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1. Introduction

The notion of K -cowaist of closed oriented smooth Riemannian manifolds was introduced by
Gromov in [6, Section 4] under the name K -area. It is defined as the inverse of the infimum of the
operator norms of the curvatures of all smooth Hermitian vector bundles over the given manifold
with at least one non-zero Chern number. Its main application is to the scalar curvature geometry
of spin manifolds, see the “K -area inequality” in [6, Section 5 1

4 ].
The notion was later generalized to homology classes in smooth Riemannian manifolds by

Listing in [13], and in simplicial complexes by Hunger in [11], to infinite dimensional bundles by
Hanke and Hunger in [9, 10] and to manifolds with boundary by Bär, Hanke, and Listing in [4, 13].
The behavior of K -cowaist under surgery has been studied by Fukumoto in [5].

An important step in this discussion is the construction of well-behaved twist bundles for the
classical Dirac operator on spin manifolds from vector bundles with non-zero Chern numbers.
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The elegant argument, which uses K -theoretic Adams operations together with a “trivial alge-
braic lemma” on formal power series, was sketched by Gromov in [6, Section 5 3

8 ], and more de-
tailed expositions were later given by Bär, Hanke, and Listing in [4, 13]. Recently, another exposi-
tion was given by Wang in [14].

In the present note, which is in line with [4], we extend the discussion of K -cowaist in two
directions. Firstly, rather than confining ourselves to the spinorial Dirac operator, we allow
arbitrary generalized Dirac operators in the sense of Gromov and Lawson and associate to each
such operator a notion of ω-cowaist. Here ω represents the index form of the operator occurring
in the Atiyah–Singer index theorem. In the case of the spinorial Dirac operator, ω is the Â-form.
Theorem 6 compares the K -cowaist and the ω-cowaist. Interestingly, the constant occurring in
this K -cowaist inequality depends only on the dimension of the manifold but not on the choice
of operator.

Secondly, in the application we allow the manifolds to have boundary. Using the spinorial
Dirac operator, one recovers the known fact that a compact spin manifold with infinite K -cowaist
does not support a Riemannian metric of positive scalar curvature such that the boundary
becomes mean convex. For compact spinc manifolds with infinite K -cowaist we find that there
is no Riemannian metric such that the scalar curvature dominates any 2-form representing
the Chern class of the determinant bundle and, again, such that the boundary becomes mean
convex. Remarkably, the condition on the boundary is always mean convexity, irrespective of the
choice of operator.

2. K -cowaist

Let M be an oriented compact smooth Riemannian manifold with or without boundary. We call
a Hermitian vector bundle E over M with connection boundary-adapted if it is isomorphic to the
trivial bundle with trivial connection over a neighborhood of the boundary. We call E admissible
if it is boundary-adapted and it has at least one nontrivial Chern number. The latter means that
there are γ j ∈N0 such that ∫

M
cγ1 (E)∧·· ·∧cγm (E) ̸= 0.

Here c(E) = c0(E)+c1(E)+·· ·+cm(E) = 1+c1(E)+·· ·+cm(E) is the Chern form of E . Admissible
bundles can exist only on even-dimensional manifolds because c j (E) has even degree 2 j . Indeed,
the dimension of M satisfies n = 2(γ1 +·· ·+γm).

Equivalently, one may demand that∫
M

chγ1 (E)∧·· ·∧chγm (E) ̸= 0

for some γ j ∈N0. Here ch(E) = ch0(E)+ ch1(E)+·· ·+ chm(E) = rank(E)+ ch1(E)+·· ·+ chm(E) is
the Chern character form of E . The Chern numbers and the Chern character numbers can be
expressed as linear combinations of each other.

Note that the support of the curvature RE and hence that of c j (E) and ch j (E) for j ≥ 1 is
contained in the interior of M because M is boundary-adapted.

Given a Hermitian vector bundle with connection over a Riemannian manifold M , let RE be
its curvature tensor. We define its norm by

∥RE∥ := sup
x∈M

sup
X ,Y ∈Tx M
|X |=|Y |=1

|RE (X ,Y )|

where |RE (X ,Y )| is the operator norm of the endomorphism RE (X ,Y ). The rank of E is denoted
by rk(E).
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Definition 1. The K -cowaist of an oriented compact Riemannian manifold M with (possibly
empty) boundary is defined by

K -cw2(M) := 1

inf{∥RE∥ | E is an admissible bundle over M }
∈ [0,∞].

Remark 2. If we replace the Riemannian metric g on M by λ2g , where λ is a positive constant,
the operator norm |RE (X ,Y )| for X ,Y ∈ Tx M remains unchanged, whereas ∥RE∥ is replaced by
λ−2∥RE∥. Therefore, K -cw2(M) is replaced by λ2K -cw2(M), thus K -cw2(M) scales like an area.
This motivates the terminology K -area for K -cw2(M) as introduced by Gromov in [6]. In [7],
Gromov argues that the term K -cowaist is more appropriate.

Remark 3. The condition K -cw2(M) =∞ is independent of the metric on M since M is compact
and any two metrics can be bounded by each other. There is a rich class of manifolds satisfying
this condition, including enlargeable manifolds, see [4], for example. If M is connected and
without boundary, the condition K -cw2(M) =∞ only depends on the image of the fundamental
class of M in the rational homology of Bπ1(M) under the classifying map of the universal cover
of M , see [11, Corollary 7.4].

Definition 4. Letω= 1+ω1+·· ·+ωm be a smooth mixed differential form on the oriented compact
Riemannian manifold M with boundary, whereω j has degree 2 j . Theω-cowaist of M is defined by

ω-cw2(M) := 1

inf
{∥RE∥ | E is boundary-adapted and

∫
M ω∧ [ch(E)− rk(E)] ̸= 0

} ∈ [0,∞].

The following lemma is the key to comparing the K -cowaist and the ω-cowaist. The idea goes
back to Gromov [6] and the lemma is essentially already contained as Lemma 7 in [4]. For the
reader’s convenience, we provide the full (short) proof here.

Lemma 5. Let M be an oriented compact Riemannian manifold of even dimension n = 2m with
boundary. Let E be an admissible bundle. Let ω= 1+ω1 +·· ·+ωm be a smooth mixed differential
form on M where ω j has degree 2 j .

Then there exists a boundary-adapted bundle E ′ over M such that∫
M
ω∧ [ch(E ′)− rk(E ′)] ̸= 0 (1)

and

∥RE ′∥ ≤ c(m)∥RE∥ (2)

where c(m) is a constant only depending on m.

Proof. For k ∈N0 there is a virtual bundleΨk E =Ψ+
k E −Ψ−

k E with the property

ch j (Ψk E) = ch j (Ψ+
k E)−ch j (Ψ−

k E) = k j ch j (E). (3)

HereΨk is known as the kth Adams operation. The case j = 0 shows that the Adams operations
Ψk preserve the rank. Both bundlesΨ+

k E andΨ−
k E are universal expressions in tensor products

of exterior products of E , see [1, Section 3.2] for details.
For a multi-index k = (k1, . . . ,km) we put

Ψk E :=Ψk1 E ⊗·· ·⊗Ψkm E

and rewrite this virtual bundle as a difference of honest bundles by

Ψk E = ⊕
even#
of− ’s

Ψ±
k1

E ⊗·· ·⊗Ψ±
km

E − ⊕
odd#
of− ’s

Ψ±
k1

E ⊗·· ·⊗Ψ±
km

E =:Ψ+
k E −Ψ−

k E .
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Again, Ψ+
k E and Ψ−

k E are universal expressions in tensor products of exterior products of E .
Hence, they inherit natural Hermitian metrics and connections, and they are boundary-adapted.
In particular,

∥RΨ
±
k E∥ ≤ ck∥RE∥ (4)

where the constant ck depends only on k. Note that rk(Ψ+
k E)− rk(Ψ−

k E) = rk(Ψk E) = rk(E)m .
For k = (k1, . . . ,km) ∈Nm

0 we put

P (k1, . . . ,km) :=
∫

M
ω∧ [ch(Ψk E)− rk(Ψk E)]

=
∫

M
ω∧ [ch(Ψk1 E)∧·· ·∧ch(Ψkm E)− rk(E)m].

Expanding ω= 1+ω1 +·· ·+ωm and the Chern characters yields, using (3),

P (k1, . . . ,km) = ∑
γ1+···+γm=m

kγ1
1 · · ·kγm

m

∫
M

chγ1 (E)∧·· ·∧chγm (E)+ l.o.t.

where l.o.t. stands for terms of lower total order in k1, . . . ,km . In particular, P is a polynomial in
k1, . . . ,km of total degree at most m.

If P (k1, . . . ,km) = 0 held for all k = (k1, . . . ,km) ∈ {0,1, . . . ,m}m , then P would vanish as a
polynomial, hence ∫

M
chγ1 (E)∧·· ·∧chγm (E) = 0

for all γi ∈ N0 with γ1 + ·· · +γm = m, contradicting the admissibility of E . Thus we can choose
some k ∈ {0,1, . . . ,m}m such that P (k) ̸= 0, i.e.

0 ̸=
∫

M
ω∧ [ch(Ψk E)− rk(Ψk E)]

=
∫

M
ω∧ [ch(Ψ+

k E)− rk(Ψ+
k E)]−

∫
M
ω∧ [ch(Ψ−

k E)− rk(Ψ−
k E)].

Hence, E ′ =Ψ+
k E or E ′ =Ψ−

k E satisfies (1). Equation (4) implies ∥RΨ
±
k E∥ ≤ c(m)∥RE∥ since there

are only finitely many possibilities for k. □

Theorem 6. Let M be an oriented compact Riemannian manifold with boundary of even dimen-
sion 2m. Let ω= 1+ω1 +·· ·+ωm be a smooth mixed differential form on M where ω j has degree
2 j . Then

K -cw2(M) ≤ c(m) ·ω-cw2(M)

where c(m) is a constant which depends only on m.

Proof. If there are no admissible bundles over M , then K -cw2(M) = 0 and there is nothing to
show. Thus, let E → M be admissible and let E ′ be the corresponding bundle from Lemma 5.
Then

∫
M ω∧ [ch(E ′)− rk(E)] ̸= 0 and

c(m)−1 ·ω-cw2(M)−1 ≤ c(m)−1 · ∥RE ′∥ ≤ ∥RE∥.

Taking the infimum over all admissible E concludes the proof. □

Note that the constant c(m) does not depend on the form ω.
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3. An application

Let M be a Riemannian manifold, let S+,S− → M be complex vector bundles equipped with
Hermitian metrics and let D be a differential operator of first order mapping sections of S+ to
sections of S−. We restrict our attention to operators such that

(
0 D∗
D 0

)
: S+ ⊕ S− → S+ ⊕ S− is

a generalized Dirac operator in the sense of Gromov and Lawson, see [8, Section 1]. Here D∗

denotes the formally adjoint operator of D . We then call D a GL-Dirac operator for short. After
interchanging the roles of S+ and S−, the formal adjoint D∗ is again a GL-Dirac operator.

In particular, the symbol of D defines a multiplication T M ⊗ S± → S∓ satisfying the Clifford
relations, and the bundles S± are equipped with metric connections ∇S±

whose curvature tensors
we denote by RS±

. The operator D satisfies the Weitzenböck formulas

D∗D = (∇S+
)∗∇S+ +K +,

DD∗ = (∇S−
)∗∇S− +K −

where K ± = 1
2

∑
j k e j ·ek ·RS±

(e j ,ek ), see Proposition 2.5 in [8]. Here (∇S±
)∗ denotes the formally

adjoint operator of ∇S±
.

Given a GL-Dirac operator D and a Hermitian vector bundle with metric connection, one
defines the twisted Dirac operator DE locally by

DE =∑
j

(e j ·⊗ id)∇S+⊗E
e j

for some local orthonormal frame (e1, . . . ,en) of T M . The twisted Dirac operator maps sections
of S+⊗E to sections of S−⊗E and is again a GL-Dirac operator.

If M is a Riemannian manifold of dimension n with boundary ∂M , then we denote by H ∈
C∞(∂M ,R) the mean curvature of the boundary, defined as 1

n−1 times the trace of the second
fundamental form of ∂M ⊂ M . The sign convention is such that H is positive if the mean
curvature vector field is inward pointing. The mean curvature of a Euclidean ball is positive,
for example. We say that the boundary is mean convex if H ≥ 0.

Given the GL-Dirac operator D on M , there is an adapted Dirac operator A over ∂M , acting on
sections of S+|∂M . It is defined by

A =−ν ·D −∇S+
ν + n −1

2
H .

Here ν is the inward pointing unit normal vector field along ∂M . The operator A anticommutes
with Clifford multiplication byν. Performing the integration by parts in the Weitzenböck formula,
we find for smooth sections ϕ of S+:∫

M

[|Dϕ|2 −|∇S+
ϕ|2 −〈

K +ϕ,ϕ
〉]= ∫

∂M

〈(
n −1

2
H − A

)
ϕ,ϕ

〉
, (5)

see [3, Equation (27)]. We say that a sufficiently smooth sectionϕ of S+ satisfies the strong Atiyah–
Patodi–Singer (APS) boundary condition if ϕ|∂M is contained in the sum of the L2-eigenspaces
of A to negative eigenvalues. We say it satisfies the weak APS boundary condition if ϕ|∂M is
contained in the sum of the eigenspaces to nonpositive eigenvalues.

Associated to D there is a mixed differential form ω = 1+ω1 + ·· · +ωm where ω j has degree
2 j which is manufactured out of the short-time asymptotics of the corresponding heat kernel.
By the Atiyah–Patodi–Singer index theorem [2], it has the property that each twisted operator DE

has the index

ind(DE ) =
∫

M
ω∧ch(E)+ boundary contribution, (6)
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if we impose weak or strong APS boundary conditions. Denoting by AE the adapted operator
for the GL-Dirac operator DE , the boundary contribution involves the η-invariant of AE , a
transgression term and the dimension of the kernel of AE .

Theorem 7. Let M be a 2m-dimensional compact oriented Riemannian manifold with (possibly
empty) mean convex boundary ∂M. Let D be a GL-Dirac operator with index form ω. Let K ± be
the curvature terms in the Weitzenböck formulas for D. Suppose that K + ≥ κ and K − ≥ κ in the
sense of symmetric endomorphism where κ> 0 is a positive constant. Then

ω-cw2(M) ≤ m(2m −1)

κ
.

Proof. Let E → M be boundary-adapted such that
∫

M ω∧ [ch(E)− rk(E)] ̸= 0. If there are no such
bundles, then ω-cw2(M) = 0 and there is nothing to show. We write r = rk(E) and denote by E r

0
the trivial flat bundle of rank r . We impose the weak APS boundary condition. Now (6) yields

ind(DE ) =
∫

M
ω∧ch(E)+ boundary contribution, (7)

ind(DE r
0 ) = r

∫
M
ω+ boundary contribution. (8)

The boundary contributions in (7) and (8) coincide because E is boundary-adapted and hence
DE and DE r

0 coincide in a neighborhood of ∂M . Therefore,

ind(DE )− ind(DE r
0 ) =

∫
M
ω∧ch(E)− r

∫
M
ω=

∫
M
ω∧ [ch(E)− rk(E)] ̸= 0.

It follows that ind(DE ) ̸= 0 or ind(DE r
0 ) ̸= 0. We discuss the case ind(DE ) ̸= 0, the second case

being even simpler.
If ind(DE ) > 0, then we find a smooth section ϕ of S+⊗E in the kernel of DE . Inserting this ϕ

into (5) with DE instead of D , we get

0 =
∫

M

[|∇S+⊗Eϕ|2 +〈K E ,+ϕ,ϕ〉]+∫
∂M

〈(
2m −1

2
H − A

)
ϕ,ϕ

〉
≥

∫
M
〈K E ,+ϕ,ϕ〉 (9)

since all other terms are nonnegative. Here we use H ≥ 0 and the fact that ϕ satisfies the weak
APS boundary condition.

The curvature term in the Weitzenböck formula for DE is given by

K E ,± =K ±⊗ id+1

2

2m∑
j ,k=1

e j ek ⊗RE (e j ,ek ).

The operator norm of the correction term satisfies∣∣∣∣∣1

2

∑
j k

e j ek ⊗RE (e j ,ek )

∣∣∣∣∣≤ m(2m −1)∥RE∥.

If we had m(2m − 1)∥RE∥ < κ, then K E ,+ would be positive as an endomorphism, contradict-
ing (9). Therefore, ∥RE∥ ≥ κ

m(2m−1) .
If ind(DE ) < 0, the adjoint operator has a nontrivial kernel. Since DE is formally selfadjoint

and the strong APS boundary condition is adjoint to the weak APS boundary condition1, this
means that we find a smooth section ϕ of S−⊗E satisfying the strong APS boundary condition
with (DE )∗ϕ= 0. Now the proof proceeds as before and we again get ∥RE∥ ≥ κ

m(2m−1) .

Taking the infimum over all E yields ω-cw2(M) ≤ m(2m−1)
κ . □

Theorems 6 and 7 combine to give

1This uses that A anticommutes with ν, see Theorem 4.6 and Example 5.12 in [3].
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Corollary 8. Under the assumptions of Theorem 7 we have

K -cw2(M) ≤ c1(m)

κ
where c1(m) is a positive constant which depends only on m. □

Corollary 9. An oriented even-dimensional compact differentiable manifold M with K -cw2(M) =
∞ does not admit a Riemannian metric with mean convex boundary and a GL-Dirac operator such
that K + and K − are both positive. □

Example 10. If M is a spin manifold and D is the spinorial Dirac operator, then K ± = scal
4 where

scal denotes the scalar curvature of M . Corollary 9 says that compact spin manifolds M with
K -cw2(M) =∞ do not admit metrics with positive scalar curvature and mean convex boundary,
cf. [4, Theorem 19]. In this example, ω= Â is the Â-form.

Example 11. Let M be a compact Riemannian spinc manifold with determinant bundle L. LetΩ
be a real 2-form such that Ω

2π represents the first Chern class of L in deRham cohomology. Then
there exists a metric connection on L whose curvature is given by iΩ. The curvature contribution
to the Weitzenböck formula for the spinorial Dirac operator is given by K ± = scal

4 − 1
2Ω where Ω

acts by Clifford multiplication, see [12, Theorem D.12].
At each point of M , we can find an orthonormal basis e1, . . . ,em ,em+1, . . . ,e2m of the cotangent

space such that

Ω=
m∑

j=1
λ j e j ∧em+ j

for λ j ∈ R. The norm |Ω| = ∑m
j=1 |λ j | is defined independently of the choice of basis. For any

spinor ϕ we have

|〈Ω ·ϕ,ϕ
〉 | ≤ m∑

j=1
|〈λ j e j ·em+ j ·ϕ,ϕ

〉 | ≤ |Ω||ϕ|2.

Thus, K ± is positive provided scal > 2|Ω|. Hence, ifΩ is a real 2-form such that Ω2π represents the
first Chern class of the determinant bundle of the spinc manifold M in deRham cohomology, and
M has a Riemannian metric with mean convex boundary with scal > 2|Ω|, then K -cw2(M) <∞.
In this case, ω= Â∧exp

(
Ω
4π

)
.
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