤ gldim(Rop) = 1. It follows from Theorems 33 and 35 that the class GI (R) is tilting
and the class GF (R) is cotilting. However, R is not Gorenstein since it is not right Noetherian.

Secondly, we characterize Ding–Chen rings via the class GF (−) being cotilting.

Theorem 40. Let R be a ring. Then the following are equivalent:

(1) R is Ding–Chen.
(2) R is a left coherent ring such that the class GF (R) is cotilting.
(3) R is a right coherent ring such that the class GF (Rop) is cotilting.
(4) Both the classes GF (R) and GF (Rop) are cotilting.

In particular, a commutative ring R is Gorenstein if and only if the class GF (R) is cotilting.

Proof. According to Theorem 33, we know that the condition(2) (resp. (3)) happens if and and
only if R is a two-sided coherent ring with G-wgldim(R) <∞ (resp. G-wgldim(Rop) <∞), and that
the condition (4) happens if and and only if R is a two-sided coherent ring with G-wgldim(R) <∞
and G-wgldim(Rop) < ∞. Thus, the implication (1) ⇔ (2) (resp. (1) ⇔ (3) and (1) ⇔ (4)) follows
from [17, Remark 3.11].

The last statement is an immediate consequence of the implication (1) ⇔ (4). □



Junpeng Wang, Zhongkui Liu and Renyu Zhao 1315

Note that the proof of Theorem 40 implies that

Corollary 41. Let R be a two-sided coherent ring. Then the following are equivalent:

(1) R is Ding–Chen.
(2) Any one of the classes GF (R) and GF (Rop) is cotilting.

Finally, we characterize Gorenstein Artin algebras via the class GP (−) being cotilting.

Theorem 42. Let R be a commutative ring. Then the following are equivalent:

(1) R is a Gorenstein Artin algebra.
(2) The class GP (R) is cotilting.
(3) The class GF (R) is cotilting and GF (R) =GP (R).
(4) The class GI (R) forms a tilting class such that an R-module M is in GP (R) if and only if

M+ is in GI (R).

Proof.

(3) ⇒ (2). It is clear.

(2) ⇒ (1). Suppose that the class GP (R) is cotilting. Then by Theorem 34, this happens if and
only if R is a right coherent and left perfect ring with G-gldim(R) < ∞. Note that the right
coherence and left perfectness of R imply that the class P (R) is closed under direct products.
It follows from [15, Theorem 3.4] that R is Artinian since R is commutative, and hence, R is an
Artin algebra. Note from [17, Remark 3.11] that any Artin algebra with finite Gorenstein weak
global dimension is Gorenstein. In particular, R is a Gorenstein Artin algebra.

(1) ⇒ (4). Assume that R is a Gorenstein Artin algebra. Then R is a two-sided Artinian (hence
a two-sided Noetherian) ring with G-gldim(R) < ∞. It follows from Theorem 35 that the class
GI (R) is tilting. Meanwhile, as R is right coherent and left perfect, one has GF (R) = GP (R) by
Lemma 17. Consequently, [33, Theorem 3.6] yields that an R-module M is in GP (R) if and only
if M+ is in GI (Rop) =GI (R) (as R is commutative).

(4) ⇒ (3). Suppose that the following two conditions hold:

(I) The class GI (R) is tilting, and
(II) An R-module is in GP (R) if and only if M+ is in GI (R).

Since R is commutative, it follows from Theorems 35 and 33 that the condition (I) induces that
the class GF (R) = GF (Rop) is cotilting, and that R is (right) coherent. Thus, combining [33,
Theorem 3.6] with the condition (II), one has GF (R) =GP (R). This completes the proof. □

Let n ≥ 0 be an integer and R a perfect and n-FC ring. If n = 0, then R is 0-Gorenstein by [21,

Corollary 3.7]. Otherwise, for n ≥ 1, let R =
(
Q R
0 Q

)
. Then [43, Example 3.4] showed that R is a

perfect and hereditary (hence perfect and 1-FC) ring which is not n-Gorenstein for any n ≥ 0. We
note that such a ring R is not commutative.

The following corollary shows that any commutative perfect and n-FC rings are always Goren-
stein.

Corollary 43. Let R be a commutative ring. Then the following are equivalent:

(1) R is a Gorenstein Artin algebra.
(2) R is Ding–Chen and perfect.
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Proof.

(1) ⇒ (2). It is obvious.

(2) ⇒ (1). Assume that R is Ding–Chen and perfect. Note that R is commutative, it suffices to
show that the class GF (R) is cotilting and GF (R) = GP (R) by Theorem 42. On one hand, the
class GF (R) is cotilting by Theorem 40 since R is Ding–Chen. On the other hand, the equality
GF (R) = GP (R) holds by Lemma 17 as R is right coherent and left perfect. Thus, the result
follows. □

We end this subsection with some remarks.

Remark 44. Let n ≥ 0 be an integer. By the proofs in Theorems 37, 40 and 42, as well as
Corollaries 38 and 41, one can see that

(1) A ring R is n-Gorenstein if and only if both the classes GI (R) and GI (Rop) are n-tilting.
In particular, a commutative (or two-sided Noetherian) ring R is n-Gorenstein if and only
if the class GI (R) is n-tilting.

(2) A ring R is n-FC if and only if both the classes GF (R) and GF (Rop) are n-cotilting. In
particular, a commutative (or two-sided coherent) ring R is n-FC if and only if the class
GF (R) is n-cotilting.

(3) A commutative ring R is an n-Gorenstein Artin algebra if and only if the class GP (R) is
n-cotilting.

4.2. Characterizations of Gorenstein modules via finitely generated modules

It is well-known that injective (resp. flat) modules can be characterized via finitely generated
modules by vanishing of the functor Ext (resp. Tor). As the second application of Theorems 33, 34
and 35, we will obtain a Gorenstein version of the characterizations (see Theorem 45 and
Lemma 47). As a result, we prove that left Noetherian rings with finite left Gorenstein global
dimension satisfy First Finitistic Dimension Conjecture (see Corollary 46), and prove a result
related to a question posed by Bazzoni [9, Question 1(1)] (see Theorem 48).

Let us firstly consider the characterizations of Gorenstein injective modules via finitely gen-
erated modules by vanishing of the functor Ext. Let R be a Gorenstein ring. Then Enochs
and Jenda [27, Theorem 2.5] proved that an R-module M is Gorenstein injective if and only if
Exti

R (L, M) = 0 for all i > 0 and all countably generated R-modules L with pdR (L) <∞. [3, Corol-
lary 3.5(1)] tells us that this characterization of Gorenstein injective modules can be relaxed as
“an R-module M is Gorenstein injective if and only if Exti

R (L, M) = 0 for all i > 0 and all finitely
generated R-modules L with pdR (L) <∞”.

In what follows, we denote by P̂ the class consisting of all R-modules with finite projective di-
mensions. By the proof of [32, Corollary 7.1.13(a)] and by noting from Chen [16, Lemma 5.1] that
there is a hereditary and complete cotorsion pair (P̂ ,GI (R)) whenever R is of G-gldim(R) <∞,
one can see that, to obtain the above characterization, the Gorenstein condition can be relaxed to
“left Noetherian rings with finite left Gorenstein global dimension”. The added value of the next
result is to show that, in order to obtain the characterization “for all R-module M , M is Goren-
stein injective if and only if Exti

R (L, M) = 0 for all i > 0 and all finitely generated R-modules L with
pdR (L) <∞”, the ring R must be left Noetherian rings with finite left Gorenstein global dimension.

Theorem 45. The following are equivalent for any ring R:

(1) R is a left Noetherian ring with G-gldim(R) <∞.
(2) An R-module M is Gorenstein injective if and only if Exti

R (L, M) = 0 for all i > 0 and all
R-modules L of type FP∞ with pdR (L) <∞.
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(3) An R-module M is Gorenstein injective if and only if Exti
R (L, M) = 0 for all i > 0 and all

finitely generated R-modules L with pdR (L) <∞.
(4) An R-module M is Gorenstein injective if and only if Exti

R (L, M) = 0 for all i > 0 and all
finitely presented R-modules L with pdR (L) <∞.

Furthermore, if any one of the above conditions is satisfied, then the cotorsion pair (P̂ ,GI (R))
is of strongly finite type.

Proof. For any ring R, note from [40, Theorem 5.6] that (⊥GI (R),GI (R)) forms a hereditary and
complete cotorsion pair. So, the condition (1) is equivalent to that “the complete and hereditary
cotorsion pair (⊥GI (R),GI (R)) is of strongly finite type”. It follows from Remark 25(3) that the
condition (2) is further equivalent to that “the class GI (R) is tilting”. Thus, (1) ⇔ (2) holds by
Theorem 35.

On the other hand, one concludes from [19, Lemma 9.2.7] that Exti≥1
R (L,G) = 0 for all Goren-

stein injective R-modules G and all R-modules L with pdR (L) <∞. Meanwhile, it is trivial that
any modules of type FP∞ is finite presented and that any finite presented modules are finitely
generated. Whence, one has (2) ⇔ (3) ⇔ (4).

Now suppose that R is a left Noetherian ring with G-gldim(R) <∞. Then the proof of (1) ⇔ (2)
above shows that the complete and hereditary cotorsion pair (⊥GI (R),GI (R)) is of strongly
finite type. But [16, Lemma 5.1] tells us that ⊥GI (R) = P̂ . □

In what follows, for any class X of R-modules, we denote by X <ω the subclass of X consisting
of all modules of type FP∞.

Recall that for any ring R, the big finitistic dimension of R is defined as

FPD(R) = sup{pdR (M) | M is an R-module with pdR (M) <∞},

and the little finitistic dimension of R is defined as

fpd(R) = sup{pdR (M) | M is a finitely generated R-module with pdR (M) <∞}.

For a ring R, “First Finitistic Dimension Conjecture” and “Second Finitistic Dimension Conjec-
ture” calim FPD(R) = fpd(R) and fpd(R) <∞ respectively. It is a famous result that “First Finitis-
tic Dimension Conjecture” and “Second Finitistic Dimension Conjecture” vanish for Gorenstein
rings (see [3, Theorem 3.2] and [32, Theorem 7.1.12]). The next corollary shows that the Goren-
stein condition can be relaxed to “left Noetherian rings with finite left Gorenstein global dimen-
sion” and to “rings with finite left Gorenstein global dimension”, respectively. Note that a ring R
is Gorenstein if and only if R is a two-sided Noetherian ring with G-gldim(R) < ∞ (see [17, Re-
mark 3.11]); see Example 39 for the existence of a left Noetherian ring R with G-gldim(R) < ∞
which is not Gorenstein.

Corollary 46. Let R be a ring with G-gldim(R) <∞. Then “Second Finitistic Dimension Conjec-
ture” vanishes. If R is also left Noetherian, then “First Finitistic Dimension Conjecture” vanishes as
well.

Proof. Let R be a left Noetherian ring with G-gldim(R) < ∞ and P̂ be as above. Then by
Theorem 45, the pair (P̂ ,GI (R)) is of strongly finite type. It follows that P̂ = ⊥((P̂ <ω)⊥).
Thus, [32, Corollary 3.2.4] yields that every R-module L with pdR (L) < ∞ (i.e., L ∈ P̂ ) is a
summand of some R-module in P̂ <ω. Note that P̂ <ω is just the class of all finitely generated
R-modules with finite projective dimension since R is left Noetherian. Hence, FPD(R) ≤ fpd(R)
and so FPD(R) = fpd(R). □

Let R be a left Noetherian ring with G-gldim(R) < ∞. By Theorem 45, Gorenstein injective
R-modules can be characterized via finitely generated modules by vanishing of the functor Ext.
Now we consider the behaviors of Gorenstein projective and Gorenstein flat modules.
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Lemma 47. Let R be a left Noetherian ring with G-gldim(Rop) < ∞. Then the following are
equivalent for any Rop-module N :

(1) N is Gorenstein flat.
(2) TorR

i (N ,L) = 0 for all i > 0 and all finite generated R-modules L with pdR (L) <∞.
(3) Exti

R (L, N+) = 0 for all i > 0 and all finite generated R-modules L with pdR (L) <∞.
(4) TorR

i (N++,L) = 0 for all i > 0 and all finite generated R-modules L with pdR (L) <∞.

Furthermore, if R is also a left Noetherian and right perfect ring with G-gldim(Rop) <∞, then the
above conditions are equivalent to

(5) M is Gorenstein projective.

Proof.

(1) ⇔ (3). Since R is left Notherian, one has an Rop-module N is Gorenstein flat if and only
if N+ is Gorenstein injective by [33, Theorem 3.6]. So the result holds by Theorem 45 as
G-gldim(R) <∞.

(2) ⇔ (3). It holds by the isomorphism TorR
i (N ,L)+ ∼= Exti

R (L, N+) and the faithful property of the
functor (−,−)+.

(3) ⇔ (4). It follows from the isomorphism Exti
R (L, N+)+ ∼= TorR

i (N++,L) (since R is left Noether-
ian) and the faithful property of the functor (−,−)+.

(1) ⇔ (5). Suppose that R is a left Noetherian and left perfect ring with G-gldim(R) <∞ . Then
the equivalence follows from Lemma 17. □

Note that there are dual notions of that classes of modules are of (strongly) finite type. Recall
that a class X of Rop-modules is of cofinite type (resp. strongly cofinite type) if there exists a
set S consists of Rop-modules of type FP∞ (resp. with finite projective dimension) such that
X = {M ∈ Rop-Mod | TorR

i≥1(M ,S) = 0,∀S ∈ S } (we refer to the readers that Bazzoni, Göbel and
Trlifaj in [9, 32] called that a class X is “of cofinite type”, is just of strongly cofinite type in our
sense). Let X be a class of Rop-modules which is of strongly cofinite type. Then according to [32,
Definition 8.1.11 and Proposition 8.1.12], X is always cotilting. However, there exists a cotilting
class which is not of strongly cofinite type (see [32, Example 8.2.13]). Furthermore, it is an open
question whether left Noetherian rings admits cotilting classes of right modules which are not of
strongly cofinite type (see [9, Question 1(1)]). The next result shows that such a question has an
affirmative answer in the Gorenstein homological algebra.

Theorem 48. Let R be a left Noetherian ring. Then the following are equivalent:

(1) The class GF (Rop) (resp. GP (Rop)) is cotilting.
(2) The class GF (Rop) (resp. GP (Rop)) is of strongly cofinite type.

Proof.

(2) ⇒ (1). It holds by [32, Definition 8.1.11 and Proposition 8.1.12].

(1) ⇒ (2). Suppose that the class GF (Rop) (resp. GP (Rop)) is cotilting. Then, in view of Theo-
rem 33 (resp. 34), this will happen if and only if R is a ring with G-wgldim(Rop) <∞ (resp. a right
perfect ring with G-gldim(Rop) <∞) as R is left Noetherian. Notice further that G-gldim(Rop) =
G-wgldim(Rop) by [12, Theorem 7], and that an R-module is of type FP∞ if and only if it is finitely
generated, again since R is left Noetherian. Thus, the result follows from Lemma 47. □
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By virtue of [3, Theorem 2.2] (or [32, Theorems 5.2.23 and 8.1.14]), we know that, over any ring
R, there is a bijective correspondence between tilting classes of R-modules (resp. class of Rop-
modules of strongly cofinite type), and resolving subcategories S consisting of those R-modules
of type FP∞ with finite projective dimension. The correspondence is given by the mutually
inverse assignments

X 7−→ (⊥X )<ω and S 7−→S ⊥ (resp. X 7−→ (⊤X )<ω and S 7−→S ⊤).

Here S ⊤ = {M ∈ Rop-Mod | TorR
i≥1(M ,S) = 0,∀S ∈S } and ⊤X is defined by dually.

Let (X ,Y ) be a complete and hereditary cotorsion pair of R-modules. Recall that (X ,Y ) is
a projective cotorsion pair (resp. an injective cotorsion pair) if (X ∩Y ) = P (R) (resp. (X ∩Y ) =
I (R)). Gillespie in [30] studied the lattices of projective and injective cotorsion pairs respectively.
According to [30, Theorems 5.2 and 5.4] we know that X ⊆GP (R) (resp. Y ⊆GI (R)) whenever
(X ,Y ) is a projective cotorsion pair (resp. an injective cotorsion pair). In other words, in the
lattices of projective (resp. injective) cotorsion pairs, the one induced by Gorenstein projective
(resp. Gorenstein injective) modules is a maximal element.

Motivated by Gillespie’s results, it is natural to consider which role does the class of Gorenstein
projective (resp. Gorenstein injective) modules play in the collections of tilting (resp. cotilting)
classes. We end the subsection by the next result, building from the above facts in [3, Theorem 2.2]
(or [32, Theorems 5.2.23 and 8.1.14]), which shows that, under some certain conditions, in
the lattice of tilting (resp. cotilting) classes, the class of Gorenstein projective (resp. Gorenstein
injective) modules is a minimal element.

Proposition 49. Let R be a ring.

(1) If the class GI (R) is tilting, then it is the smallest tilting class, in the sense of that
GI (R) ⊆X for all tilting class of R-modules.

(2) If the class GF (Rop) (resp. GP (Rop)) is cotilting over a left Noetherian ring R, then it is the
smallest class of strongly cofinite type in the similar sense.

Proof.

(1). By Theorem 35, the class GI (R) is tilting if and only if R is a left Noetherian ring with
G-gldim(R) <∞. Then the result holds by [32, Theorems 5.2.23] and Theorem 45.

(2). Suppose that R is left Noetherian. By Theorem 48 and its proof, one has the class GF (Rop)
(resp. GP (Rop)) is cotilting if and only if the class GF (Rop) (resp. GP (Rop)) is of strongly cofinite
type, or equivalently, if and only if R is a (resp. right perfect) ring with G-gldim(R) <∞. Then the
result is an immediate consequence of [32, Theorems 8.1.14] and Lemma 47. □

4.3. (Co)tilting property for the classes of classical homological modules

In this subsection, as the third application of Theorems 33, 34 and 35, we will consider when the
classes P (R) and F (R) are cotilting and when the class I (R) is tilting as follows.

Proposition 50. Let R be a ring. Then the following are equivalent:

(1) The class F (R) is cotilting.
(2) The class GF (R) is cotilting and F (R) =GF (R).
(3) R is a right coherent ring with wgldim(R) <∞.
(4) R is a right coherent ring such that fdR (M) <∞ for any R-module M.

Proof.

(2) ⇒ (1). It is trivial.
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(1) ⇒ (3). Assume that the class F (R) is cotilting. Then by Lemma 26, F (R) is definable and
wgldim(R) = sup{fdR (M) | M is an R-module} <∞. In particular, F (R) is closed under arbitrary
direct products, and hence R is also right coherent.

(3) ⇒ (2). Suppose that R is a right coherent ring with wgldim(R) < ∞. Then of course R is a
right coherent ring with G-wgldim(R) < ∞. It follows from Theorem 33 that the class GF (R)
is cotilting. Meanwhile, wgldim(R) < ∞ implies that F (R) = GF (R) (see the proof of [10,
Proposition 2.2(2)]).

(3) ⇔ (4). It holds by Lemma 10, using the complete hereditary cotorsion pair (F(R),F(R)⊥). □

Proposition 51. Let R be a ring. Then the following are equivalent:

(1) The class P (R) is cotilting.
(2) The class GP (R) is cotilting and P (R) =GP (R).
(3) R is a right coherent and left perfect ring with gldim(R) <∞.
(4) R is a right coherent and left perfect ring such that pdR (M) <∞ for any R-module M.

Proof.

(2) ⇒ (1). It is obvious.

(1) ⇒ (3). Assume that the class P (R) is cotilting. Then by Lemma 26, P (R) is definable and
gldim(R) = sup{pdR (M) | M is an R-module} <∞. In particular, P (R) is closed under arbitrary
direct products, and hence R is also right coherent and left perfect.

(3) ⇒ (2). Suppose that R is a right coherent and left perfect ring with gldim(R) < ∞. Then of
course R is a right coherent and left perfect ring with G-gldim(R) <∞. It follows from Theorem 34
that the class GP (R) is cotilting. Meanwhile, gldim(R) <∞ implies that GP (R) =P (R) (see the
proof of [33, Proposition 2.27)]).

(3) ⇔ (4). It holds by Lemma 10, using the trivial cotorsion pair (P (R),R-Mod). □

Proposition 52. Let R be a ring. Then the following are equivalent:

(1) The class I (R) is tilting.
(2) The class GI (R) is cotilting and I (R) =GI (R).
(3) R is left Noetherian ring with gldim(R) <∞.
(4) R is a left Noetherian ring such that fdR (M) <∞ for any R-module M.

Proof. By dual of Proposition 51, we leave it to the readers. □

4.4. (Co)silting property for classes of classical and Gorensrein homological modules

As the last application of Theorems 33, 34 and 35, we will consider when the classes GP (R),
GF (R), P (R) and F (R) are cosilting and when the classes GI (R) and I (R) are silting, which
induces some characterizations of Dedekind and Prüfer domains.

Definition 53.

(1) For a morphism σ between projective R-modules, we denote by Dσ the class of R-modules

Dσ = {M ∈ R-Mod | HomR (σ, M) is surjective}.

(2) An R-module T is silting if it admits a projective presentation P1
σ→ P0 → T → 0 such that

GenT =Dσ. The class GenT is then called a silting class of R-modules.
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(3) For a morphism τ between injective R-modules, we denote by Cτ the class of R-modules

Cτ = {M ∈ R-Mod | HomR (M ,τ) is surjective}.

(4) An R-module C is cosilting if it admits an injective copresentation 0 → T → E0
τ→ E1 such

that CogenT =Cτ. The class CogenT is then called a cosilting class of R-modules.

Recall that a class X of R-modules is torsion (resp. torsionfree) if X is closed under epimorphic
images, extensions and coproducts (resp. under submodules, extensions and products). We know
from [5, Corollary 3.5 and Proposition 3.10] (see also [4, Remarks in p. 4135]) that any silting class
of R-modules is definable and torsion; from [1, Corollary 3.9] that a class X of R-modules is
cosilting if and only if X is definable and torsionfree.

It was shown in [32, Lemma 6.1.2] (resp. [32, Lemma 8.2.2]) that a class X of mod-
ules is 1-tilting (resp. 1-cotilting) if and only if there is a 1-tilting (resp. 1-cotilting) mod-
ule T such that X = GenT (resp. X = CogenT ). By [1, Example 2.4(1) and (3)] (resp.
[14, Example 3.3(a) and (c)]) the inclusions {1-tilting modules} ⊆ {silting modules} and
{1-cotilting modules} ⊆ {cosilting modules} are strict. It is then a routine to check that
the inclusions {1-tilting classes of modules} ⊆ {silting classes of modules} and {1-cotilting
classes of modules} ⊆ {cosilting classes of modules} are strict as well.

However, we will show that the silting (resp. cosilting) and 1-tilting (resp. 1-cotilting) property
of the class GI (R) (resp. the classes GP (R) and GF (R)) coincide.

Proposition 54. Let R be a ring. Then the following are equivalent:

(1) The class GF (R) is cosilting.
(2) The class GF (R) is 1-cotilting.
(3) R is a right coherent ring with G-wgldim(R) ≤ 1.

Proof.

(3) ⇒ (2). It follows from Remark 36(1).

(2) ⇒ (1). It is obvious.

(1) ⇒ (3). Assume that the class GF (R) is cosilting. Then by [1, Corollary 3.9], the class GF (R)
is definable and torsionfree. Thus, one has

G-wgldim(R) = sup{GfdR (M) | M is an R-module} ≤ 1

since GF (R) is closed under submodules. Furthermore, R is right coherent by Lemma 29. □

Proposition 55. Let R be a ring. Then the following are equivalent:

(1) The class GP (R) is cosilting.
(2) The class GF (R) is cosilting and GP (R) =GF (R).
(3) The class GP (R) is 1-cotilting.
(4) The class GF (R) is 1-cotilting and GP (R) =GF (R).
(5) R is a right coherent and left perfect ring with G-gldim(R) ≤ 1.

Proof.

(3) ⇔ (4) ⇔ (5). It follows from Remark 36(2).

(4) ⇒ (2) ⇒ (1). It is clear.

(1) ⇒ (5). Assume that the class GP (R) is cosilting. Then by [1, Corollary 3.9], the class GP (R)
is definable and torsionfree. So one gets that

G-gldim(R) = sup{GpdR (M) | M is an R-module} ≤ 1
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since GP (R) is closed under submodules. It follows from Lemma 16(1) that G-wgldim(R) ≤ 1.
Thus, R is right coherent and left perfect due to Lemma 30. □

Proposition 56. Let R be a ring. Then the following are equivalent:

(1) The class GI (R) is silting.
(2) The class GF (Rop) is cosilting and an R-module M is in GI (R) if and only if so is M++.
(3) The class GI (R) is 1-tilting.
(4) The class GF (Rop) is 1-cotilting and an R-module M is in GI (R) if and only if so is M++.
(5) R is a left Noetherian ring with G-gldim(R) ≤ 1.

Proof.

(3) ⇔ (5) ⇔ (5). It follows from Remark 36(3).

(4) ⇒ (2) and (3) ⇒ (1). These implications are trivial.

(1) ⇒ (5). Assume that the class GI (R) is silting. Then by [1, Corollary 3.9], the class GI (R) is
definable and torsion. Now, one obtains that

G-gldim(R) = sup{GidR (M) | M is an R-module} ≤ 1

as the class GI (R) is closed under epimorphic images. Again, G-wgldim(R) ≤ 1 via Lemma 16(1).
Now R is also left Noetherian by Proposition 31.

(2) ⇒ (5). Suppose that the class GF (Rop) is cosilting and an R-module M is in GI (R) if and
only if so is M++. According to Proposition 54, the first statement of the assumption yields that
R is a left coherent ring with G-wgldim(R) = G-wgldim(Rop) ≤ 1. Now the second statement of
the assumption yields that R is left Noetherian by Proposition 31. In addition, we conclude that
G-gldim(R) = G-wgldim(R) ≤ 1 by [12, Theorem 7]. □

Using Propostions 50, 51 and 52, and applying the arguments used in the proof of Propositions
54, 55 and 56, respectively, one can obtain

Proposition 57. Let R be a ring. Then the following are equivalent:

(1) The class F (R) is cosilting.
(2) The class F (R) is 1-cotilting.
(3) R is a right coherent ring with wgldim(R) ≤ 1.

Proposition 58. Let R be a ring. Then the following are equivalent:

(1) The class P (R) is cosilting.
(2) The class P (R) is 1-cotilting.
(3) R is a right coherent and left perfect ring with gldim(R) ≤ 1.

Proposition 59. Let R be a ring. Then the following are equivalent:

(1) The class I (R) is silting.
(2) The class I (R) is 1-tilting.
(3) R is a left Noetherian ring with gldim(R) ≤ 1.

Recall that a ring R is Dedekind (resp. Prüfer) if R is a hereditary (resp. semi-hereditary)
domain. Here a (possibly not communicative) hereditary (resp. semi-hereditary) ring is defined
as the one such that every left and right ideal (resp. finitely generated left and right ideal) is
projective. It is well-known that any hereditary (resp. semi-hereditary) ring R has gldim(R) ≤ 1
(resp. wgldim(R) ≤ 1).
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According to [32, Theorems 6.2.15, 6.2.19, 6.2.22, 8.2.9 and 8.2.12], we know that both the
(co)tilting modules and classes over a Dedekind (resp. Prüfer) domain have a nice description.
We will end the paper by characterizing Dedekind (resp. Prüfer) domain using some special
(co)tilting classes.

Theorem 60. Let R be a domain. Then the following are equivalent:

(1) R is Prüfer.
(2) The class F (R) is 1-cotilting.
(3) The class F (R) is cosilting.
(4) The class GF (R) is 1-cotilting and GF (R) =F (R).
(5) The class GF (R) is cosilting and GF (R) =F (R).

Proof.

(4) ⇒ (2) and (5) ⇒ (3). These implications are trivial.

(2) ⇒ (3). It holds by Proposition 57.

(3) ⇒ (1). Suppose that R is a domain such that the class F (R) is cosilting. Then by Proposi-
tion 57, R is a coherent domain with wgldim(R) ≤ 1 , and so R is a semi-hereditary domain by [35,
Theorem 4.67]. Thus, R is Prüfer.

(1) ⇒ (4) and (1) ⇒ (5). Assume that R is a Prüfer domain. Then wgldim(R) ≤ 1, which implies
that GF (R) = F (R). In addition, R is coherent by [35, Theorem 4.67]. So the class GF (R) is
1-cotilting (resp. cosilting) due to Proposition 57. □

Theorem 61. Let R be a domain. Then the following are equivalent:

(1) R is Dedekind.
(2) The class I (R) is 1-tilting.
(3) The class I (R) is silting.
(4) The class GI (R) is 1-tilting and GI (R) =I (R).
(5) The class GI (R) is silting and GI (R) =I (R).

Proof.

(4) ⇒ (2) and (5) ⇒ (3). These implications are trivial.

(2) ⇒ (3). It follows by Proposition 59.

(3) ⇒ (1). Suppose that R is a domain such that the class I (R) is silting. Then by Proposition 59,
R is a domain with gldim(R) ≤ 1, and so R is a hereditary domain by [39, Theorem 4.23]. That is,
R is Dedekind.

(1) ⇒ (4) and (1) ⇒ (5). Suppose that R is a Dedekind domain. Then gldim(R) ≤ 1, which implies
that GI (R) =I (R). Furthermore, R is Noetherian by [39, Corollary 4.26]. Consequently, the class
GI (R) is 1-tilting (resp. silting) via Proposition 59. □
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