
Comptes Rendus

Mathématique

Antoine Detaille and Katarzyna Mazowiecka

Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere

Volume 362 (2024), p. 1357-1364

Online since: 14 November 2024

https://doi.org/10.5802/crmath.648

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

The Comptes Rendus. Mathématique are a member of the
Mersenne Center for open scientific publishing

www.centre-mersenne.org — e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.648
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus. Mathématique
2024, Vol. 362, p. 1357-1364

https://doi.org/10.5802/crmath.648

Research article / Article de recherche
Partial differential equations / Équations aux dérivées partielles

Generic non-uniqueness of minimizing
harmonic maps from a ball to a sphere

Non-unicité générique pour les applications
harmoniques minimisantes sur une boule à valeurs
dans une sphère.

Antoine Detaille ∗,a and KatarzynaMazowiecka b

a Universite Claude Bernard Lyon 1, ICJ UMR5208, CNRS, École Centrale de Lyon,
INSA Lyon, Université Jean Monnet, 69622 Villeurbanne, France.
b Institute of Mathematics,University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

E-mails: antoine.detaille@univ-lyon1.fr , k.mazowiecka@mimuw.edu.pl

Abstract. In this note, we study non-uniqueness for minimizing harmonic maps from B3 toS2. We show that
every boundary map can be modified to a boundary map that admits multiple minimizers of the Dirichlet
energy by a small W 1,p -change for p < 2. This strengthens a remark by the second-named author and
Strzelecki. The main novel ingredient is a homotopy construction, which is the answer to an easier variant of
a challenging question regarding the existence of a norm control for homotopies between W 1,p maps.

Résumé. Dans cette note, nous étudions la non-unicité pour les applications harmoniques de B3 dans S2.
Nous montrons que toute application au bord peut être modifiée en une application au bord qui admet
plusieurs minimiseurs de l’énergie de Dirichlet au moyen d’un petit changement W 1,p pour p < 2. Ceci
renforce la conclusion d’une remarque du second auteur avec Strzelecki. L’ingrédient nouveau principal
est une construction d’homotopie, qui répond à une variante simplifiée d’une question difficile concernant
l’existence d’un contrôle sur la norme des homotopies entre applications W 1,p .
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1. Introduction

Minimizing harmonic maps from B 3 toS2 are defined as mappings with the least Dirichlet energy

E(u) :=
∫

B 3
|∇u|2 dx (1)

among maps u ∈ W 1,2(B 3,S2) with fixed boundary datum u
∣∣
∂B 3 = ϕ ∈ W

1
2 ,2(∂B 3,S2). Here, we

minimize in the class of Sobolev maps with values in a manifold (in our case, a sphere); for s > 0
and p ≥ 1, this space is defined as

W s,p (M ,N ) := {v ∈W s,p (M ,RL) : v(x) ∈N for a.e. x ∈M },

where N ⊂ RL is a Riemannian manifold embedded into RL (in our case, N = S2) and M is a
compact Riemannian manifold (in our case, M = B 3 or M =S2).

The space W 1,2(B 3,S2) is not a linear space, but it is nevertheless a complete metric space
endowed with the metric defined by

dist(u, v) = ∥u − v∥W 1,2(B 3) .

We emphasize that, although being a subset of it, the class W 1,2(B 3,S2) exhibits some striking
qualitative differences with the linear space W 1,2(B 3,R3). For example, not every mapping
u ∈ W 1,2(B 3,S2) can be approximated by smooth maps ui ∈ C∞(B 3,S2) in the strong topology
of W 1,2; see [14, Section 4]. However, maps ϕ ∈ W 1,2(S2,S2) can be approximated in W 1,2 by
smooth maps ϕi ∈C∞(S2,S2); see [13, Section 3].

For ϕ ∈W
1
2 ,2(∂B 3,S2), we also define the space

W 1,2
ϕ (B 3,S2) := {v ∈W 1,2(B 3,S2) : v =ϕ on ∂B 3 in the trace sense}

and note that this space is always nonempty. For instance, for a given smooth boundary
datum ϕ ∈ C∞(∂B 3,S2), one can easily construct an extension u ∈ W 1,2(B 3,S2) of ϕ, simply
by considering u(x) = ϕ

( x
|x|

)
. More generally, any boundary map ϕ ∈ W

1
2 ,2(∂B 3,S2) admits an

extension u ∈ W 1,2(B 3,S2); see [6, Theorem 6.2]. Once again, we emphasize that this is not an
immediate consequence of the analogue property of linear Sobolev spaces. For example, there
exists a boundary datum ϕ ∈ W

1
2 ,2(∂B 3,S1) which has no extension u ∈ W 1,2(B 3,S1); see [6,

Section 6.3].
Minimizing harmonic maps satisfy the following system of Euler–Lagrange equations{

−∆u = |∇u|2u in B 3,

u =ϕ on ∂B 3.
(2)

It is known that for every non-constant boundary datum, the system (2) admits infinitely many
solutions; see [12]. Minimizers of (1) are not the only solutions to (2) (see, e.g., [5, Section 3]).
However, even in the class of minimizing harmonic maps, we do not have uniqueness for a given
boundary datum ϕ : B 3 →S2; there are many known examples. To list a few:

• in [3, Section 3], there is an example of a planar boundary datum which admits two
different minimizers, one with values on the southern hemisphere and the other one
with values on the northern hemisphere;

• in [4, Section 2.2. Corollary], there is an example of a boundary datum for which there
exists a 1-parameter family of distinct energy minimizing maps;

• in [7, Section 5], there is an example of a boundary map which serves as a boundary
datum for at least two minimizers, one singular and the other one regular;

• in [1, Section 5.5. Theorem], there is an example of a boundary datum with mirror sym-
metry for which there are at least two different minimizers without the mirror symmetry.
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Nevertheless, in the class of minimizing harmonic maps, we have the following generic
uniqueness result ([1] attributes this theorem to Almgren).

Theorem 1 ([1, Theorem 4.1]). Let ϕ ∈W 1,2(S2,S2). For every ε> 0, there exists ψ ∈W 1,2(S2,S2)
such that ∥ϕ−ψ∥W 1,2(S2) < ε and for which there exists exactly one energy minimizer u : B 3 → S2

having boundary datum ψ. Moreover, ψ coincides with ϕ outside of Bε(x)∩S2, for some x ∈S2.

In [11], the second-named author and Strzelecki suspected that generic non-uniqueness oc-
curs, when taking into account small perturbations of the boundary datum in the topology of the
space W 1,p for p < 2. The main result of this note is the strengthening of [11, Remark 4.1].

Theorem 2. Let ϕ ∈ C∞(S2,S2). For every ε > 0, there exists ψ ∈ C∞(S2,S2) such that
∥ϕ−ψ∥W 1,p (S2,S2) < ε which serves as a boundary datum for at least two energy minimizing maps
from B 3 to S2 having a different number of singularities.

Otherwise stated, Theorem 2 asserts that boundary data for which non-uniqueness occurs
are dense in W 1,p (S2,S2). This strengthens [7, Section 5] and [11, Remark 4.1], which provide
existence of one boundary map for which non-uniqueness occurs. To be precise, as it is stated,
Theorem 2 only asserts that boundary data subjected to non-uniqueness are dense in C∞(S2,S2)
with respect to the W 1,p topology. In turn, C∞(S2,S2) is dense in W 1,p (S2,S2) (see e.g. [2,
Theorem 1]), which ensures the density of boundary data for which non-uniqueness occurs in
the whole W 1,p (S2,S2).

Both Theorem 1 and Theorem 2 are in line with the stability results: On one hand, it is
known that small perturbations of boundary data (for which there is a unique minimizer) in the
W 1,2 norm do not change the number of singularities for corresponding minimizers (see [7] for
perturbations in the W 1,∞ norm, [8] and [10] for perturbations in the W 1,2 norm). On the other
hand, small perturbations of the boundary datum in the W 1,p norm for p < 2 can change the
number of singularities for corresponding minimizers [11].

We prove Theorem 2 in Section 3. To do so, roughly speaking, we follow an example by Hardt–
Lin [7, Section 5]. We start with any smooth boundary datum and use the construction of a
boundary map (homotopic to the original one) of [11] (see [9] for necessary modifications) for
which a Lavrentiev gap phenomenon occurs. In Section 2, we show that a homotopy between
these two maps can be chosen small in W 1,p -norm for p < 2, which is the novelty of this note,
and prove that within this homotopy, there is a boundary datum with the required properties.

As we explained, our key contribution in this note, which allows the transition from the exis-
tence to the density of boundary data where non-uniqueness occurs, is the homotopy construc-
tion presented in Section 2. We conclude this introduction with some extra comments concern-
ing this construction.

Assume that one is given 1 ≤ p < 2 and two maps ϕ and ψ ∈ C∞(S2,S2) that have the same
topological degree. Therefore, there exists a continuous, and even smooth homotopy connecting
ϕ to ψ. A natural question is whether or not, knowing that ϕ and ψ are close with respect to the
W 1,p distance, one can choose the homotopy between ϕ and ψ to remain close to ϕ and ψ all
along the deformation. More precisely, one could for instance expect that there exists a constant
C > 0 depending on p such that a homotopy H ∈ C∞(S2 × [0,1],S2) between ϕ and ψ can be
chosen so that ∥∥ϕ−Ht

∥∥
W 1,p (S2) ≤C

∥∥ϕ−ψ∥∥
W 1,p (S2) for every 0 ≤ t ≤ 1. (3)

Here, Ht stands for the map H(·, t ). The question is already interesting if we assume in addition
that ϕ and ψ coincide outside of a small disk. For instance, one could ask whether or not a
homotopy such that (3) holds can be found under the additional assumption that ϕ=ψ outside
of a ball of radius r , for some r > 0 sufficiently small, possibly depending on the mapϕ that would
be fixed in advance.
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We are not able to solve this question, and a precise statement of the problem in a more
general context is given as Open Problem 5. However, we are able to solve a weaker version of
this problem, which is nevertheless sufficient for our purposes. Namely, we prove that, if the
maps ϕ and ψ coincide outside of a small ball, then a smooth homotopy between them can be
found such that ∥ϕ−Ht∥W 1,p (S2) is controlled, not by the distance between ϕ and ψ, but by the
sum of their norms on a neighborhood of the region where they differ. This is the content of the
main result of Section 2, Proposition 3. This allows us to deduce that, for a fixed ϕ and a given
ε> 0, one can choose the radius r > 0 sufficiently small such that, for any mapψ sufficiently close
to ϕ such that ϕ=ψ outside of Br (x), a homotopy H connecting ϕ to ψ can be found such that∥∥ϕ−Ht

∥∥
W 1,p (S2) ≤ ε for every 0 ≤ t ≤ 1;

see Corollary 4. This is sufficient to prove our main result, Theorem 2, but does not solve Open
Problem 5, as in our proof the radius r > 0 of the ball outside of which the maps ϕ and ψ are
required to coincide has to depend on ε, ruling out the possibility of controlling ∥ϕ−Ht∥W 1,p (S2)
uniformly in t solely by ∥ϕ−ψ∥W 1,p (S2) with our argument.

Notation. We denote by B 3 a Euclidean unit ball in R3. We will write Sn for the unit n-
dimensional sphere. For a point x ∈ Sn and r > 0, we will write Br (x) for a geodesic ball of
radius r around x. We will write A ≾B whenever there is a constant C (independent of all crucial
quantities) such that A ≤C B . Throughout this paper, the term minimizer will always refer to an
S2-valued mapping minimizing the Dirichlet energy with given boundary datum.

2. Homotopy construction

We will assume in this section that N is a (non necessarily compact) Riemannian manifold. We
work on the sphere Sn , but the result may be readily extended to an arbitrary domain, either an
open subset of Rn or a Riemannian manifold M of dimension n. We also always assume that
p < n.

Proposition 3. Let ϕ ∈ C∞(Sn ,N ) and p < n. For every r > 0, for every x ∈ Sn , and every
ψ ∈ C∞(Sn ,N ) homotopic to ϕ and satisfying ϕ = ψ on Sn \ Br (x), there exists a homotopy
H ∈C∞(Sn × [0,1],N ) from ϕ to ψ such that

sup
0≤t≤1

∥∥ϕ−Ht
∥∥

W 1,p (Sn ) ≤C
(∥∥ϕ∥∥

W 1,p (B2r (x)) +
∥∥ψ∥∥

W 1,p (B2r (x))

)
,

for some constant C > 0 depending only on n and p.

This proposition can be used in combination with Lebesgue’s lemma to obtain a homotopy
which remains close to ϕ in W 1,p . Indeed, choosing r sufficiently small, depending on ϕ,
we may ensure that ∥ϕ∥W 1,p (B2r (x)) is as small as we want, uniformly with respect to r . Since
∥ψ∥W 1,p (B2r (x)) ≤ ∥ϕ∥W 1,p (B2r (x)) + ∥ϕ−ψ∥W 1,p (Sn ), assuming in addition that ∥ϕ−ψ∥W 1,p (Sn ) is
small, we can make sup0≤t≤1 ∥ϕ−Ht∥W 1,p (Sn ) as small as we want. This yields the following
corollary.

Corollary 4. Let ϕ ∈ C∞(Sn ,N ) and p < n. For every ε > 0, there exists r > 0 sufficiently small,
depending on ϕ, and there exists δ > 0 such that, for every x ∈ Sn and every ψ ∈ C∞(Sn ,N )
homotopic toϕ and satisfyingϕ=ψ onSn \Br (x) and ∥ϕ−ψ∥W 1,p (Sn ) ≤ δ, there exists a homotopy
H ∈C∞(Sn × [0,1],N ) from ϕ to ψ such that

sup
0≤t≤1

∥∥ϕ−Ht
∥∥

W 1,p (Sn ) ≤ ε.
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Proof of Proposition 3. Let G ∈ C∞(Sn × [0,1],N ) be any homotopy connecting ϕ to ψ with
G0 = ϕ and G1 = ψ. Since ϕ = ψ outside of Br (x), we may assume that G is stationary outside
of Br (x), i.e., for each t ∈ [0,1], we have Gt = ϕ = ψ on Sn \ Br (x). This claim can be proved
with a by-hand construction, that we sketch below. We denote by x̂ the point at the antipode
of x. Let Ψ : Sn → Sn be a smooth map such that Ψ = id outside of Br (x), and such that Ψ
maps the annulus Br (x) \ B r /2(x) diffeomorphically onto the annulus Sn \ (B r (x)∪ {x̂}), the circle
∂Br /2(x) onto {x̂}, and the ball Br /2(x) diffeomorphically onto Sn \ {x̂}. It is readily observed that
Ψ∼ id, through a homotopy stationary outside of Br (x). Therefore, the maps u ◦Ψ and v ◦Ψ are
homotopic to u and v respectively, through a homotopy stationary outside of Br (x). Now, given a
homotopy G ′ connecting u to v , a homotopy G ′′ connecting u ◦Ψ to v ◦Ψ can be constructed by
prescribing that G ′′ is stationary outside of Br , by letting G ′′

t =G ′
t ◦Ψ on B r /2 — which corresponds

to rescaling G ′ from Sn \ {x̂} to Br (x) — and extending smoothly on the annulus Br \ B r /2. This is
readily done by combining the observations that (i) u ◦Ψ and v ◦Ψ coincide also on Br \ Br /2(x)
and are constant on ∂Br /2(x), and (ii) G ′′

t is constant on ∂Br /2(x). The required homotopy G
stationary outside of Br (x) is then obtained by patching the three above homotopies, from u to
u ◦Ψ, from u ◦Ψ to v ◦Ψ, and from v ◦Ψ to v .

Consider τ> 0, which will be chosen sufficiently small at a later stage. We are going to rescale
G , ϕ, and ψ from Br (x) to a smaller ball Bτ(x), while keeping them unchanged outside of B2r (x).
More specifically, let (Φt )0≤t≤1 be a family of smooth diffeomorphisms of Sn such that Φt = id
outside of B2r (x) and such that, on B2r (x), in the local chart given by the exponential map around
x,Φt is expressed as{

r x
(1−t )r+tτ if |x| ≤ (1− t )r + tτ,
x
|x|

(
r

2r−(1−t )r−tτ (|x|− (1− t )r − tτ)+ r
)

if (1− t )r + tτ≤ |x| ≤ 2r .

We define H ∈C∞(Sn × [0,1],N ) by

Ht :=


ϕ◦Φ3t if 0 ≤ t ≤ 1

3 ,

G3(t−1/3) ◦Φ1 if 1
3 ≤ t ≤ 2

3 ,

ψ◦Φ1−3(t−2/3) if 2
3 ≤ t ≤ 1.

Of course, H is a homotopy from ϕ to ψ. It remains to show that, if τ> 0 is suitably small, then H
satisfies the required estimate.

For 0 ≤ t ≤ 1
3 , we note thatϕ−Ht = 0 outside B2r (x). We readily obtain bounds on the Jacobian

and the derivatives ofΦt , so that the change of variable theorem combined with n−p > 0 implies
that ∥∥ϕ−Ht

∥∥
W 1,p (Sn ) ≤

∥∥ϕ∥∥
W 1,p (B2r (x)) +

∥∥ϕ◦Φ3t
∥∥

W 1,p (B2r (x)) ≾
∥∥ϕ∥∥

W 1,p (B2r (x)) .

Similarly, for 2
3 ≤ t ≤ 1, we have∥∥ϕ−Ht

∥∥
W 1,p (Sn ) ≤

∥∥ϕ∥∥
W 1,p (B2r (x)) +

∥∥ψ◦Φ3t
∥∥

W 1,p (B2r (x)) ≲
∥∥ϕ∥∥

W 1,p (B2r (x)) +
∥∥ψ∥∥

W 1,p (B2r (x)) .

Concerning 1
3 ≤ t ≤ 2

3 , we estimate∥∥ϕ−Ht
∥∥

W 1,p (Sn ) ≤
∥∥ϕ∥∥

W 1,p (B2r (x)) +
∥∥G3(t−1/3) ◦Φ1

∥∥
W 1,p (B2r (x))

≲
∥∥ϕ∥∥

W 1,p (B2r (x)) +
∥∥G3(t−1/3)

∥∥
W 1,p (B2r (x)\Br (x)) +τ

n−p
p

∥∥G3(t−1/3)
∥∥

W 1,p (B2r (x)) .

Since the homotopy G has been assumed to be stationary outside of Br (x), we know that
∥G3(t−1/3)∥W 1,p (B2r (x)\Br (x)) = ∥ϕ∥W 1,p (B2r (x)\Br (x)). On the other hand, by compactness, we have

sup
0≤t≤1

∥Gt∥W 1,p (B2r (x)) ≤C1

for some possibly large constant C1 > 0. We may assume that either ∥ϕ∥W 1,p (B2r (x)) ̸= 0 or
∥ψ∥W 1,p (B2r (x)) ̸= 0. Indeed, if ∥ϕ∥W 1,p (B2r (x)) = 0 = ∥ψ∥W 1,p (B2r (x)), this implies that both ϕ and ψ

are identically zero — note that this may only happen if 0 ∈ N — and we may directly conclude
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by choosing H to be constantly zero. As p < n, we may therefore choose τ> 0 sufficiently small,
depending on C1, so that

τ
n−p

p
∥∥G3(t−1/3)

∥∥
W 1,p (B2r (x)) ≤

∥∥ϕ∥∥
W 1,p (B2r (x)) +

∥∥ψ∥∥
W 1,p (B2r (x)) for every

1

3
≤ t ≤ 2

3
.

Hence, we deduce that∥∥ϕ−Ht
∥∥

W 1,p (Sn ) ≲
∥∥ϕ∥∥

W 1,p (B2r (x)) +
∥∥ψ∥∥

W 1,p (B2r (x)) for every
1

3
≤ t ≤ 2

3
.

This concludes the proof. □

In Corollary 4, both the δ > 0 controlling ∥ϕ−ψ∥W 1,p (Sn ) and the r > 0 depend on ε. A very
natural question is whether or not one may find a homotopy H so that sup0≤t≤1 ∥ϕ−Ht∥W 1,p (Sn )
is controlled only by ∥ϕ−ψ∥W 1,p (Sn ). More precisely, we formulate the following open question
(cf. [11, Problem, p. 11]).

Open Problem 5. Let ϕ ∈C∞(Sn ,N ). Does there exist some r > 0, possibly depending on ϕ, such
that for every x ∈Sn and every ψ ∈C∞(Sn ,N ) homotopic to ϕ and satisfying ϕ=ψ on Sn \ Br (x),
there exists a homotopy H ∈C∞(Sn × [0,1],N ) from ϕ to ψ such that

sup
0≤t≤1

∥∥ϕ−Ht
∥∥

W 1,p (Sn ) ≤ω
(∥∥ϕ−ψ∥∥

W 1,p (Sn )

)
,

where ω is a modulus of continuity satisfying ω (t ) → 0 as t → 0.

One may expectω to be linear in t , but any modulus of continuity would already be of interest.
The question is already interesting for maps S2 →S2.

3. Proof of the generic non-uniqueness

Proof of Theorem 2. Fix ε > 0 and ϕ ∈ C∞(S2,S2). We note first that, by Theorem 1 combined
with Hölder’s inequality, we may find another mapping ϕ0 ∈ C∞(S2,S2) which admits exactly
one energy minimizer u0 : B 3 → S2 among all maps having boundary datum ϕ0, and such that
ϕ0 differs from ϕ only on a set B ε

2
(x0) for some x0 ∈S2 and is such that∥∥ϕ−ϕ0

∥∥
W 1,p (S2) <

ε

2
. (4)

We recall that, combining the regularity result [13, Theorem II] with the boundary regularity [14,
Theorem 2.7] of Schoen–Uhlenbeck, u0 can have only a finite number of singularities; let us
denote this number by M = #singu (possibly M = 0).

Next, we apply Corollary 4 to ϕ0 ∈C∞(S2,S2). We obtain the existence of a δ= δ(ε) > 0 and an
r = r (ϕ0,ε) > 0 such that for any ψ ∈ C∞(S2,S2) that differs from ϕ0 only on the set Br (x0) and
such that ∥ϕ0 −ψ∥W 1,p (S2) < δ, there exists a homotopy H ∈C∞(S2 × [0,1],S2) with

sup
0≤t≤1

∥∥ϕ0 −Ht
∥∥

W 1,p (S2) <
ε

2
. (5)

Let ε1 := min{δ,r, ε2 }. By [9, Theorem 2.3.1], we construct ϕ1 ∈C∞(S2,S2) with the properties:

(1) degϕ0 = degϕ1;
(2) ∥ϕ0 −ϕ1∥W 1,p < ε1 and ϕ0 =ϕ1 except on Bε1 (x) for some point x ∈S2;
(3) ϕ1 admits only one energy minimizer u1 : B 3 →S2 having at least M +1 singularities.

To be precise, the statement [9, Theorem 2.3.1] gives only that H 2({x ∈S2 : ϕ0(x) ̸=ϕ1(x)}) < ε1,
but following the lines of the proof, we may deduce that ϕ0 =ϕ1 except on Bε1 (x) for some point
x ∈S2.
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Now, let us take the homotopy Ht between ϕ0 and ϕ1 constructed in Corollary 4. Let

τ := sup

{
t ∈ [0,1] :

each energy minimizer with boundary datum Ht

has at most M singular points in B 3

}
.

We argue like in [11, Remark 4.1] (which is a modified argument from [7, Section 5]). For the
convenience of the reader, we state here the main lines of the reasoning. First, we note that from
the Stability Theorem [7], see also [10, Theorem 8.9], we have τ ∈ (0,1).

Now take si ↗ τ and a sequence of minimizing harmonic maps ui ∈W 1,2(B 3,S2) with ui
∣∣
∂B 3 =

Hsi and #singui ≤ M . Let us also take ti ↘ τ and a sequence of minimizing harmonic maps
vi ∈W 1,2(B 3,S2) with vi

∣∣
∂B 3 = Hti and #sing vi > M . Since supi

(
[Hsi ]W 1,2(S2) + [Hti ]W 1,2(S2)

)<∞,
we may deduce from the strong convergence of minimizers, see [1, Theorem 1.2(4)] (see also [10,
Theorem 6.1(3)]), that up to a subsequence we have

ui −→ u strongly in W 1,2(B 3,S2),

vi −→ v strongly in W 1,2(B 3,S2),

and both u and v are energy minimizers with u
∣∣
∂B 3 = v

∣∣
∂B 3 = Hτ. We claim that #singu ≤ M .

Indeed, assume on the contrary that #singu > M . Then, by [1, Theorem 1.8(2)] (see also [10,
Theorem 2.10]), we would obtain that for each y ∈ singu and for sufficiently large i , there would
exist yi ∈ singui with yi → y as i →∞, a contradiction.

Moreover, #sing v > M . To see this, let us again assume by contradiction that #sing v ≤ M . Let
now zi , j ∈ sing vi for j ∈ {1, . . . , M +1} be distinct singular points of vi . Now let us observe that for
sufficiently large i , we know that that Hti and Hτ are close in C∞. Hence, by uniform boundary
regularity [1, Theorem 1.10(2)] (see also [10, Theorem 7.4]), there is a uniform neighborhood of
the boundary ∂B 3 which contains no singularities of v and vi , say dist(z,∂B 3) ≥ λ > 0 for any
z ∈ ⋃

i sing vi ∪ sing v . Since singular points converge to singular points, we deduce from [1,
Theorem 1.8(1)] (see also [10, Theorem 2.5]) that for each j , we have zi , j → z j as i → ∞ and
z j ∈ #sing v . The only possibility for #{z1, . . . , zM+1} < M+1 is that two singularities of vi converge
to the same singularity of v . This, however, is impossible, because by the uniform distance
between singularities [1, Theorem 2.1] (see also [10, Theorem 2.12]), there exists a universal
constant C (independent of the minimizer) such that no singularity can occur next to zi , j at a
distance C dist(zi , j ,∂B 3) ≥Cλ.

Hence, Hτ : S2 →S2 serves as a boundary condition for at least two minimizers u and v having
a different number of singularities. Combining (5) with (4), we obtain∥∥ϕ−Hτ

∥∥
W 1,p (S2) ≤

∥∥ϕ−ϕ0
∥∥

W 1,p (S2) +
∥∥ϕ0 −Hτ

∥∥
W 1,p (S2) <

ε

2
+ε1 ≤ ε.

This finishes the proof. □
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