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Abstract. We show that every Sturmian word has the property that the distance between consecutive ending
positions of cubes occurring in the word is always bounded by 10 and this bound is optimal, extending a
result of Rampersad, who proved that the bound 9 holds for the Fibonacci word. We then give a general
result showing that for every e ∈ [1, (5+p

5)/2) there is a natural number N , depending only on e, such that
every Sturmian word has the property that the distance between consecutive ending positions of e-powers
occurring in the word is uniformly bounded by N .

Résumé. Nous montrons que la distance entre deux positions finales consécutives de cubes apparaissant
dans un mot sturmien est toujours inférieure ou égale à 10 et que cette valeur est optimale, étendant ainsi un
résultat de Rampersad, qui a démontré que cette distance est majorée par 9 pour le mot de Fibonacci. Nous
donnons ensuite un résultat général montrant que pour tout e ∈ [1, (5+p

5)/2) il existe un entier naturel N ,
dépendant uniquement de e, tel que la distance entre deux positions finales consécutives de puissances e
apparaissant dans un mot sturmien est uniformément majorée par N .
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1. Introduction

In this note we are concerned with the occurrences of powers in words. We say that a length-n
word w = w[0..n − 1] has period p if w[i ] = w[i + p] for i ∈ {0, . . . ,n − p − 1}. The smallest such
period is called the period and is written per(w). The exponent of a length-n word w is defined
to be exp(w) = n/per(w). For example, exp(entente) = 7/3. For a real number e ≥ 1, we say a
word w is an e-power if ⌈e per(w)⌉ is equal to |w |, the length of w . In particular, a finite word
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being an e-power and having exponent e are not in general the same: the exponent is necessarily
rational, while there exist e-powers for every real number e ≥ 1. A 2-power is called a square, like
the English word murmur. A 3-power is called a cube, like the English word shshsh.

Letα= (1+p
5)/2 be the golden ratio and let x be any infinite word. In 1997 the third author of

this paper conjectured, and Mignosi, Restivo, and Salemi later proved [10], that every sufficiently
long prefix of x has a suffix of exponent ≥ α2 if and only if x is ultimately periodic. This is an
example of the “local periodicity implies global periodicity” phenomenon.

Furthermore, the constant α2 is best possible. Let f = f[0]f[1]f[2] · · · = 01001010 · · · denote the
infinite Fibonacci word [4], the fixed point of the morphism sending 0 → 01 and 1 → 0. Mignosi,
Restivo, and Salemi [10] also showed that for all ϵ> 0 every sufficiently long prefix of f has a suffix
that is anα2−ϵ power. For example, there is a square suffix of every prefix of length n ≥ 6 in f, and
there is a 5

2 -power suffix of every prefix of length n ≥ 220 in f. An explicit version of this result was
recently proved by the third author [13].

More generally, given an infinite word x and an exponent e, one can consider the list of all
positive integers p1 < p2 < ·· · marking the position where some e-power in x ends. For example,
for the Fibonacci word we have

• (010)3 ends at position 13
• (01001)3 ends at position 22
• (10010)3 ends at position 23
• (010)3 ends at position 26
• (010)3 ends at position 34

and so forth.
Recently Rampersad [12] obtained an explicit description of the positions where cubes end in

the Fibonacci word f.
In particular, he observed that if p1 < p2 are two consecutive positions where cubes end in f,

then p2 −p1 ≤ 9, and more precisely p2 −p1 ∈ {1,2,3,4,8,9}. (Note that he phrased his discussion
in terms of the lengths of runs of consecutive positions where there are no cubes ending, so the
numbers he presented differ by 1 from ours.)

Since the Fibonacci word is the simplest of a much larger class of binary infinite words called
Sturmian words, this naturally raises the question of whether a similar result holds for this much
larger class. Sturmian words have several equivalent descriptions, as follows:

(a) Infinite words of the form (⌊(n+1)γ+β⌋−⌊nγ+β⌋)n≥1 for real 0 < γ< 1, 0 ≤β< 1, where
γ is irrational. Here γ is called the slope of the word and β is called the intercept.

(b) Infinite words having exactly n+1 distinct factors of length n for all n ≥ 0. Here by a factor
we mean a consecutive block lying inside the word.

(c) Infinite aperiodic binary balanced words, that is, words such that for all factors x, y of the
same length, and all a ∈ {0,1}, the inequality

∣∣|x|a −|y |a
∣∣≤ 1 holds, where |z|a denotes the

number of occurrences of the letter a in z.

For more information about this class of words, see, for example, [9, Chapter 2].
In this note we generalize Rampersad’s result to all Sturmian words.

Theorem 1. Let x be a Sturmian word. Then the maximum gap between positions where cubes
end in x is at most 10, and this bound is optimal.

In fact, our proof shows that the gap between consecutive occurrences of cubes having period
at most 5 is at most 10 for every Sturmian word; furthermore, the proof shows that the optimal
bound 10 is achieved by the Sturmian characteristic word with slope

p
2−1 and intercept 0.

It is natural to ask whether a similar result to Theorem 1 holds for powers other than cubes. It
is known that the Fibonacci word does not haveβ-powers forβ= (5+p

5)/2, and so it is necessary
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to restrict to exponents that are less than β when considering the gap question over all Sturmian
words. Once this condition is imposed, however, we are able to again prove a general result about
the existence of uniform bounds on gaps of e-powers in Sturmian words for every e <β.

Theorem 2. Let x be a Sturmian word and let e ∈ [1, (5+p
5)/2). Then there are natural numbers N

and k, depending only on e, such that the maximum gap between the ending positions of e-powers
of period at most k in x is at most N .

2. Proof of Theorem 1

We begin with a lemma. As it turns out, it suffices to consider words of bounded period.

Lemma 3. Every balanced binary word of length 17 contains a cube of period at most 5, and the
bound 17 is best possible.

Proof. We enumerate all 594 binary balanced words of length 17 and check. For length 16, the
word 0010100101001001 is balanced but contains no cube. □

Proof of Theorem 1. We claim that every balanced binary word of length 32 contains at least two
consecutive cube occurrences, each of period at most 5. From Lemma 3, we know the prefix of
length 17 contains a cube of period at most 5, and so does the suffix of length 17. Since in a
word of length 32 these two cubes can overlap in at most two symbols, they must be distinct cube
occurrences. Thus the maximum possible gap must appear in some balanced word of length 32.
It then suffices to examine all balanced words of this length (there are 3650) and compute all gaps
between consecutive ending positions of cubes of period 5 in all of them. The longest is 10.

To prove that 10 is optimal, we use the theorem-prover Walnut; see [11, 14] for more details
about it. We now consider the Sturmian characteristic word with slope

p
2 − 1 and intercept

0. This word has an associated Ostrowski numeration system based on the Pell numbers,
1,2,5,12,29,70,169, . . .; this system is built-in to Walnut and is invoked by saying msd_pell (see
[1–3]). We now use the following Walnut code:

reg odd0 msd_pell "(0|1|2)*(1|2)0(00)*":
def root2 "?msd_pell (n>=0) & $odd0(n+1)":
combine RT2 root2:
# make a DFAO RT2 for Sturmian sequence w/slope sqrt(2)-1

def end_in_cube "?msd_pell Ei,j (j>=1) & (i+3*j=n) &
At (t<2*j) => RT2[i+t]=RT2[i+j+t]":

# is there a cube ending at position n

def two_consec "?msd_pell (i<j) & $end_in_cube(i) &
$end_in_cube(j) & At (i<t & t<j) => ~$end_in_cube(t)":

# are i and j two consecutive cube-ending positions?

def two_consec_dist "?msd_pell (n>0) & Ei,j i+n=j & $two_consec(i,j)":
# it accepts only 1, 110 and 200, i.e., 1, 7 and 10 in Pell

The code first creates a deterministic finite-state automaton with output, named RT2, for the
Sturmian sequence x with slope

p
2 − 1 and intercept 0. It next determines the set of natural

numbers n for which there is a cube occurring in x that ends at position n. Finally, the code finds
the set of gaps between consecutive ending positions of cubes and determines that the only gaps
that occur are the natural numbers whose expansions in the Pell numeration system are 1,110,
and 200. These are the numbers 1,7,10 and so the bound of 10 is best possible. □
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Remark 4. We note that the proof in fact shows the slightly stronger claim that the gap between
consecutive occurrences of cubes of period at most 5 is at most 10 for every Sturmian word
and that the bound 10 is achieved by the Sturmian characteristic word with slope

p
2− 1 and

intercept 0.

3. General exponents

We now give the proof of Theorem 2. We recall that a partial function f from a set X to a set Y is
simply a map defined on a non-empty subset U of X that maps U into the set Y . In the case that
the map is defined on all of X , the map is called a total function. We write f : X * Y for a partial
function from X to Y .

Given two partial functions f , g : N* R≥0, we declare that f ⪯ g if f (i ) ≤ g (i ) for all i in the
domain of both f and g . We note that ⪯ is not a partial order on partial functions, but it is,
however, a partial order on total functions. We recall that for a right-infinite word x over a finite
alphabet, we have a subword complexity function px whose value at n is the number of distinct
length-n factors of x. If w is a finite word, we have a partial function pw : N* N that is defined
on the nonnegative integers that are less than or equal to the length of w and whose value at i is
the number of factors of w of length i for all i less than or equal to the length of w .

Recall that an infinite word x is uniformly recurrent if for each of its finite factors v , there is an
integer n(v) such that every block of length n(v) in x contains a copy of v .

Lemma 5. Let Σ be a finite alphabet, let h : N→ N be a total function, and let S be a non-empty
set of words over Σ. Suppose that every uniformly recurrent word x with px ⪯ h has the property
that x contains some word from S as a factor. Then there exists a finite subset S0 of S and a natural
number N , depending only on h and S0, such that, whenever x is a right-infinite word with px ⪯ h,
every factor of x of length N contains a factor from S0.

Proof. Let Un denote the set of words u over Σ of length n such that pu ⪯ h and such that u does
not have an element of S as a factor. Then

⋃
n≥0 Un is closed under the process of taking factors

(where we take U0 to be the empty word). If there is some N ≥ 1 such that UN is empty, then
letting S0 be the set of words in S of length at most N , we see that whenever x is a right-infinite
word with px ⪯ h, every factor of x of length N contains a factor from S0.

Thus we may assume that each Un is non-empty. By König’s infinity lemma (see [8] or [7,
Section 2.3.4.3]), there is a right-infinite word x with the property that all of its finite factors are
in the union of the Ui . In particular, px ⪯ h and x has no words from S as a factor. Then by
Furstenberg’s theorem [6], there is a uniformly recurrent right-infinite word y whose finite factors
are all factors of x, so py ⪯ px ⪯ h and y has no occurrences of factors from S, a contradiction. □

Proof of Theorem 2. Let h(n) = n +1 for n ≥ 0 and let Pe denote the set of words w over Σ that
are e-powers. By work of Damanik and Lenz [5], every Sturmian word has an element from Pe

as a factor. Since every uniformly recurrent word whose subword complexity function is ⪯ h is
either Sturmian or periodic and since periodic words always contain elements from Pe as factors,
Lemma 5 gives that there is a finite subset Qe of Pe and some number n = n(e) such that every
length-n factor of a Sturmian word x has an occurrence of a word from Qe . In particular, if we
take k to be the supremum of periods in Qe and N = 2n, we see that gaps between consecutive
e-powers of period at most k are bounded by N . □

4. Other exponents

When one considers Theorem 2, a natural question that arises is whether one can bound the
associated quantities k and N explicitly in terms of the exponent e ∈ [1, (5+p

5)/2). This appears
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to be somewhat subtle in general, but using the same computational approach as we employed
in establishing Theorem 1, we can obtain results for several other exponents.

For each exponent e we report the smallest n such that such that every balanced word of length
n contains a factor that is an e-power, the largest period p of an e-power in those words, the
largest gap g between ending positions of e-powers, and a quadratic irrational γ realizing this
gap g .

Table 1. Data for some exponents

e n p g γ

5/2 9 3 6 (5+p
5)/10

8/3 15 5 9
p

2−1

3 17 5 10
p

2−1

16/5 30 8 17 (25−p
5)/62

23/7 50 13 27 (59+p
5)/158

10/3 69 18 37 (217−p
5)/298

It would be interesting to better understand the relationship between the largest gap g and the
exponent e as e approaches (5+p

5)/2.
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