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Abstract. For every monic polynomial f ∈ Z[X ] with deg( f ) ≥ 1, let L ( f ) be the set of all linear recurrences
with values in Z and characteristic polynomial f , and let

R( f ) := {
ρ(x ;m) : x ∈L ( f ), m ∈Z+}

,

where ρ(x ;m) is the number of distinct residues of x modulo m.
Dubickas and Novikas proved that R(X 2 − X − 1) = Z+. We generalize this result by showing that

R(X 2 −a1 X −1) =Z+ for every nonzero integer a1. As a corollary, we deduce that for all integers a1 ≥ 1 and

k ≥ 2 there exists ξ ∈R such that the sequence of fractional parts
(
frac(ξαn )

)
n≥0, whereα := (

a1+
√

a2
1 +4

)
/2,

has exactly k limit points. Our proofs are constructive and employ some results on the existence of special
primitive divisors of certain Lehmer sequences.

Résumé. Pour chaque polynôme monique f ∈ Z[X ] avec deg( f ) ≥ 1, soit L ( f ) l’ensemble de toutes les
récurrences linéaires avec des valeurs dans Z et un polynôme caractéristique f , et soit

R( f ) := {
ρ(x ;m) : x ∈L ( f ), m ∈Z+}

,

où ρ(x ;m) est le nombre de résidus distincts de x modulo m.
Dubickas et Novikas ont prouvé que R(X 2 − X − 1) = Z+. Nous généralisons ce résultat en montrant

que R(X 2 − a1 X − 1) = Z+ pour tout entier non nul a1. Comme corollaire, nous déduisons que pour tous
les entiers a1 ≥ 1 et k ≥ 2, il existe ξ ∈ R tel que la séquence des parties fractionnaires

(
frac(ξαn )

)
n≥0, où

α := (
a1 +

√
a2

1 +4,
)
/2, a exactement k points de limite. Nos preuves sont constructives et utilisent certains

résultats sur l’existence de diviseurs primitifs spéciaux de certaines séquences de Lehmer.
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1. Introduction

Let a1, . . . , ak be integers. An integer sequence x = (xn)n≥0 is a linear recurrence with characteristic
polynomial

f = X k −a1X k−1 −a2X k−2 −·· ·−ak

if for all integers n ≥ k we have that

xn = a1xn−1 +a2xn−2 +·· ·+ak xn−k . (1)

The terms x0, . . . , xk−1, which together with f completely determine x via (1), are the initial values
of x . We let L ( f ) denote the set of all (integral) linear recurrences with characteristic polynomial
f . It is easily seen that each x ∈ L ( f ) is ultimately periodic modulo m, for every integer m ≥ 1,
and in fact (purely) periodic if gcd(m, ak ) = 1. Indeed, properties of linear recurrences modulo
m have been studied extensively, including: which residues modulo m appear in x and how
frequently [3, 8, 11, 13, 16, 18], and for which values of m the linear recurrence x contains a
complete system of residues modulo m [1, 4, 12, 17, 19].

We let τ(x ;m) denote the (minimal) period of x modulo m, that is, the minimal integer
t ≥ 1 such that xn+t ≡ xn (mod m) for all sufficiently large integers n ≥ 0. Moreover, we let
ρ(x ;m) := #

{
xn mod m : n ≥ 0

}
be the number of distinct residues of x modulo m, and we put

R( f ) := {
ρ(x ;m) : x ∈L ( f ), m ∈Z+}

.

Dubickas and Novikas [9], motivated by some problems on fractional parts of powers of Pisot
numbers [24], proved that R(X 2 −X −1) =Z+ and stated that it “may be very difficult in general”
to determine R( f ). Sanna [15] considered the special case in which f is a quadratic polynomial
with roots α,β such that αβ = ±1 and α/β is not a root of unity, and proved two results. First,
that R( f ) contains all integers n ≥ 7 with n ̸= 10 and 4 ∤ n. Second, that 4D0Z

+ ⊆R( f ) if αβ= 1,
and 8D0Z

+ ⊆ R( f ) if αβ=−1; where D0 is the squarefree part of the discriminant of f , and it is
assumed that D0 ≡ 1 (mod 4) and D0 ≥ 5.

Our result is the following.

Theorem 1. Let a1 be a nonzero integer. Then R(X 2 − a1X − 1) = Z+. In other words, for every
n ∈Z+ there exist x ∈L ( f ) and m ∈Z+ such that ρ(x ;m) = n. Moreover, one can choose x and m
so that all the residues of x modulo m are nonzero if and only if |a1| = 1 and n ≥ 4, or |a1| ≥ 2.

The assumption that a1 is nonzero is not a restriction, since it is easy to prove that R(X 2−1) =
{1,2}. We remark that the proof of Theorem 1 is constructive. It provides an algorithm that, given
as input a nonzero integer a1 and an integer n ≥ 1, returns as output a modulo m and the initial
values x0, x1 of a linear recurrence x ∈ L (X 2 − a1X −1) such that ρ(x ;m) = n and, if |a1| ≥ 2 or
n ≥ 4, all the residues of x modulo m are nonzero.

For every t ∈R, let floor(t ) be the floor function of t , that is, the greatest integer not exceeding
t , and let frac(t ) := t −floor(t ) be the fractional part of t . As a corollary of their aforementioned
result, Dubickas and Novikas [9] proved that for every integer k ≥ 2 there exists ξ ∈R such that the
sequence

(
frac

(
ξ((1+p

5)/2)n
))

n≥0 has exactly k limit points.
From Theorem 1, we deduce the following corollary.

Corollary 2. Let a1 ≥ 1 be an integer, and let α := (
a1 +

√
a2

1 +4
)
/2. Then, for every integer k ≥ 2,

and for every integer k ≥ 1 if a2 ≥ 2, there exists ξ ∈Q(α) such that the sequence
(
frac(ξαn)

)
n≥0 has

exactly k limit points.

We remark that sequence of fractional parts
(
frac(ξαn)

)
n≥0, where α > 1 is a real algebraic

number and ξ ∈R, has been studied by several authors [5–7, 14, 21, 23, 24].
The paper is structured as follows. Section 2 contains several preliminary lemmas. More

precisely, Section 2.1 is devoted to prove the existence of some special primitive divisors of
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specific Lehmer sequences, Section 2.2 contains some elementary but useful results on certain
multiplicative orders, and Section 2.3 provides the main lemmas for the construction of the
desired sequences in L ( f ). Then, Sections 3 and 4 are devoted to the proofs of Theorem 1 and
Corollary 2, respectively.

2. Preliminaries

Hereafter, let a1 be a nonzero integer, let f := X 2 −a1X −1, let D := a2
1 +4 be the discriminant of

f , let K :=Q(p
D

)
be the splitting field of f , and let α,β ∈ K be the roots of f . Note that D is not

a square in Q, so that K is a quadratic number field. Moreover, note that α and β are distinct real
numbers, αβ=−1, α+β= a1, (α−β)2 = D , and α/β is not a root of unity.

We begin with the following lemma.

Lemma 3. Let x ∈L ( f ), let m ≥ 1 be an integer, and let t := τ(x ;m). Then there exists y ∈L (X 2 +
a1X − 1) such that yn ≡ x(−(n+1) mod t ) (mod m) for every integer n ≥ 0, where (−(n + 1) mod t )
is the unique integer r ∈ [0, t ) such that r ≡ −(n + 1) (mod t ). In particular, we have that
τ(x ;m) = τ(y ;m), ρ(x ;m) = ρ(y ;m), and that all residues of x modulo m are nonzero if and only if
all residues of y modulo m are nonzero.

Proof. Let us extend x to negative indices by defining xn := −a1xn+1 + xn+2 for every integer
n ≤−1. Then, we have that xn =−a1xn+1 + xn+2 and xn+t ≡ xn (mod m) for every integer n. Let
y ∈ L (X 2 + a1X − 1) with y0 = xt−1 and y1 = xt−2. Since yn+2 = −a1 yn+1 + yn for every integer
n ≥ 0, it follows easily by induction that yn = xt−(n+1) for every integer n ≥ 0. Hence, by the
periodicity of x , we get that yn ≡ x(−(n+1) mod t ) (mod m) for every integer n ≥ 0, as desired. □

In light of Lemma 3, hereafter we assume that a1 ≥ 1.

Remark 4. Since Dubickas and Novikas already proved the case a1 = 1 of Theorem 1 and
Corollary 2, we could assume that a1 ≥ 2. However, we choose to include the case a1 = 1 in
our proofs in order to state some of the intermediary results with greater generality.

2.1. Lehmer sequences

Let γ,δ be complex numbers such that γδ and (γ+δ)2 are nonzero coprime integers and γ/δ is
not a root of unity. The Lehmer sequence (ℓn) associated to γ,δ is defined by

ℓn :=
{

(γn −δn)/(γ−δ) if n is odd;

(γn −δn)/(γ2 −δ2) if n is even;
(2)

for all integers n ≥ 0. The conditions on γ,δ ensure that each ℓn is an integer. A prime number
p is a primitive divisor of ℓn if p | ℓn but p ∤ (γ2 −δ2)2ℓ1 · · ·ℓn−1 (cf. [2]). Note that ℓ1 = ℓ2 = 1, so
that ℓn can have primitive divisors only if n ≥ 3.

The sequence of cyclotomic numbers (φn) associated to γ,δ is defined by

φn := ∏
1≤k ≤n

gcd(n,k)=1

(
γ−e

2πik
n δ

)
, (3)

for all integers n ≥ 1. It can be proved that φn ∈Z for every integer n ≥ 3 [2, p. 84].
The next lemma relates the cyclotomic numbers with the primitive divisors of the Lehmer

sequence. For every prime number p, let νp denote the p-adic valuation. For every integer n ≥ 4,
let P3(n) denote the greatest prime factor of n/gcd(n,3).
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Lemma 5. Let n ≥ 5 be an integer with n ̸= 6. Then

|φn |
/ ∏

p prim. div. ℓn

pνp (ℓn ) ∈
{

{1,P3(n)} if n ̸= 12;

{1,2,3,6} if n = 12;

where the product runs over all the primitive divisors p of ℓn .

Proof. From (3) it follows easily that

γm −δm = ∏
d |m

φd , (4)

for all integers m ≥ 1. In turn, applying to (4) the Möbius inversion formula and taking into
account (2), we get that

φm = ∏
d |m

(
γd −δd

)µ(m/d) = ∏
d |m

ℓ
µ(m/d)
d , (5)

for all integers m ≥ 3, where µ is the Möbius function and where we also employed the well-
known fact that

∑
d |m µ(d) = 0 for every integer m ≥ 2.

Let p be a prime number. If p is a primitive divisor of ℓn , then p does not divide ℓk for every
positive integer k < n. Hence, from (5) we have that νp (φn) = νp (ℓn).

If p is not a primitive divisor of ℓn and p |φn , then it is known that νp (φn) = 1 and that either
p = P3(n), if n ̸= 12, or p ∈ {2,3}, if n = 12; see the “only if” part of the proof of [2, Theorem 2.4], or
see the paragraphs before, and the comment after, [20, Lemma 6]. □

We need a lower bound for the absolute values of cyclotomic numbers.

Lemma 6. Suppose that γ,δ are real numbers with γδ> 0. Then

|φn | > |4(γ−δ)2γδ|ϕ(n)/4

for every integer n ≥ 3, where ϕ is the Euler function.

Proof. This result is due to Ward [22, p. 233]. □

Hereafter, we put γ := α and δ :=−β. Note that this choice does indeed satisfy the conditions
of Lehmer sequence. Moreover, we have that γδ= 1, γ−δ= a1, (γ+δ)2 = D , and (γ2−δ2)2 = a2

1D .
Furthermore, the first values of (ℓn) are

ℓ1 = 1, ℓ2 = 1, ℓ3 = a2
1 +3, ℓ4 = a2

1 +2, ℓ5 = (a2
1 +1)(a2

1 +4)+1, ℓ6 = (a2
1 +1)ℓ3. (6)

In particular, note that, since ℓ3 or ℓ4 is even, if n ≥ 5 then every primitive divisor of ℓn (if it exists)
is odd.

The problem of determining which terms of a Lehmer sequence have a primitive divisor has a
very long history. The first complete classification was given by Bilu, Hanrot, and Voutier [2] (see
also [15, Remark 3.1] for some missing values in [2, Table 4]). We make use of the following two
results.

Lemma 7. Let n ≥ 3 be an integer. If a1 = 1 and n ∉ {3,6,10,12}, or a1 = 3 and n ̸= 3, or a1 ∉ {1,3},
then ℓn has at least one odd primitive divisor p.

Proof. If n ≥ 13 then it is known that ℓn has at least one odd primitive divisor [20, Lemma 8].
(In fact, this is true for all Lehmer sequences with real γ,δ.) Hereafter, assume that n ≤ 12.

If a1 = 1 and n ∉ {3,6,10,12}, then one can check that ℓn has an odd primitive divisor. If a1 = 3
and n ̸= 3, then one can check that ℓn has an odd primitive divisor.

Hereafter, assume that a1 ∉ {1,3}. If n ≥ 5 and n ̸= 6, then by Lemma 6, recalling that γ−δ= a1,
γδ= 1, we get that |φn | > 2ϕ(n) > n. In turn, by Lemma 5, this implies that ℓn has an odd primitive
divisor.
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It remains to prove that if n ∈ {3,4,6} then ℓn has an odd primitive divisor. Since a1 ∉ {1,3}, by
reasoning modulo 8 and modulo 9, it follows easily that a2

1+2 is not a power of 2, and that neither
a2

1 +1 nor a2
1 +3 is equal to 2s 3t for some integers s, t ≥ 0. Hence, there exists a prime number

p ≥ 5 dividing a2
1 +1. We claim that p is an odd primitive divisor of ℓ6. In fact, since p ≥ 5, by (6)

and recalling that D = a2
1 +4, we get that p | ℓ6 and p ∤ a1Dℓ1 · · ·ℓ5. The proof that ℓ3 and ℓ4 have

an odd primitive divisor proceeds similarly. □

Remark 8. Lemma 7 is optimal, that is, one can verify that if a1 = 1 and n ∈ {3,6,10,12}, or if
a1 = 3 and n = 3, then ℓn does not have an odd primitive divisor.

For every integer n ≥ 1, we say that a prime number p is a high primitive divisor of ℓn if p is an
odd primitive divisor of ℓn such that pνp (ℓn ) > n.

Lemma 9. Let n ≥ 3 be an integer. If a1 = 1 and n ∉ {3,4,6,8,10,12,14,18,24}, or a1 = 2 and
n ∉ {4,6,12}, or a1 = 3 and n ∉ {3,6}, or a1 ≥ 4, then ℓn has at least one high primitive divisor.

Proof. Suppose that n ≥ 5 and n ̸= 6. We claim that if (2a1)ϕ(n)/2 > n2 then ℓn has a high primitive
divisor. Indeed, recalling that γ−δ= a1 and γδ= 1, by Lemma 6 we have that |φn | > (2a1)ϕ(n)/2.
Hence, by Lemma 5, we get that (2a1)ϕ(n)/2 > n2 implies that∏

q prim. div. ℓn

qνq (ℓn ) > n. (7)

In particular, from (7) it follows that ℓn has at least one primitive divisor. Let p be the greatest
primitive divisor of ℓn . It is known that each primitive divisor q of ℓn satisfies q ≡±1 (mod n) [20,
p. 427]. Hence, either p ≥ n +1, or p = n −1 and p is the unique primitive divisor of ℓn . In both
cases, taking into account (7), we get that pνp (ℓn ) > n. Hence, we have that p is a high primitive
divisor of ℓn (note that p is odd since n ≥ 5).

If n ≥ 2 ·109 then ϕ(n) > n/logn [22, Lemma 4.1]. Hence, we get that

(2a1)ϕ(n)/2 > 2n/(2logn) > n2,

which implies that ℓn has a high primitive divisor.
If 180 ≤ n < 2 ·109, then ϕ(n) > n/6 [22, Lemma 4.2]. Hence, we get that

(2a1)ϕ(n)/2 > 2n/12 > n2,

which implies that ℓn has a high primitive divisor.
If 5 ≤ n ≤ 179 with n ̸= 6, and |a1| ≥ 7, then

(2a1)ϕ(n)/2 ≥ 14ϕ(n)/2 > n2,

which implies that ℓn has a high primitive divisor.
If 5 ≤ n ≤ 179 with n ̸= 6, and a1 ≤ 6, then with the aid of a computer one can check that ℓn has

a high primitive divisor, unless a1 = 1 and n ∈ {8,10,12,14,18,24}, or a1 = 2 and n = 12. Note that
this verification is done more efficiently by factorizing ℓn only in the cases in which the inequality
(2a1)ϕ(n)/2 > n2 does not hold.

If a1 = 2 or a1 = 3, then ℓ3 or ℓ4 has a high primitive divisor, respectively. Hereafter, assume
that n ∈ {3,4,6} and a1 ≥ 4. It remains to prove that ℓn has a high primitive divisor. This is done
similarly to the end of the proof of Lemma 7. Since a1 ≥ 4, by reasoning modulo 8 and modulo 9,
it follows easily that a2

1 +2 is not equal to 2s or 2s 3, for some integer s ≥ 0, and that neither a2
1 +1

nor a2
1 +3 is equal to 2s 3t or 2s 3t 5, for some integers s, t ≥ 0. Hence, there exists a prime number

p ≥ 5 dividing a2
1 + 1 and such that pνp (a2

1+1) > 6. We claim that p is a high primitive divisor of
ℓ6. In fact, since p ≥ 5, by (6) and recalling that D = a2

1 +4, we get that p | ℓ6, p ∤ a1Dℓ1 · · ·ℓ5, and
pνp (ℓ6) > 6. The proof that ℓ3 and ℓ4 have a high primitive divisor proceeds similarly. □
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Remark 10. Lemma 9 is optimal, that is, one can verify that if a1 = 1 and n ∈
{3,4,6,8,10,12,14,18,24}, or a1 = 2 and n ∈ {4,6,12}, or a1 = 3 and n ∈ {3,6}, then ℓn has no
high primitive divisor.

For every odd prime number p, let
( D

p

)
denote the Legendre symbol. Note that

( D
p

)= 1 if and
only if f splits modulo p.

Lemma 11. Let n ≥ 3 be an odd integer and let p be an odd prime factor of ℓn . Then we have that( D
p

)= 1.

Proof. Since n is odd, we have that vn := (γn + δn)/(γ+ δ) is a symmetric expression of the
algebraic integers α,β (recall that γ = α and δ = −β). Hence, we get that vn is an integer.
Furthermore, from p | ℓn and the identity

Dv2
n −a2

1ℓ
2
n = (γ+δ)2v2

n − (γ−δ)2ℓ2
n = 4(γδ)2 = 4,

we get that Dv2
n ≡ 22 (mod p). Since p is odd, it follows that p ∤ vn and so D ≡ (2v−1

n )2 (mod p).
Thus

( D
p

)= 1, as desired. □

2.2. Multiplicative orders

For every ideal i of OK and for every θ ∈OK , let ordi(θ) denote the multiplicative order of θmodulo
i (if it exists).

Lemma 12. Let n, v ≥ 1 be integers, let p be a prime number not dividing a1D, and let p be a prime
ideal of OK lying over p. Then pv | ℓn if and only if ordpv (α2) | n. In particular, we have that p is a
primitive divisor of ℓn if and only if n = ordp(α2).

Proof. Since p ∤ a1D , we have that α+β and α−β are invertible modulo pv . Hence, using (2),
we get that pv | ℓn is equivalent to αn ≡ (−β)n (mod pv ), which in turn is equivalent to (α2)n ≡ 1
(mod pv ), since α/(−β) =α2. Thus the claim follows. □

Lemma 13. Let p be an odd prime number, let p be a prime ideal of OK lying over p, and let v ≥ 1
be an integer. Then the equation X 2 ≡ 1 (mod pv ) has exactly two solutions modulo pv , namely 1
and −1.

Proof. The equation X 2 ≡ 1 (mod pv ) is equivalent to νp(X −1)+νp(X +1) ≥ v , where νp is the
p-adic valuation over OK . Moreover, we have that νp(X −1) and νp(X +1) cannot both be positive,
since 2 ∉ p. Hence, either X ≡ 1 (mod pv ) or X ≡−1 (mod pv ). □

Lemma 14. Let p be an odd prime number, let p be a prime ideal of OK lying over p, and let
v ≥ 1 be an integer. Put a := ordpv (α), b := ordpv (β), and c := ordpv (α2). Then the following
statements hold.

(1) If c is odd then a = c and b = 2c, or a = 2c and b = c.
(2) If c is even then a = b = 2c.
(3) lcm(a,b) = 2c.

Proof. Hereafter, all congruences are modulo pv . Since α2c ≡ 1, we have that a | 2c and, by
Lemma 13, that αc ≡ ±1. Moreover, from αa ≡ 1, we have that α2a ≡ 1, and so c | a. Hence,
we get that a = c if αc ≡ 1, and a = 2c if αc ≡−1.

Using the fact that β2 =α−2, we get that c = ordpv (β2). Hence, by a reasoning similar to before,
we have that βc ≡±1, while b = c if βc ≡ 1, and b = 2c if βc ≡−1.

Suppose that c is odd. Since αβ = −1, we have that αcβc ≡ (−1)c ≡ −1. Hence, either αc ≡ 1
and βc ≡ −1, or αc ≡ −1 and βc ≡ 1. By the previous considerations, it follows that either a = c
and b = 2c, or a = 2c and b = c. This proves (1).
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Suppose that c is even. Then, by the minimality of c, we get that αc ≡ βc ≡−1. Hence, by the
previous considerations, we have that a = b = 2c. This proves (2).

Finally, we obtain (3) as a direct consequence of (1) and (2). □

2.3. Second-order linear recurrences

In this section, we collect some results on linear recurrences in L ( f ).

Lemma 15. Let x ∈L ( f ). Then we have that

xn = (x1 −βx0)αn − (x1 −αx0)βn

α−β
for every integer n ≥ 0.

Proof. This is a special case of the general expression of linear recurrences as generalized power
sums [10, Section 1.1.6] and can be easily proven by induction. □

Lemma 16. Let x ∈ L ( f ), let p be a prime number not dividing 2(x2
1 − a1x1x0 − x2

0)D, let p be a
prime ideal of OK lying over p, and let v ≥ 1 be an integer. Then we have that τ(x ; pv ) = 2ordpv (α2).

Proof. The claim can be derived from more general results on the period of linear recurrences
modulo integers [10, Section 3.1], but we provide a short proof for completeness.

Define the matrix

M :=
(

(x1 −βx0) −(x1 −αx0)
(x1 −βx0)α −(x1 −αx0)β

)
and note that

det(M) = (x2
1 −a1x1x0 −x2

0)(α−β).

Since p ∤ (x2
1 − a1x1x0 − x2

0)D , we get that α−β and M are invertible modulo pv . Hence, by
Lemma 15, for every integer n ≥ 1, we have that{

xn ≡ x0

xn+1≡ x1
(mod pv ) ⇐⇒ M

(
αn

βn

)
≡ (α−β)

(
x0

x1

)
(mod pv )

⇐⇒
(
αn

βn

)
≡ M−1(α−β)

(
x0

x1

)
(mod pv )

⇐⇒
(
αn

βn

)
≡

(
1
1

)
(mod pv ).

Therefore, we get that τ(x ; pv ) = lcm
(
ordpv (α),ordpv (β)

)
. Then, since p is odd, the claim follows

from Lemma 14(3). □

Lemma 17. Let n ≥ 3 be integer. Suppose that p is an odd primitive divisor of ℓn such that
( D

p

)= 1.
Then there exists x ∈ L ( f ) such that τ(x ; p) = ρ(x ; p) = 2n and all the residues of x modulo p are
nonzero. Moreover, if n is odd, then there exists y ∈L ( f ) such that τ(y ; p) = ρ(y ; p) = n and all the
residues of y modulo p are nonzero.

Proof. Let p be a prime ideal of OK lying over p. Since p is a primitive divisor of ℓn , by Lemma 12
we have that ordp(α2) = n. Since p is odd and

( D
p

) = 1, we have that f splits modulo p, that is,
there exist integers a,b such that a ≡ α (mod p) and b ≡ β (mod p). In particular, we have that
ordp (a) = ordp(α) and ordp (b) = ordp(β), where ordp denotes the multiplicative order modulo
p. By Lemma 14(1)–(2), we get that ordp (a) = 2n or ordp (b) = 2n. By swapping a and b, we can
assume that ordp (a) = 2n. Let x ∈ L ( f ) such that x0 = 1 and x1 = a. Since f (a) ≡ 0 (mod p),
it follows easily by induction that xn ≡ an (mod p) for every integer n ≥ 0. Hence, we get that
τ(x ; p) = ρ(x ; p) = 2n and all the residues of x modulo p are nonzero, as desired.
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If n is odd, then by Lemma 14(1), we have that ordp (b) = n. Let y ∈L ( f ) such that y0 = 1 and
y1 = b. Then, reasoning as for x , we get that τ(y ; p) = ρ(y ; p) = n and all the residues of y modulo
p are nonzero, as desired. □

Lemma 18. Let x ∈ L ( f ) with x0 = 1, let p be a prime number not dividing D, let p be a prime
ideal of OK lying over p, let v ≥ 1 be an integer, let n := ordp(α2), and let s ≥ 0 be an integer. Then
we have that xs ≡ 0 (mod pv ) if and only if

x1 ≡ β−αys

1− ys
(mod pv ) (8)

and 1− ys is invertible modulo pv , where ys := (−α2)−s .

Proof. Since p ∤ D , we get that α−β is invertible modulo pv . Hence, employing Lemma 15 and
the fact that β=−α−1, it follows easily that xs ≡ 0 (mod pv ) is equivalent to

x1(1− ys ) ≡β−αys (mod pv ). (9)

We claim that if (9) holds then 1− ys is invertible modulo pv . Indeed, if 1− ys is not invertible
modulo pv , then ys ≡ 1 (mod p), and so (9) implies that α−β≡ 0 (mod p), which is a contradic-
tion, since p ∤D . Hence, we have that 1− ys is invertible modulo pv . Consequently, we get that (9)
is equivalent to (8) and 1− ys being invertible modulo pv , as desired. □

Lemma 19. Let x ∈ L ( f ) with x0 = 1, let p be a prime number not dividing D, let p be a prime
ideal of OK lying over p, let v ≥ 1 be an integer, let n := ordp(α2), and let s, t be integers such that
0 ≤ s < t < 2n and s ≡ t (mod 2). Then we have that xs ≡ xt (mod pv ) if and only if

x1 ≡
β−αzs,t

1− zs,t
(mod pv ) (10)

and 1− zs,t is invertible modulo pv , where zs,t := (−1)t+1α−(s+t ).

Proof. Since p ∤ D , we get that α−β is invertible modulo pv . Hence, employing Lemma 15, we
have that xs ≡ xt (mod pv ) is equivalent to

(x1 −β)αs − (x1 −α)βs ≡ (x1 −β)αt − (x1 −α)βt (mod pv ). (11)

Since 0 ≤ s < t < 2n, s ≡ t (mod 2), and n := ordp(α2), we have that 1−αt−s is invertible modulo
pv . Hence, it follows that (11) is equivalent to

x1 −β≡ βt (βs−t −1)

αs (1−αt−s )
(x1 −α) (mod pv ). (12)

Since β=−α−1 and s ≡ t (mod 2), we get that

βt (βs−t −1)

αs (1−αt−s )
= (−1)t+1α−(s+t ) = zs,t .

Therefore, we have that (12) is equivalent to

x1(1− zs,t ) ≡β−αzs,t (mod pv ). (13)

We claim that if (13) holds then 1 − zs,t is invertible modulo pv . Indeed, if 1 − zs,t is not
invertible modulo pv , then zs,t ≡ 1 (mod p), and so (13) implies that α−β ≡ 0 (mod p), which
is a contradiction, since p ∤D . Hence, we have that 1−zs,t is invertible modulo pv . Consequently,
we get that (13) is equivalent to (10) and 1− zs,t being invertible modulo pv , as desired. □

Lemma 20. Let n ≥ 4 be an even integer. Suppose that p is a high primitive divisor of ℓn such
that

( D
p

) = −1, and put v := νp (ℓn). Then there exists x ∈ L ( f ) such that τ(x ; pv ) = 2n, xs ̸≡ xt

(mod pv ) for all integers s, t with 0 ≤ s < t < 2n and s ≡ t (mod 2), and all the residues of x modulo
pv are nonzero.
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Proof. Let p be a prime ideal of OK lying over p. Since p is a primitive divisor of ℓn and pv | ℓn ,
from Lemma 12 we have that n = ordp(α2) = ordpv (α2).

We claim that there exists an integer c that satisfies

c ̸≡ β−α2k+1

1−α2k
(mod pv ) (14)

for every integer k ≥ 0 such that 1−α2k is invertible modulo pv . Indeed, we have pv choices for c
modulo pv , while the right-hand side of (14) takes at most n = ordpv (α2) values modulo pv . Since
p is a high primitive divisor of ℓn , we have that pv > n and so it is possible to choose a value of c
with the desired property.

Let x ∈ L ( f ) with x0 = 1 and x1 = c. Since
( D

p

) = −1, we have that p ∤ D and that f has no

roots modulo p. Hence, also since p is odd, we get that p ∤ 2(x2
1 − a1x1 −1)D . Consequently, by

Lemma 16, we get that τ(x ; pv ) = 2n, as desired.
Since n = ordpv (α2), we have that α2n ≡ 1 (mod pv ). Consequently, by Lemma 13, we get that

αn ≡ ±1 (mod pv ). In fact, since n is even and n = ordpv (α2), it follows that αn ≡ −1 (mod pv ).
Hence, we have that −1 is equal to a power of α2 modulo pv .

Suppose that there exist integers s, t such that 0 ≤ s < t < 2n, s ≡ t (mod 2), and xs ≡ xt

(mod pv ). By Lemma 19, we get that

c ≡ x1 ≡
β−αzs,t

1− zs,t
(mod pv ), (15)

where zs,t := (−1)t+1α−(s+t ) is equal to a power of α2 modulo pv . But then (14) and (15) are in
contradiction. Therefore, it follows that xs ̸≡ xt (mod pv ) for all integers s, t with 0 ≤ s < t < 2n
and s ≡ t (mod 2).

Suppose that xs ≡ 0 (mod pv ) for some integer s ≥ 0. Then, by Lemma 18, we have that

c ≡ x1 ≡ β−αys

1− ys
(mod pv ), (16)

where ys := (−α2)−s is equal to a power of α2 modulo pv . But then (14) and (16) are in
contradiction. Therefore, it follows that xs ̸≡ 0 (mod pv ) for all integers s ≥ 0. □

For every x ∈L ( f ) and for all integers m,d ≥ 1 and r , let us define

ρ(x ;m,r,d) := #
{

xn mod m : n ≥ 0, n ≡ r (mod d)
}
.

We need the following lemma.

Lemma 21. Let m1,m2 ≥ 1 be coprime integers, let x (1), x (2) ∈ L ( f ), and put τi := τ(x (i );mi ) for
each i ∈ {1,2}. If ρ(x (2);m2) = τ2 then there exists x ∈ L ( f ) such that x ≡ x (i ) (mod mi ) for each
i ∈ {1,2}, and

ρ(x ;m1m2) = τ2

d

d−1∑
r=0

ρ(x (1);m1,r,d),

where d := gcd(τ1,τ2).

Proof. Since m1,m2 are coprime, we can pick x ∈ L ( f ) such that x j ≡ x(i )
j (mod mi ) for each

i ∈ {1,2} and j ∈ {0,1}. Then, it follows easily by induction that x j ≡ x(i )
j (mod mi ) for each

i ∈ {1,2} and for every integer j ≥ 0. At this point, the rest of the claim is a consequence of [9,
Lemma 6]. □
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3. Proof of Theorem 1

We collected in Table 1 some values of τ(x ;m) and ρ(x ;m), for x ∈ L ( f ) and m ∈ Z+, that are
needed for the proof. We begin with the following lemma.

Lemma 22. There exist x ∈ L ( f ) and m ∈ Z+ such that ρ(x ;m) = 4 and all the residues of x
modulo m are nonzero. In particular, we have that 4 ∈R( f ).

Proof. If a1 = 1 or a1 = 2, then the claim follows from rows 2 or 13 of Table 1, respectively.
If a1 is odd and a1 ≥ 3, then pick x ∈ L ( f ) with x0 = 1, x1 = 2, and let m := 2a1. Since 2a1 ≡ 0

(mod m) and a2
1 ≡ a1 (mod m), we get that the first terms of x are congruent to

1, 2, 1, a1 +2, a1 +1, a1 +2, 1, 2, . . . (mod m).

Noting that m ≥ 6 and a1 ̸≡ −2,−1,0,1 (mod m), it follows easily that τ(x ;m) = 6, ρ(x ;m) = 4 and
that all the residues of x modulo m are nonzero.

If a1 is even and a1 ≥ 4, then pick x ∈ L ( f ) with x0 = 1, x1 = 3, and let m := 2a1. Since
a2

1 ≡ 2a1 ≡ 0 (mod m), we get that the first terms of x are congruent to

1, 3, a1 +1, a1 +3, 1, 3, . . . (mod m).

Noting that m ≥ 8 and a1 ̸≡ −3,−2,−1,0,2 (mod m), it follows easily that τ(x ;m) = ρ(x ;m) = 4
and that all the residues of x modulo m are nonzero. □

Table 1. Values of τ(x ;m) and ρ(x ;m) for x ∈L (X 2−a1X −1) with initial values x0, x1. The
symbol ∗ means that all the residues of x modulo m are nonzero.

row n. a1 x0 x1 m τ(x ;m) ρ(x ;m)

1 1 0 1 3 8 3
2 1 1 3 5 4 4 ∗
3 1 1 3 8 12 6 ∗
4 1 1 3 10 12 8 ∗
5 1 1 3 13 28 12 ∗
6 1 1 3 17 36 16 ∗
7 1 1 3 28 48 20 ∗
8 1 1 3 26 84 24 ∗
9 1 1 3 56 48 28 ∗

10 1 1 3 52 84 36 ∗
11 1 1 3 78 168 48 ∗
12 2 1 1 4 4 2 ∗
13 2 1 1 5 12 4 ∗
14 2 1 1 28 12 8 ∗
15 2 1 1 13 28 12 ∗
16 2 1 1 39 56 24 ∗
17 3 1 1 9 6 3 ∗
18 3 1 1 8 12 6 ∗
19 3 1 1 17 16 12 ∗

We have to prove that R( f ) = Z+. First, we prove that {n,2n} ⊆ R( f ) for every odd integer
n ≥ 1. We have that 1 ∈ R( f ), since ρ(x ;1) = 1 for every x ∈ L ( f ); and 2 ∈ R( f ), since ρ(x ;2) = 2
for every x ∈ L ( f ) with x0 ̸≡ x1 (mod 2). If a1 = 1, or a1 = 3, then {3,6} ⊆ R( f ) by rows 1 and 3,
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or 17 and 18, of Table 1, respectively. Hence, assume that n ≥ 3 is an odd integer, and a1 ∉ {1,3}
or n ̸= 3. By Lemma 7, we have that ℓn has an odd primitive divisor p. Moreover, since n is odd,
from Lemma 11 it follows that

( D
p

)= 1. Therefore, from Lemma 17 we obtain that {n,2n} ⊆R( f ).
It remains to prove that 2n ∈ R( f ) for every even integer n ≥ 2. By Lemma 22, we have that

4 ∈R( f ). Hence, we can assume that n ≥ 4.
If a1 = 1 and n ∈ {4,6,8,10,12,14,18,24}, or a1 = 2 and n ∈ {4,6,12}, or a1 = 3 and n = 6, then

2n ∈R( f ) by rows 4–11, 14–16, or 19 of Table 1, respectively.
Hence, assume that n ≥ 4 is an even integer, and that a1 = 1 and n ∉ {4,6,8,10, 12,14,18,24}, or

a1 = 2 and n ∉ {4,6,12}, or a1 = 3 and n ̸= 6, or a1 ≥ 4. Then, by Lemma 9, we have that ℓn has a
high primitive divisor p.

If
( D

p

) = 1 then Lemma 17 yields that 2n ∈ R( f ), as desired. Hence, suppose that
( D

p

) = −1.

Thanks to Lemma 20, there exists x (1) ∈L ( f ) such that τ(x (1);m1) = 2n and ρ(x (1);m1,r,2) = n for
each r ∈ {0,1}, where m1 := pνp (ℓn ). Note that, since n is even, we also get thatρ(x (1);m1,r,4) = n/2
for each r ∈ {0,1,2,3}. We define x (2) ∈ L ( f ) and m2 ∈ Z+ as follows. If a1 = 1 then we pick x (2)

and m2 from rows 2 of Table 1. If a1 ≥ 2 then we let x(2)
0 := 0, x(2)

1 := 1, and put m2 := a1. It
follows easily that τ(x (2);m2) = ρ(x (2);m2) ∈ {2,4}. Since p is a primitive divisor of ℓn , we have
that p ∤ a1D . Hence, we get that m1,m2 are coprime integers. (Note that m2 = D = 5 if a1 = 1.) Put
τi := τ(x (i );mi ) for each i ∈ {1,2}, and let d := gcd(τ1,τ2). Note that, since n is even, we have that
d = τ2 ∈ {2,4}. Therefore, applying Lemma 21 we get that there exists x ∈L ( f ) such that

ρ(x ;m1m2) = τ2

d

d−1∑
r=0

ρ(x (1);m1,r,d) = 1 ·
d−1∑
r=0

2n

d
= 2n,

so that 2n ∈R( f ), as desired. The proof that R( f ) =Z+ is complete.
At this point, note that for each integer n ≥ 4, and for each integer n ≥ 3 if a1 ≥ 2, the sequence

x ∈L ( f ) and the modulo m that we constructed so that ρ(x ;m) = n have the additional property
that all the residues of x modulo m are nonzero. This follows from Table 1, Lemma 17, Lemma 22,
and Lemma 20–Lemma 21 (note that x has no zero modulo m1m2 since x (1) has no zero modulo
m1). Moreover, if a1 ≥ 2, then picking x ∈ L ( f ) with x0 = 1, x1 = 1, and m := a1, we get that
ρ(x ;m) = 1 and all the residues of x modulo m are nonzero. If a1 = 2 or a1 ≥ 3, then picking x and
m as in row 12 of Table 1, or taking x0 = 1, x1 = 2, and m = a1, we get that ρ(x ;m) = 2 and all the
residues of x modulo m are nonzero.

It remains to prove that if a1 = 1 and n ∈ {1,2,3} then there exist no x ∈L ( f ) and m ∈Z+ such
that ρ(x ;m) = n and all the residues of x modulo m are nonzero. This is done in the last paragraph
of [9, p. 122].

The proof is complete.

4. Proof of Corollary 2

If a1 = 1 then the result is in fact [9, Corollary 2]. Hence, assume that a1 ≥ 2.
We order α and β so that α= (

a1 +
p

D
)
/2 and β= (

a1 −
p

D
)
/2. In particular, note that α> 1

and −1 <β< 0.
Let k ≥ 1 be an integer. By Theorem 1, there exist x ∈ L ( f ) and m ∈ Z+ such that ρ(x ;m) = k

and xn ̸≡ 0 (mod m) for every integer n ≥ 0. Moreover, by Lemma 15, we have that xn =
c1α

n − c2β
n for all integers n ≥ 0, where

c1 := x1 −βx0

α−β and c2 := x1 −αx0

α−β .
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By eventually replacing x with −x := (−xn)n≥0, we can assume that c1 > 0. Furthermore, note that
c2 ̸= 0. Let ξ := c1/m, so that ξ ∈Q(α). Then, we have that

ξαn − xn

m
= c2β

n

m
−→ 0, (17)

as n → +∞, since |β| < 1. Let r1, . . . ,rk ∈ Z, with 0 < r1 < ·· · < rk < m, be the residues of x
modulo m. From (17) it follows easily that the set of limit points of

(
frac(ξαn)

)
n≥0 is equal to

{r1/m, . . . ,rk /m}. Hence, we get that
(
frac(ξαn)

)
n≥0 has exactly k limit points.

The proof is complete.
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