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Abstract. In this short note, quantum subgroups in finite free products of the Pontryagin duals of free unitary
quantum groups are classified. They correspond to pairs of a subgroup Γ and a subset S of the free group Fn
such that S is Γ-invariant, containing Γ, and connected in the Cayley graph of Fn .

Résumé. Dans cette courte note, les sous-groupes quantiques dans les produits libres finis des duaux de
Pontryagin des groupes quantiques unitaires libres sont classifiés. Ils correspondent à des paires formées
d’un sous-groupe Γ et d’un sous-ensemble S du groupe libre Fn tel que S est Γ-invariant, contenant Γ, et
connexe dans le graphe de Cayley de Fn .
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1. Introduction

In this note, we classify quantum subgroups in the Pontryagin duals of free unitary quantum
groups or, more generally, in their finite free products. Associated with Q ∈ GLN (C) for N ≥ 2,
van Daele–Wang [4] defined a compact quantum group called a free unitary quantum group,
which shall be denoted by U+

Q . It is constructed by forgetting the commutativity relations for the
coefficients of a unitary matrix. Variations of this construction have provided abundant examples
of compact quantum groups.

For general conventions and fundamental facts on compact quantum groups and tensor
categories, we refer to [3]. For a compact quantum group G , its finite dimensional unitary
representations form a rigid semisimple C*-tensor category with a simple unit object, denoted
by RepG . We write IrrG for the set of all isomorphism classes of simple objects in RepG . We write
Ĝ for the Pontryagin dual of G , which is a discrete quantum group.
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The notion of free product for (the C*-algebras of) discrete quantum groups was studied
by Wang [5]. The main object of this note is the free product ∗n

j=1Û+
Q j

for n ∈ Z≥1, Q j ∈
GL(N j ,C), N j ≥ 2, defined by the Pontryagin dual F̂ of the compact quantum group F given
by Cu(F ) = ∗n

j=1Cu(U+
Q j

) with a canonical comultiplication. This quantum group F̂ has the
following remarkable property analogous to the free group Fn with n generators: for any compact
quantum group G , any n-tuple of unitary representations (u j )n

j=1 of G with dimCu j = N j

and Q∗−1
j u⊤

j Q∗
j being a unitary uniquely induces a unital ∗-homomorphism Cu(F ) → Cu(G)

preserving comultiplications. Quantum subgroups of F̂ has been recently classified by Freslon–
Weber [2] when F̂ = Û+

Q , together with rich structural results for such quantum subgroups.

We classify quantum subgroups of F̂ in general, based on a simple observation relating IrrF
to the path space of the Cayley graph of Fn . Our classification exhibits to what extent more
quantum subgroups exist than mere subgroups of free groups and thus could be regarded as a
complementary result to [2] towards the quantum analogue of Kurosh’s theorem.

2. Classification

Note that the classification of quantum subgroups in F̂ is equivalent to the classification of idem-
potent complete full rigid C*-tensor subcategories in RepF , as a consequence of Woronowicz’s
Tannaka–Krein duality. Since the latter is a purely categorical problem and in fact relies only on
the fusion rule of RepF , we work with RepF rather than F̂ and restrict to a fixed skeleton of RepF
for simplicity.

The theory of unitary representations of U+
Q was investigated by Banica [1]. We recall its fusion

rule. Consider the free product of two copies of monoids M := {αr |r ∈ Z≥0}∗ {βr |r ∈ Z≥0} ∼=
Z≥0∗Z≤0. By abusing notation, we write [ar ] :=αr and [a−r ] :=βr in M for r ∈Z≥0. Then, we can
identify IrrU+

Q with M so that the unit object is [a0], [ar ] = [a−r ] for r ∈Z, (x y) = y x for x, y ∈ M ,
and the tensor product is determined recursively by

(x[ar ])⊗ ([as ]y) =
{

x[ar ][as ]y = x[ar+s ]y if r s = 1,

x[ar ][as ]y ⊕ (x ⊗ y) if r s =−1
(x, y ∈ M ,r, s ∈ {±1}),

with the aid of the fact that any element in M is expressed as a word of [a1] and [a−1].
Combined with [5], we can canonically identify IrrF with the monoid M∗n as a set. For

1 ≤ j ≤ n, we put α j , β j for the generators of the j th component M = {αr
j |r ∈Z≥0}∗ {βr

j |r ∈Z≥0}
in M∗n , and a j for the generator of the j th component Z ∼= {ar

j |r ∈ Z} in Fn . We shall write
[ar

j ] :=αr
j and [a−r

j ] :=βr
j in M∗n for r ∈Z≥0.

Consider the Cayley graph G of Fn , where the set of its oriented edges is {(g , g a±1
j ) | g ∈ Fn ,1 ≤

j ≤ n}. Let Path(G ) be the set of all finite paths in G starting from 1Fn , possibly with turning-
backs. We can identify Path(G ) with M∗n by assigning each path of the form (g0, g1, . . . , gk ) ∈ Fk+1

n
with k ≥ 0, g0 = 1Fn , gl = gl−1arl

jl
, 1 ≤ jl ≤ n, rl = ±1 for 1 ≤ l ≤ k to [ar1

j1
][ar2

j2
] · · · [ark

jk
] ∈ M∗n .

Then, extending our convention of [ar
j ] for r ∈ Z, we define [g ] ∈ M∗n for g ∈ Fn by the shortest

path from 1Fn to g via the identification M∗n = Path(G ). From now, the symbol k, j and r ,
possibly accompanied with indices, stand for elements in Z≥0, Z∩ [1,n], and {±1} respectively,
unless clarified otherwise. Note that any element in IrrF = M∗n can be expressed in the form
[ar1

j1
][ar2

j2
] · · · [ark

jk
] without redundancy.

Remark. We reinterpret the fusion rule of RepF in terms of G . Take any e,e ′ ∈ Path(G ), whose
endpoints are denoted by g , g ′ ∈ Fn , respectively. We write g e ′ for the path from g to g g ′ given
by the left translation of Fn on G and ee ′ ∈ Path(G ) for the concatenation of e and g e ′. Note
that ee ′ coincides with the product of the monoid M∗n . We set e0 := e, e ′0 := e ′ and define
el+1,e ′l+1 ∈ Path(G ) = M∗n recursively on l ∈Z≥0 so that el+1[ar

j ] = el and [a−r
j ]e ′l+1 = e ′l as long as
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such j and r exist. If we regard e,e ′ ∈ IrrF , the tensor product e ⊗ e ′ is the direct sum of all paths
of the form el e ′l ∈ Path(G ) = IrrF . Also, when we write e ∈ Path(G ) for the path from 1Fn to g−1

given by reversing e, the involution e 7→ e corresponds to the conjugate operation on IrrF . If we
put V (e) ⊂ Fn for the set of all vertices appearing in e, we have V (el e ′l ) ⊂ V (ee ′) = V (e)∪ gV (e ′)
for el and e ′l above, and V (e) = g−1V (e).

Our main result is as follows.

Main Theorem. For any pair (Γ,S) of a subgroup Γ ⊂ Fn and a left Γ-invariant subset S ⊂ Fn

containing Γ and connected in the Cayley graph G , there is an idempotent complete full rigid C*-
tensor subcategory of RepF such that the set of its irreducible objects equals{

[ar1
j1

][ar2
j2

] · · · [ark
jk

] ∈ IrrF
∣∣ar1

j1
ar2

j2
· · ·ark

jk
∈ Γ, ar1

j1
ar2

j2
· · ·arl

jl
∈ S for all 0 ≤ l ≤ k

}
. (I)

Conversely, any idempotent complete full rigid C*-tensor subcategory of RepF is of this form for
a pair (Γ,S) with the conditions above, which must be necessarily unique.

Proof. It is not hard to see the first half of the statement with the aid of equations on V (e) in the
remark above. We show the latter half. Note that (Γ,S) can be reconstructed from (I) since S is
connected and contains the unit element. This shows the uniqueness. Let C be an idempotent
complete full rigid C*-tensor subcategory of RepF and I be the set of irreducible objects in C .
For any [ar1

j1
] · · · [ark

jk
] ∈ I \ {[1Fn ]}, inductively on l = 1, . . . ,k, we see

[ar1
j1
· · ·arl

jl
][arl+1

jl+1
] · · · [ark

jk
] ≤ (

[ar1
j1
· · ·arl−1

jl−1
][a−rl−1

jl−1
· · ·a−r1

j1
]
)⊗ (

[ar1
j1
· · ·arl−1

jl−1
][arl

jl
] · · · [ark

jk
]
) ∈C , (1)

and

[ar1
j1
· · ·arl

jl
][a−rl

jl
· · ·a−r1

j1
] ≤ (

[ar1
j1
· · ·arl

jl
][arl+1

jl+1
] · · · [ark

jk
]
)⊗ (

[a−rk
jk

] · · · [a−rl+1
jl+1

][a−rl
jl

· · ·a−r1
j1

]
) ∈C . (2)

Indeed, (1) for l = 1 is trivial, and (2) for l can be obtained by tensoring (1) for l with its conjugate,
while (1) for l +1 can be seen by tensoring (2) for l and (1) for l .

Clearly, S := {ar1
j1
· · ·arl

jl
| [ar1

j1
] · · · [ark

jk
] ∈ I ,0 ≤ l ≤ k} ⊂ Fn is connected in G as every element in S

can be connected to 1Fn by a path within S, and Γ := {ar1
j1
· · ·ark

jk
| [ar1

j1
] · · · [ark

jk
] ∈ I } is a subgroup of

Fn contained in S. Then, (1) and (2) for l = k imply [g ] ∈ I for all g ∈ Γ and [g ][g−1] ∈ I for all g ∈ S,
respectively. For all g ∈ Γ and h ∈ S, it holds [g ][h][h−1] ∈ I as a direct summand of [g ]⊗([h][h−1])
and thus g h ∈ S. By construction, the set defined by (I) contains I . They coincide because for any
[ar1

j1
] · · · [ark

jk
] ∈ IrrF satisfying the conditions in (I),

[ar1
j1

] · · · [ark
jk

] ≤ (
[ar1

j1
] · · · [ark

jk
][a−rk

jk
· · ·a−r1

j1
]
)⊗ [ar1

j1
· · ·ark

jk
]

≤ (
[ar1

j1
][a−r1

j1
]
)⊗ (

[ar1
j1

ar2
j2

][a−r2
j2

a−r1
j1

]
)⊗·· ·⊗ (

[ar1
j1
· · ·ark

jk
][a−rk

jk
· · ·a−r1

j1
]
)⊗ [ar1

j1
· · ·ark

jk
] ∈C . □
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