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Abstract. We show that the maximal exponent (i.e., the minimum number of iterations required for a
primitive map to become strictly positive) of the n-dimensional Lorentz cone is equal to n. As a byproduct,
we show that the optimal exponent in the quantum Wielandt inequality for qubit channels is equal to 3.

Résumé. Nous démontrons que l’exposant maximal (c’est-à-dire le nombre minimal d’itérations requises
pour qu’une application primitive devienne strictement positive) du cône de Lorentz de dimension n est
égal à n. Nous montrons également que l’exposant optimal dans l’inégalité de Wielandt quantique pour des
canaux agissant sur un qubit est égal à 3.
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Our main object of study is the n-dimensional Lorentz cone (also known as second-order cone,
quadratic cone, or ice-cream cone), which is the cone Ln ⊂ Rn defined as

Ln =
{

(x1, . . . , xn) ∈ Rn : xn ⩾
(
x2

1 +·· ·+x2
n−1

)1/2
}

.

We denote by int(Ln) the interior of Ln . We say that a linear map Ψ : Rn → Rn is Ln-positive
if Ψ(Ln) ⊂ Ln , strictly Ln-positive if Ψ(Ln \ {0}) ⊂ int(Ln) and Ln-primitive if it is Ln-positive
and if there exists an integer k ⩾ 1 such that Ψk is strictly Ln-positive. If Ψ is Ln-primitive, the
smallest such k is called the Ln-primitivity index ofΨ and denoted γ(Ψ). The main result of this
paper is the following theorem.

Theorem 1. Let n ⩾ 1. If Ψ : Rn → Rn is Ln-primitive, then γ(Ψ) ⩽ n. Moreover, there is a Ln-
primitive mapΨ : Rn → Rn such that γ(Ψ) = n.
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As we explain later, this theorem can be seen as the affine or projective analogue of the
following classical result by Pták [9]: if A is an n × n matrix, then ρ(A) = ∥A∥ if and only if
∥An∥ = ∥A∥n (we denote by ρ(A) and ∥A∥ respectively the spectral radius and operator norm
of A).

The paper is organized as follows. Section 1 contains background and connects to related
works, as well as a reformulation of Theorem 1 involving affine self-maps of the Euclidean ball.
The bound γ(Ψ) ⩽ n is proved in Section 2 and the sharpness of this inequality follows from the
example constructed in Section 3. Finally, when specialized to n = 4, our result has an implication
in quantum information theory which we develop in Section 4.

1. Introduction

1.1. Cones, maximal exponent

We work in a finite-dimensional real vector space V . A subset C ⊂ V is said to be a convex cone
if, for every x, y ∈C and s, t ∈ R+, we have sx + t y ∈C . A cone C is said to be proper if it is closed,
salient (i.e., C ∩(−C ) = {0}) and generating (i.e., C −C =V ).

We extend to the setting of a proper cone C ⊂ V the concepts of positivity and primitivity
defined earlier for the Lorentz cones. A linear map Ψ : V → V is C -positive if Ψ(C ) ⊂ C , strictly
C -positive if Ψ(C \{0}) ⊂ int(C ) and C -primitive if it is C -positive and if there exists an integer
k ⩾ 1 such that Ψk is strictly C -positive. If Ψ is C -primitive, the smallest such k is called the
C -primitivity index ofΨ and denoted γ(C ,Ψ).

The maximal exponent of C , denoted γ(C ), is the supremum of γ(C ,Ψ) over all C -primitive
mapsΨ : V →V . With this notation, the statement of Theorem 1 reads as the equality γ(Ln) = n.

Given vector spaces V and V ′, two proper cones C ⊂V and C ′ ⊂V ′ are said to be isomorphic
if there exists a linear bijection f : V → V ′ such that f (C ) = C ′. It is simple to check that two
isomorphic cones have the same maximal exponent.

We use the finite-dimensional version of the Krein–Rutman theorem (see [3, Theorem 19.2]):
every C -positive operator Ψ has an eigenvector x ∈ C associated to the eigenvalue ρ(Ψ) (the
spectral radius ofΨ). If moreoverΨ is C -primitive, then necessarily ρ(Ψ) > 0 (otherwiseΨwould
be nilpotent, contradicting C -primitivity) and x ∈ int(C ).

1.2. Duality

If C ⊂V is a cone, its dual cone is the cone in the dual vector space V ∗ defined as

C ∗ = { f ∈V ∗ : 〈 f , x〉⩾ 0 for every x ∈C }.

If C is proper, then C ∗ is also proper. The bipolar theorem asserts that (C ∗)∗ = C provided we
identify the double dual space V ∗∗ with V . The Lorentz cone Ln is self-dual: if we identify the
vector space Rn with its own dual using the standard inner product, then L ∗

n =Ln .
A sole of a proper cone C is a set of the form {x ∈C : f (x) =α}, where f ∈ int(C ∗) and α> 0.

If K is a sole of C , then K is compact and C = {λx : x ∈ K ,λ⩾ 0}.
We have the relation

int(C ) = {x ∈V : 〈 f , x〉 > 0 for every f ∈C ∗ \{0}}.

Given a linear mapΨ : V →V , we have the equivalences

Ψ is C -positive ⇐⇒ 〈 f ,Ψ(x)〉⩾ 0 for every x ∈C , f ∈C ∗

Ψ is strictlyC -positive ⇐⇒ 〈 f ,Ψ(x)〉 > 0 for every x ∈C \{0}, f ∈C ∗ \{0}.
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It is clear from these formulas that Ψ is C -positive (resp. strictly C -positive, resp. C -primitive)
if and only if the adjoint map Ψ∗ : V ∗ → V ∗ is C ∗-positive (resp. strictly C ∗-positive, resp. C ∗-
primitive). Moreover the cones C and C ∗ have the same maximal exponents.

1.3. Affine maximal exponent

Let K be a convex body (i.e., a compact convex set of full dimension) in a finite-dimensional
affine space W . An affine map Φ : W → W is said to be K -positive if Φ(K ) ⊂ K , strictly K -positive
ifΦ(K ) ⊂ int(K ) and K -primitive if it is K -positive and if there exists a positive integer k such that
Φk is strictly K -positive. If Φ is K -primitive, the smallest integer k with this property is called
the affine K -primitivity index of Φ and denoted γaff(K ,Φ). The affine maximal exponent of K ,
denoted γaff(K ), is the supremum of γaff(K ,Φ) over all K -primitive affine mapsΦ : W →W .

If X is a finite-dimensional normed space with unit ball B , observe that a linear map T :
X → X is B-positive (resp. strictly B-positive) if and only if it has operator norm ⩽ 1 (resp. < 1).
Moreover, T is B-primitive if and only if it has operator norm ⩽ 1 and spectral radius < 1. The
supremum of γ(B ,T ) over B-primitive linear maps T has been studied in the Banach space
literature as the critical exponent of the normed space X . We refer to [10] for a survey on critical
exponents.

Given affine spaces W and W ′, two convex bodies K ⊂ W and K ′ ⊂ W ′ are said to be affinely
isomorphic if there exists an affine bijection f : W →W ′ such that f (K ) = K ′. It is simple to check
that two affinely isomorphic cones have the same affine maximal exponent.

The next proposition states that the maximal exponent of a cone is the supremum of affine
maximal exponents of its soles. While this statement is folklore, we could note locate it in the
literature and include a proof.

Proposition 2. Let C ⊂V be a proper cone. Then

γ(C ) = sup
K sole of C

γaff(K ). (1)

Proof. Given f ∈ int(C ∗) and α > 0, consider the affine hyperplane W = {x ∈ V : f (x) = α}
and the sole of C given by K = C ∩W . Any affine map Φ : W → W can be extended uniquely
into a linear map Ψ : V → V . Moreover, the affine map Φ is K -positive (resp., strictly K -positive,
K -primitive) if and only if the linear mapΨ is C -positive (resp., strictly C -positive, C -primitive).
We have therefore γaff(K ,Φ) = γ(C ,Ψ) and the inequality ⩾ in equation (1) follows by taking
supremum over K andΦ.

Conversely, let Ψ : V → V be a C -primitive map. Its spectral radius ρ(Ψ) is nonzero and we
may assume by rescaling that ρ(Ψ) = 1. By the Krein–Rutman theorem, the adjoint map Ψ∗,
which is C ∗-primitive, admits an eigenvector f ∈ int(C ∗) for the eigenvalue 1. Consider the
affine hyperplane W = {x ∈ V : f (x) = 1} and the sole K = C ∩W . Since Ψ(W ) ⊂ W , the
linear map Ψ induces by restriction a K -primitive affine map Φ : W → W . As before, we have
γaff(K ,Φ) = γ(C ,Ψ) and the inequality ⩽ in equation (1) follows by taking supremum overΨ. □

We denote by Bn the unit ball of the standard Euclidean space Rn . Any sole of the Lorentz
cone Ln+1 is affinely isomorphic to Bn . By Proposition 2, Theorem 1 can be equivalently stated
as follows.

Theorem 3. For every integer n ⩾ 1, we have γaff(Bn) = n +1.

Sections 2 and 3 are devoted to the proof of Theorem 3: in Section 2 we prove that any
Bn-primitive affine map Ψ : Rn → Rn satisfies γaff(Bn ,Ψ) ⩽ n +1, and in Section 3 we construct
an example showing that this inequality is sharp.
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1.4. Related works

The question of computing the maximal exponent of the Lorentz cone does not seem to have
been considered in the literature and our main contribution is to fill this gap.

The study of maximal exponents of cones can be traced back to the classical result by
Wielandt [16] which asserts that the maximal exponent of the cone Rn+ equals (n − 1)2 + 1
(Wielandt’s original proof was only published posthumously in [14]). The maximal exponents
of polyhedral cones have been studied in detail in the series of papers [5–7]. We also mention
that there exist proper cones for which the maximal exponent is infinite (see [6, Section 6]).

Our result is closely related to Pták’s theorem [9] stating that the critical exponent of the n-
dimensional Euclidean space ℓn

2 equals n. This means that ifΦ is a linear contraction on ℓn
2 with

spectral radius < 1, then its nth iteration Φn maps the unit ball into its interior. Our Theorem 3
shows that for affine maps, one more iteration is necessary and sufficient to achieve this property.

Another cone of interest is the cone M+
n of n ×n positive semidefinite matrices with complex

entries. The connection with our work is that for n = 2, this cone is isomorphic to the Lorentz
cone L4. The study of the maximal exponent of M+

n is relevant in quantum information theory
in the context of the quantum Wielandt inequality which we review in Section 4.

2. Upper bound on the maximal exponent

Throughout this section and the following one, we fix an integer n ⩾ 1 and we use the terminology
“positive”, “strictly positive” and “primitive” to mean “Bn-positive”, “strictly Bn-positive” and “Bn-
primitive”. We denote by Sn−1 = ∂Bn the unit sphere in the Euclidean space Rn . Given a subset
X ⊂ Rn , we denote by aff(X ) the affine subspace generated by X . We start with a simple lemma.

Lemma 4. If an affine mapΦ : Rn → Rn is positive and nonconstant, thenΦ(int(Bn)) ⊂ int(Bn).

Proof. Take x ∈ int(Bn) and assume by contradiction that Φ(x) ∈ Sn−1. Let V be a open ball
centered at x and contained in Bn . For every y ∈ V , the point z = 2x − y is in V and we
have x = y+z

2 , hence Φ(x) = Φ(y)+Φ(z)
2 . Since Φ(x) is an extreme point of Bn , it follows that

Φ(y) =Φ(z) =Φ(x). The affine functionΦ is constant on V hence constant on Rn = aff(V ), leading
to a contradiction. □

Given a positive mapΦ : Rn → Rn , we introduce the set

C (Φ) = Sn−1 ∩Φ(Sn−1). (2)

A subset A ⊂ Sn−1 is said to be a subsphere if it satisfies the relation A = Sn−1 ∩ aff(A). We
say that a subset of Rn is an ellipsoid if it is a linear image of Bn . The following observation is
fundamental to our proof. In the three-dimensional case, it appears in [2, Proposition IV.6].

Lemma 5. Let E be an ellipsoid such that E ⊂ Bn . Then E ∩Sn−1 is a subsphere.

Proof. Assume first that E is origin-symmetric. In this case, there is an orthonormal basis
(x1, . . . , xn) and numbers λ1, . . . ,λn in [0,1] such that

E =
{

n∑
i=1

λi ti xi : (t1, . . . , tn) ∈ Bn

}
.

It is simple to check that E ∩Sn−1 equals F ∩Sn−1, where F ⊂ Rn is the linear subspace spanned
by {xi : λi = 1}. This proves the lemma under the extra hypothesis that E is origin-symmetric.

Assume now that E is a general ellipsoid. If card(E ∩ Sn−1) ⩽ 1, then E ∩ Sn−1 is a sub-
sphere. Otherwise, E ∩ Sn−1 contains two distinct elements x and x ′. Since the group
PO(1,n) of projective automorphisms of Bn acts transitively on the set of lines intersecting
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int(Bn) [12, Theorem 3.1.6], we may find a projective transformation Θ : Bn → Bn sending x and
x ′ to a pair of antipodal points. The ellipsoid F = Θ(E ) intersects Sn−1 in two antipodal points
and is therefore origin-symmetric. Since Θ preserves subspheres and E ∩Sn−1 =Θ−1(F ∩Sn−1),
we conclude by reducing to the origin-symmetric case. □

We now show that a primitive affine map Φ : Rn → Rn satisfies γaff(Bn ,Φ) ⩽ n + 1. If Φ is
constant equal to x ∈ Bn , then necessarily x ∈ int(Bn) (otherwise Φ would not be primitive) and
therefore γaff(Bn ,Φ) = 1. We now assume thatΦ is nonconstant.

Given an integer k ⩾ 0, we set Ak = C (Φk ). Since Φ is nonconstant, it follows from Lemma 4
that Ak+1 ⊂ Ak . Assume that Ak+1 = Ak for some k ⩾ 0. Consider an element x ∈ Ak+1. There
exists y ∈ Sn−1 such that x =Φk+1(y). The pointΦk (y) belongs to Ak , hence to Ak+1, and therefore
we have Φk (y) = Φk+1(z) for some z ∈ Sn−1. It follows that x = Φk+2(z) and thus that x belongs
to Ak+2. We proved that Ak+2 = Ak+1 = Ak and therefore, by induction, Al = Ak for every l ⩾ k.
SinceΦ is primitive, it follows that Al =; for every l ⩾ k.

Let N = γaff(Bn ,Φ) be the affine primitivity index ofΦ. The previous paragraph shows that

;= AN ⊊ AN−1 ⊊ · · ·⊊ A2 ⊊ A1 ⊊ A0 = Sn−1.

By Lemma 5, each set Ak is a subsphere. If two subspheres A, A′ satisfy A ⊊ A′, then we have
aff(A)⊊ aff(A′) and therefore dimaff(A) < dimaff(A′). The chain of inequalities

0⩽ dimaff(AN−1) < ·· · < dimaff(A2) < dimaff(A1) < dimaff(A0) = n

implies that N ⩽ n +1.

3. A map with large maximal exponent

Our goal is to give an example of an affine map Φ : Rn → Rn which is primitive and such that Φn

is not strictly positive. Such a map satisfies γaff(Bn ,Φ) ⩾ n +1 and, together with the result from
Section 2, allows us to conclude that γaff(Bn) = n +1.

Given an angle θ ∈ [−π/2,π/2], we denote by En,θ the “circle of latitude θ” defined as

En,θ = {(x1, . . . , xn) ∈ Sn−1 : xn = sinθ}.

Our first lemma shows that affine positive maps may send any circle of positive latitude to any
circle of higher latitude.

Lemma 6. Let 0 < α < β < π/2 and set λ = cosβ
cosα , µ = tanα

tanβ . Define a map Ψ : Rn → Rn by the
formula

Ψ : (x1, . . . , xn) 7−→
(
λx1, . . . ,λxn−1,λµxn +

√
(1−λ2)(1−µ2)

)
.

(a) The mapΨ is a positive affine bijection.
(b) If x ∈ En,α, thenΨ(x) ∈ En,β.
(c) If x, y ∈ En,α, then ∥Ψ(x)−Ψ(y)∥ =λ∥x − y∥.
(d) If x ∈ Bn is such thatΨ(x) ∈ Sn−1, then x ∈ En,α.

Proof. It is immediate to check thatΨ is affine and bijective, as well as property (c). Property (b)
follows from the formula sinβ = λµsinα+

√
(1−λ2)(1−µ2). To check positivity of Ψ, it suffices
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to show that ∥Ψ(x)∥⩽ 1 for any x ∈ Sn−1. Let θ ∈ [−π/2,π/2] be the latitude of x, i.e., such that
x ∈ En,θ. We compute

1−∥Ψ(x)∥2 = 1−λ2 cos2θ−
(
λµsinθ+

√
(1−λ2)(1−µ2)

)2

=
(
λ

√
1−µ2 sinθ−µ

√
1−λ2

)2

=λ2(1−µ2)(sinθ− sinα)2.

The positivity ofΨ, together with property (d), follow from this formula. □

Lemma 7. Let A = (ai j ) be a n ×n positive definite symmetric matrix satisfying ai i = 1 for every i
in {1, . . . ,n}. There is a number α ∈ (0,π/2) and vectors x1, . . . , xn ∈ En,α such that, for every i , j in
{1, . . . ,n}

ai j = 〈xi , x j 〉.
Proof. It is well-known [4, Corollary 7.2.11] that we can find y1, . . . , yn ∈ Sn−1 such that ai j =
〈yi , y j 〉. Since A is invertible, the vectors y1, . . . , yn are linearly independent and thus the hyper-
plane H = aff{y1, . . . , yn} does not contain 0. We may therefore find an orthogonal transformation
Q ∈O(n) such that

Q(H) = {(z1, . . . , zn) ∈ Rn : zn = sinα}

for some α ∈ (0,π/2). The points xi =Q(yi ) have the desired property. □

Lemma 8. Consider points x1, . . . , xk and y1, . . . , yk in Sn−1. The following are equivalent.

(1) There is R ∈O(n) such that R(xi ) = yi for every i ∈ {1, . . . ,k}.
(2) For every i , j in {1, . . . ,k}, we have ∥xi −x j ∥ = ∥yi − y j ∥.

Proof. It is clear that (1) implies (2). Now assume that (2) holds. Since all vectors involved are
unit, we have 〈xi , x j 〉 = 〈yi , y j 〉 for every i , j . Moreover, for every λ1, . . . ,λk we have∥∥∥∥∥ k∑

i=1
λi yi

∥∥∥∥∥
2

=
k∑

i=1

k∑
j=1

λiλ j 〈yi , y j 〉 =
k∑

i=1

k∑
j=1

λiλ j 〈xi , x j 〉 =
∥∥∥∥∥ k∑

i=1
λi xi

∥∥∥∥∥
2

.

This shows that the map R̂ : span{x1, . . . , xk } → span{y1, . . . , yk } defined by the formula

R̂

(
k∑

i=1
λi xi

)
=

k∑
i=1

λi yi .

is well-defined and isometric. Finally, we extend R̂ to a linear isometry R : Rn → Rn by choosing
any isometry from span{x1, . . . , xk }⊥ to span{y1, . . . , yk }⊥. By construction, we have R ∈ O(n) and
R(xi ) = yi . □

We now construct a primitive map Φ such that Φn is not strictly positive. When n = 3, an
example of such a construction is depicted in Figure 1.

Consider the following n ×n matrix A = (ai j ), indexed by a parameter c ∈ (0,1)

ai j =
{

1 if i = j

1− cmin(i , j ) if i ̸= j

When c approaches 1, the matrix A converges to the identity matrix. We may therefore choose a
value c ∈ (0,1) such that the matrix A is positive definite. By Lemma 7, we may find α ∈ (0,π/2)
and vectors x1, . . . , xn in En,α such that ai j = 〈xi , x j 〉. For i ̸= j , we have

∥xi −x j ∥2 = 2−2ai j = 2cmin(i , j ).
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Figure 1. The affine map Φ is obtained as R ◦Ψ. The mapΨ is a positive affine map which
preserves longitude and sends a point xi with latitude α to a point yi with latitude β > α.
The map R is a rotation chosen such that R(y1) = x2 and R(y2) = x3. It requires 4 iterations
ofΦ from the initial point x1 before reaching the interior of the unit ball.

Defineβ ∈ (α,π/2) by the relation cos2β

cos2α
= c and letΨbe the affine map given by Lemma 6 (applied

with the present values of α and β). For 1 ⩽ i ⩽ n, set yi = Ψ(xi ). By Lemma 6(b), we have
yi ∈ En,β. For 1⩽ i < j ⩽ n −1, we compute using Lemma 6(c)

∥yi − y j ∥2 = cos2β

cos2α
∥xi −x j ∥2 = 2cmin(i , j )+1 = ∥xi+1 −x j+1∥2.

By Lemma 8, there exists R ∈O(n) such that R(yi ) = xi+1 for 1 ⩽ i ⩽ n −1. We define an affine
bijection Φ : Rn → Rn by the formula Φ = R ◦Ψ. We also set xn+1 = Φ(xn), so that the relation
xi+1 = Φ(xi ) holds for 1 ⩽ i ⩽ n. Since xn+1 = Φn(x1) belongs to Sn−1, it follows that Φn is not
strictly positive.

Lemma 9. The point x0 defined as x0 =Φ−1(x1) does not belong to Bn .

Proof. Set y0 =Ψ(x0) = R−1(x1). Consider the affine hyperplanes

V1 = aff{y0, . . . , yn−1}

V2 = aff{x1, . . . , xn}

V3 = aff{y1, . . . , yn}

Since V2 ∩ Sn−1 = En,α and V3 ∩ Sn−1 = En,β with α < β, no element S ∈ O(n) can satisfy the
relation S(V2) = V3. Since R(V1) = V2, this implies that V1 ̸= V3 and thus y0 ̸∈ V3. It follows that
y0 ∈ Sn−1 \ En,β and therefore that x0 ̸∈ Bn by Lemma 6(d). □

We now show that the map Φ is primitive by proving that Φn+1 is strictly positive. As in the
proof of the previous section, we denote

Ak =C (Φk ) = Sn−1 ∩Φk (Sn−1).
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For 1⩽ k ⩽ n+1, the point xk belongs to Ak−1 (sinceΦ−(k−1)(xk ) = x1 ∈ Sn−1) but not to Ak (since
Φ−k (xk ) = x0 ̸∈ Sn−1 by Lemma 9). This shows that Ak−1 ̸= Ak . We have therefore a chain of strict
inclusions

An+1 ⊊ An ⊊ · · ·⊊ A1 ⊊ A0 = Sn−1

and therefore as in the previous section (with the convention dim;=−1)

dimaffAn+1 < dimaffAn < ·· · < dimaffA1 < dimaffA0 = n.

This is only possible if An+1 =;. It follows thatΦn+1 is strictly positive.

4. Maximal exponents for qubit channels

We refer to [1] for terminology from quantum information theory used in this section. Given an
integer n ⩾ 2, let Mn be the algebra of n ×n matrices with complex entries and M+

n ⊂ Mn be the
cone of positive semidefinite matrices. The maximal exponent γ(M+

n ) involves a supremum over
positive maps (or, more precisely, over M+

n -primitive maps). However in quantum information
theory it is more natural to restrict the supremum to completely positive maps and to study the
quantity

γcp(M+
n ) := sup{γ(M+

n ,Φ) : Φ : Mn −→Mn completely positive and M+
n -primitive}. (3)

This quantity appears in [8, 13] in the context of the quantum Wielandt inequality and plays
in quantum information theory the same role as the Wielandt inequality [16] plays for classical
memoryless channels. By Proposition 2, since the cone M+

n is homogeneous (i.e., all its soles
are affinely isomorphic to the set of quantum states), one may restrict the supremum in (3) to
quantum channels, i.e., to maps which are completely positive and trace-preserving.

One obviously has γcp(M+
n ) ⩽ γ(M+

n ). By restricting to diagonal matrices, one has γcp(M+
n ) ⩾

γ(Rn+) = (n −1)2 +1. The upper bound γcp(M+
n )⩽C n2 logn for some constant C has been proved

in [8] and the improvement γcp(M+
n ) ⩽ n2 +C n appears in the preprint [15]. To our knowledge,

no upper bound on γ(M+
n ) has been proved and the only paper which considers positive but non

completely-positive maps is [11].
As a byproduct of our study, we compute the exact value of the parameter in the quantum

Wielandt inequality in the specific case of a qubit space (n = 2), both in the case of positive and
completely positive maps.

Theorem 10. We have γ(M+
2 ) = 4 and γcp(M+

2 ) = 3.

Proof. Since the cones M+
2 and L4 are isomorphic, the fact that γ(M+

2 ) = 4 is an immediate
consequence of Theorem 1. We now explain the inequality γcp(M+

2 ) ⩽ 3. Let Φ : M2 → M2 be
a quantum channel which is M+

2 -primitive. As in (2), let C (Φ) be the set of pure states whose
image under Φ is pure. A result known as the no-pancake theorem asserts that C (Φ) cannot be a
circle inside the Bloch ball (see [2, Theorem IV.9] for a precise statement), and therefore contains
at most two points. Repeating the argument from Section 2 with this extra information gives the
bound γ(M+

2 ,Φ)⩽ 3.
Finally, we construct a quantum channelΦ such that γ(M+

2 ,Φ) = 3 by adapting the arguments
from Section 3. Given α and β in (0,π/2) such that α ̸=β, consider the matrices

A =
(
cosα 0

0 cosβ

)
, B =

(
0 sinβ

sinα 0

)
,

and the quantum channelΨ : M2 →M2 defined byΨ(X ) = AX A∗+B X B∗.
Define θ ∈ (0,π/2) by the relation tanθ =√

sin2α/sin2β and consider the vectors ψ+ and ψ−
inC2 defined asψ± = (cosθ,±sinθ). We claim that the states ρ+ and ρ− defined as ρ± = |ψ±〉〈ψ±|
are the only states whose image under Ψ is pure. Indeed, given a unit vector ψ ∈ C2, the state
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Ψ(|ψ〉〈ψ|) is pure if and only if the vectors A|ψ〉 and B |ψ〉 are proportional. Our claim then follows
from elementary computations.

The corresponding output states are Ψ(ρ±) = |φ±〉〈φ±|, where φ± = (cosδ,±sinδ) and δ ∈
(0,π/2) is defined by the relation tanδ=√

tanα/tanβ. Sinceα ̸=β, we have δ ̸=π/4 and therefore
0 < |〈φ+,φ−〉| < 1. We now use an elementary lemma.

Lemma 11. Let φ+,φ−,ψ+,ψ− be unit vectors in C2 such that 0 < |〈φ+,φ−〉| < 1. Then there exists
a unitary matrix U such that U (φ+) =ψ− and U (φ−) is neither proportional to ψ+ nor to ψ−.

Proof. Write φ− = aφ+ + bχ where χ is a unit vector orthogonal to φ+ and a,b are complex
numbers such that |a|2 + |b|2 = 1. Pick a unit vector ω orthogonal to ψ−. Since a and b are
nonzero, we may choose θ ∈ R such that aψ−+be iθω is neither proportional to ψ+ nor to ψ−.
The unitary matrix sending the basis (φ+,χ) to the basis (ψ−,e iθω) has the desired property. □

Let U be a unitary matrix given by the lemma and consider the quantum channel Φ defined
by Φ(X ) = UΨ(X )U∗. The only states with a pure output under Φ are ρ+ and ρ−. Moreover,
Φ(ρ+) = U |φ+〉〈φ+|U∗ = ρ− and Φ(ρ−) = U |φ−〉〈φ−|U∗ is a pure state which, by Lemma 11, is
distinct from ρ+ and ρ−. It follows that Φ2(ρ−) =Φ3(ρ+) is not pure. Since Φ3 is strictly positive
andΦ2 is not, the channelΦ has a maximal index equal to 3. □
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