
Comptes Rendus

Mathématique

Ofir Gorodetsky, Jared Duker Lichtman and Mo Dick Wong
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Sur les sommes d’Erdős de presque premiers

Ofir Gorodetsky a,b, Jared Duker Lichtman ∗,c and Mo Dick Wong d

a Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK

b Department of Mathematics, Technion – Israel Institute of Technology, Haifa 3200003, Israel

c Department of Mathematics, Stanford University, Stanford, CA, USA

d Department of Mathematical Sciences, Durham University, Stockton Road, Durham DH1 3LE, UK

E-mails: ofir.gor@technion.ac.il, jared.d.lichtman@gmail.com, mo-dick.wong@durham.ac.uk

Abstract. In 1935, Erdős proved that the sums fk =∑
n 1/(n logn), over integers n with exactly k prime factors,

are bounded by an absolute constant, and in 1993 Zhang proved that fk is maximized by the prime sum
f1 = ∑

p 1/(p log p). According to a 2013 conjecture of Banks and Martin, the sums fk are predicted to
decrease monotonically in k. In this article, we show that the sums restricted to odd integers are indeed
monotonically decreasing in k, sufficiently large. By contrast, contrary to the conjecture we prove that the
sums fk increase monotonically in k, sufficiently large.

Our main result gives an asymptotic for fk which identifies the (negative) secondary term, namely
fk = 1− (a +o(1))k2/2k for an explicit constant a = 0.0656 · · · . This is proven by a refined method combining
real and complex analysis, whereas the classical results of Sathe and Selberg on products of k primes imply
the weaker estimate fk = 1+Oε(kε−1/2). We also give an alternate, probability-theoretic argument related to
the Dickman distribution. Here the proof reduces to showing a sequence of integrals converges exponentially
quickly e−γ, which may be of independent interest.

Résumé. En 1935, Erdős a prouvé que les sommes fk = ∑
n 1/(n logn), portant sur les entiers n ayant

exactement k facteurs premiers, sont majorées par une constante absolue, et en 1993, Zhang a prouvé que fk
est maximisé par la somme sur les nombres premiers f1 = ∑

p 1/(p log p). Selon une conjecture de Banks
et Martin de 2013, les sommes fk devraient être décroissantes en fonction de k. Dans cet article, nous
démontrons que les sommes restreintes aux entiers impairs sont bien décroissantes pour k suffisamment
grand. En revanche, contrairement à la conjecture, nous prouvons que les sommes fk sont croissantes
en fonction de k, suffisamment grand. Notre résultat principal donne une formule asymptotique pour fk
qui identifie le terme secondaire (négatif), à savoir fk = 1 − (a + o(1))k2/2k pour une constante explicite
a = 0,0656 · · · . Ceci est prouvé par une méthode raffinée combinant analyse réelle et complexe, alors que les
résultats classiques de Sathe et Selberg sur les produits de k nombres premiers impliquent l’estimation plus
faible fk = 1+Oε(kε−1/2). De plus, nous donnons un argument probabiliste alternatif, lié à la distribution
de Dickman. Ici, la preuve se réduit à démontrer qu’une suite d’intégrales converge exponentiellement
rapidement vers e−γ, ce qui peut présenter un intérêt indépendant.
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1. Introduction

LetΩ(n) denote the number of prime factors of n, counted with repetition. IfΩ(n) = k, n is called
a k-almost prime. For each k ≥ 1 denote the series

fk = ∑
Ω(n)=k

1

n logn
.

Here fk is the Erdős sum of k-almost primes, also called the kth fingerprint number. In 1935
Erdős [6] showed that fk = O(1) is bounded1 and in 1993 Zhang [16] proved the primes have
maximal Erdős sum, that is, fk ≤ f1 holds for all k. This had given initial evidence towards the
Erdős primitive set conjecture, now recently proven by the second author [13].

In 2013, Banks and Martin [1] posed a vast generalization of the Erdős primitive set conjecture
(see [1, 13] for details and further discussion). In particular, they conjectured that the sums fk

decrease monotonically in k. Denote the sum fk,y restricting fk to integers without prime factors
≤ y , that is,

fk,y =
∑

Ω(n)=k
p|n→p>y

1

n logn
.

Banks and Martin further conjectured that for any fixed y ≥ 1, fk,y decrease monotonically.
We prove that their conjecture holds for y ≥ 2 and k sufficiently large. By contrast, we prove

that fk = fk,1 increases monotonically in k, sufficiently large.

Theorem 1. Let y ≥ 2. For k sufficiently large, we have fk−1 < fk and fk−1,y > fk,y .

When y ≥ 2, we believe fk−1,y > fk,y should hold for all k > 1, in accordance with Banks–
Martin [1]. When y = 1, we believe fk−1 < fk holds for all k > 6. These inequalities have been
verified numerically up to k ≤ 20 [10].

The classical Sathe–Selberg theorem gives asymptotics for the counting function of k-almost
primes, and implies fk converges to 1 with square-root error. That is fk = 1+Oε(kε−1/2), see [10,
Theorem 4.1]. We give an exponential refinement of this result, which identifies the (negative)
secondary term to be −a1 k2/2k for an explicit constant a1 = 0.0656 · · · .

Theorem 2. For all k ≥ 1 we have

fk = 1−2−k(
a1k2 +O

(
k log(k +1)

))
,

where a1 = (d log2)/4 and

d := 1

4

∏
p>2

(
1− 2

p

)−1 (
1− 1

p

)2

= 0.37869 · · · . (1)

To motivate the proof of Theorem 2, we first handle the sifted Erdős sums fk,y , whose (positive)
secondary term is of order Oy (2−k ) when y ≥ 2, and so converge more rapidly.

Theorem 3. Let y ≥ 2. We have

fk,y =
∏

p≤y

(
1− 1

p

)
+ay /2k +Oy (k3/3k )

1Indeed, his result bounded Erdős sums f (A) =∑
n∈A 1/(n logn) uniformly over any primitive set A.
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uniformly for k ≥ 1, where ay = cy dy for

cy = γ+
∑

p≤y

log p

p −1
− ∑

p>y

log p

(p −1)(p −2)
, (2)

dy = d
∏

2<p≤y

(
1− 2

p

)
, (3)

for d as in (1), and γ= 0.5772 · · · is the Euler–Mascheroni constant.

As usual Oy (· · · ) means the implicit constant may depend on y ≥ 2, but not on k.
In particular, from Theorems 2 and 3 we infer the even and odd terms in fk contribute

1
2 − (a1 + o(1))k2/2k and 1

2 + (a2 + o(1))2−k , respectively. As will be shown in the proofs, this
discrepancy in the size (and sign) of the secondary terms ultimately come from the different
behavior of

lim
s→1+

(s −1)−z
∑

p|n→p>y

zΩ(n)

ns

when y = 1 and y ≥ 2. Namely, the singularity closest to 0 when y = 1 is at z = 2 while for y ≥ 2 it is
more distant. This provides a clean answer to the hitherto unexplained numerical observations
up to k ≤ 20.

Remark 4. Our methods can also handle
∑
ω(n)=k, p|n→p>y 1/(n logn), where ω(n) = ∑

p|n 1. For
this problem, the analysis does not have a discrepancy between y = 1 and y ≥ 2.

Our methods should also handle the Dirichlet series
∑
Ω(n)=k n−t for t > 1. For these, striking

work of Banks–Martin [1] shows that k = 1 is maximal if and only if t > τ, where τ = 1.14 · · · is
the unique solution to a certain functional equation involving the Riemann zeta function. When
t < τ it is not understood which k = kt is maximal, also see [4, 5]. Finally, one may also consider
translated sums

∑
Ω(n)=k 1/(n(logn +h)) for h ∈ R, where the author [12] proved that k = 1 is not

maximal for h > 1.04 · · · . In fact, k = 1 is minimal if and only if h > 0.803 · · · .
Remark 5. Hankel contours over the complex plane are used in the Selberg–Delange method,
concerning asymptotics for the sums

∑
n≤x zΩ(n), z complex. Saddle point analysis is used in the

Sathe–Selberg theorem, which extracts information on the counting function of k-almost primes
from these sums. These devices are powerful but lead to poor savings. By contrast, our proofs
contain neither saddle point analysis nor Hankel contours.

Moreover, the Selberg–Delange method assumes a zero-free region for ζ(s), as well as a bound
on logζ(s) to the left of Re(s) = 1. By contrast, our proofs make no complex-analytic assumptions
about ζ(s) whatsoever. We only use the (very basic) Taylor expansion ζ(t )(t −1) = 1+γ(t −1)+
O((t −1)2) for real t ∈ (1,2).

1.1. A sequence of integrals

We also provide an alternate, probability-theoretic argument, which gives (weaker) exponential
error fk = 1+O(k/2k/4), but which has potentially much wider applicability to other primitive
sets beyond k-almost primes. We leave further development of this perspective to future work.

The rough strategy is to first show an asymptotic relation

fk ∼ eγ I⌊k/4⌋ (4)

for a certain sequence of iterated integrals Ik . Here γ = 0.5772 · · · is the Euler–Mascheroni
constant. Specifically, let I0 = 1 and for k ≥ 1 let

Ik =
∫

[0,1]k

dx1 dx2 · · ·dxk

1+x1(1+x2(· · · (1+xk ) · · · ))
. (5)
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Let P1(n) be the largest prime factor of n. To connect fk to Ik , we use Mertens’ theorem to show
that fk is close to eγ times a weighted average of logP1(n)/ logn over integers n with Ω(n) = k,
see (67). Then for each n = p1 · · ·pk (p1 ≥ p2 ≥ ·· · ), the reciprocal of this ratio may be expressed
as

logn

logP1(n)
= 1+ log p2

log p1

(
1+·· ·

(
1+ log p j+1

log p j

(
1+ log

(
p j+2 · · ·pk

)
log p j+1

))
· · ·

)
.

Further, we show the consecutive ratios log pi+1
log pi

∈ [0,1] are independent and uniformly distributed
in [0,1] (with respect to a certain probability measure) which ultimately leads to (4). See (67)
and (78)–(79) for the precise quantitative formulation of (4).

Finally, we prove that Ik converges exponentially quickly to e−γ, which may be of independent
interest. The qualitative convergence Ik → e−γ may be deduced from work of Chamayou [3]
(cf. [14, Proposition 2.1]).

Theorem 6. We have Ik = e−γ+O(2−k ).

Our approach to Theorem 6 is self-contained and relies on a probabilistic reformulation of the
problem, which turns out to be related to the Dickman–Goncharov distribution. See the extensive
survey of Molchanov and Panov [14] for background on this distribution, which appears across
probability and theoretical computer science [8].

1.2. Proof of monotonicity results

Here we quickly deduce Theorem 1 assuming Theorems 2 and 3: Indeed, for large k we have

fk − fk−1 =
log2

4
d

(
(k −1)2/2k−1 −k2/2k) + o(k2/2k )

= log2

4
dk2/2k +o(k2/2k ) > 0

by Theorem 2. Similarly, by Theorem 3 we have

fk−1,y − fk,y = cy dy (1/2k−1 −1/2k ) + o(1/2k )

= cy dy /2k +o(1/2k ) > 0.

Here we used cy > 0 for y ≥ 2. Indeed, cy from (2) is clearly increasing in y ≥ 2, so cy ≥ c2 > 0 since∑
p>2

log p

(p −1)(p −2)
< .9 < 1.2 < log2+γ.

This completes the proof of Theorem 1.

1.3. Proof method: permutations

As a short illustration of the proof method, we consider a permutation analogue of the sums fk .
This result also may be of independent interest. Namely, define fk,π by

fk,π := ∑
m≥1

am,k

m

where am,k is the probability that a permutation, chosen uniformly at random from Sm , has
exactly k disjoint cycles.
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Remark 7. To see the analogy with the original sum, given a permutation π ∈ Sm let C (π) be the
number of disjoint cycles in π, d(π) be m and |π| be |Sm | = m!. The sum fk,π may be expressed as

fk,π =
∑

C (π)=k
π∈∪m≥1Sm

1

|π|d(π)
.

The weight 1/(|π|d(π)) is analogous to 1/(n logn).

Recall the Riemann zeta function ζ(s) =∑
n≥1 n−s .

Proposition 8. For any k ≥ 1 we have

fk,π = ζ(k +1) = 1+2−k−1 +O(3−k ).

Proof. Consider the exponential generating function of
∑
π∈Sn zC (π):

F (u, z) := ∑
m≥0

1

m!

( ∑
π∈Sm

zC (π)

)
um = 1+ ∑

k≥1
zk

∑
m≥1

am,k um .

The exponential formula for permutations shows

F (u, z) = exp

( ∑
n≥1

z
un

n

)
= exp

(−z log(1−u)
)

. (6)

The Taylor series for exp(−z log(1−u)) in z is

exp
(−z log(1−u)

)= ∑
k≥0

zk

k !

(− log(1−u)
)k ,

so extracting the coefficient of zk in F (u, z) yields, by (6),

∑
m≥1

am,k um =
(− log(1−u)

)k

k !
. (7)

Since 1/m = ∫ 1
0 um−1 du, we can integrate (7) over u ∈ [0,1] to obtain

fk,π =
∑

m≥1

am,k

m
=

∫ 1

0

(− log(1−u)
)k

k !

du

u
=

∫ ∞

0

xk

Γ(k +1)

dx

ex −1
= ζ(k +1).

This completes the proof. Here in the third equality we performed the change of variables
u = 1−e−x , and in the fourth we applied Riemann’s famous integral representation for ζ(s), with
s = k +1,

Γ(s)ζ(s) =
∫ ∞

0

xs−1

ex −1
dx. □

Remark 9. In the same way that we shall relate fk to the sequence of integrals Ik in Theorem 6,
one can relate fk,π to Ik as well.

2. Sifted sums

2.1. Preparation

We now collect a few analytic properties of the generating functions that will play central roles in
the proof of Theorem 3. Let us start with the function

F (s, z) := ∑
n≥1

zΩ(n)

ns =∏
p

(
1− z

p s

)−1
, s ∈R. (8)
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Lemma 10. The function F (s, z) converges absolutely for s > 1 and |z| < 2. In this domain F has a
power series representation in z and it defines a smooth function in s.2

Proof. Observe that for s ≥ 1+ε and |z| ≤ 2−ε the pth factor in (8) is(
1− z

p s

)−1

= exp

(∑
i≥1

zi

i p si

)
= exp

(
Oε(|z|p−s )

)
and so the product in (8) is a uniform limit of power series in z which are smooth in s. □

For s > 1 and |z| < 2 we define

G(s, z) := F (s, z)(s −1)z .

The following lemma extends the range of definition of G . For any y ≥ 1 denote by y1 the smallest
prime greater than y .

Lemma 11. For every prime q,
∏

p≤q (1− z/p s )G(s, z), as well as its derivatives in s, are smooth in
s ≥ 1 and have a power series expansion in z with radius q1. Moreover, for s ≥ 1 and k ≥ 0, the kth
derivative of G(s, z) with respect to s has a meromorphic continuation to z ∈ C with poles of order
k at z = p s for every prime p. This continuation satisfies

G(1, z) =∏
p

(
1− z

p

)−1 (
1− 1

p

)z

.

Proof. We write G as

G(s, z) = F (s, z)ζ(s)−z (ζ(s)(s −1))z . (9)

It is well known that lims→1+ ζ(s)(s − 1) = 1, and that extending ζ(s)(s − 1) to s = 1, by setting it
to equal 1 there, it is a smooth function in s ≥ 1.3 Hence, (ζ(s)(s −1))z = exp(z log(ζ(s)(s −1)) is
smooth in s ≥ 1 and has a power series representation in z with infinite radius of convergence:

(ζ(s)(s −1))z = ∑
i≥0

zi

i !
(log(ζ(s)(s −1)))i . (10)

At s = 1, (10) is equal to 1. It remains to consider F (s, z)ζ(s)−z . It has the following Euler product:

F (s, z)ζ(s)−z =∏
p

(
1− z

p s

)−1 (
1− 1

p s

)z

. (11)

For every prime q , we can use the product in (11) to define F (s, z)ζ(s)−z as a product of the
rational function

∏
p≤q (1− z/p s )−1 (which has simple poles in z at z = p s for every prime p ≤ q ,

and is defined for s ≥ 1) with a function that has a power series representation in z with radius of
convergence q1 and is defined for s ≥ 1. This is because if |z| < q1−ε

1 and p > q then the pth term
in the right-hand side of (11) equals

exp

( ∞∑
i=2

zi − z

i p si

)
= exp

(
Oε

(
(|z|2 +|z|)p−2s)) ,

and the product over p > q converges absolutely and uniformly. □

2In this paper we will only need first and second derivatives with respect to s, which is always seen as a real-valued
variable.

3Throughout we identify ζ(s)(s −1) at s = 1 with 1. A function f is smooth on [1,∞) if it belongs to
⋂∞

k=0 C k ([1,∞))

where for k ≥ 1, C k ([1,∞)) := { f : [1,∞) → R, f is differentiable, f ′ ∈ C k−1([1,∞))} and differentiability at 1 is defined via
the right derivative. For k = 0, C 0([1,∞)) consists of continuous functions on [1,∞), with continuity at 1 defined by right-
continuity.
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We also introduce

Fy (s, z) := ∑
n≥1

p|n→p>y

zΩ(n)

ns = ∏
p>y

(
1− z

p s

)−1

= ∏
p≤y

(
1− z

p s

)
F (s, z), (12)

and

Gy (s, z) := ∏
p≤y

(
1− z

p s

)
G(s, z)

= ∏
p≤y

(
1− 1

p s

)z ∏
p>y

(
1− z

p s

)−1(
1− 1

p s

)z
(ζ(s)(s −1))z .

(13)

For any smooth function H(s, z), we shall denote by H (a,b) the mixed partial derivative

H (a,b) = ∂a+b

∂sa∂zb
H .

For every j ≥ 0 and fixed s ≥ 1, G ( j ,0)
y (s, z) has a meromorphic continuation to C with poles at

z = p s for every prime p > y by Lemma 10. Taking the logarithmic derivative of (13) with respect
to s gives

G (1,0)
y

Gy
(s, z) = ∂

∂s

[
logGy (s, z)

]
= ∂

∂s

[ ∑
p≤y

z log

(
1− 1

p s

)
+ ∑

p≥y1

(
z log

(
1− 1

p s

)
− log

(
1− z

p s

))
+ z log

(
ζ(s)(s −1)

)]
so that

Lemma 12. We have

G (1,0)
y (s, z) = zGy (s, z)

( ∑
p≤y

log p

p s −1
− ∑

p≥y1

(z −1)log p

(p s −1)(p s − z)
+ (log(ζ(s)(s −1)))′

)
. (14)

Remark 13. These generating functions and their values have natural connections to related
questions about k-almost primes [2, 11]. In particular G2(1,2) = 1

4

∏
p>2(1− 2

p )−1(1− 1
p )2 = d as

in (1) equals 2β2, from the main term of [2, Theorem 1.2].

2.2. Proof of Theorem 3

Let y ≥ 1, and let y1 be the smallest prime greater than y . We have the integral representation

fk,y =
∑

Ω(n)=k
p|n→p>y

1

n logn
=

∫ ∞

1

∑
Ω(n)=k

p|n→p>y

n−s ds. (15)

The smallest number n with Ω(n) = k and all prime factors greater than y is yk
1 , so the contribu-

tion of s ≥ 2 to (15) is∫ ∞

2

∑
Ω(n)=k

p|n→p>y

n−s ds = ∑
Ω(n)=k

p|n→p>y

1

n2 logn
≤ ∑

n≥yk
1

1

n2 logn
≪ 1

k

∫ ∞

yk
1 −1

dt

t 2 ≪ 1

k yk
1

.

Thus we have

fk,y = Ik,y +O

(
1

k yk
1

)
, (16)

where Ik,y is the corresponding integral over s ∈ [1,2], namely,

Ik,y :=
∫ 2

1

∑
Ω(n)=k

p|n→p>y

n−s ds =
∫ 2

1

1

k !
F (0,k)

y (s,0)ds. (17)
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Here we term-wise differentiated Fy (s, z) in (12) with respect to z, for s > 1.
Next from the Taylor series

(s −1)−z = exp
(−z log(s −1)

)= ∑
i≥0

(− log(s −1)
)i

i !
zi , (18)

we apply the product rule to Fy (s, z) = (s −1)−z Gy (s, z), giving

1

k !
F (0,k)

y (s,0) =
k∑

i=0

(− log(s −1)
)k−i

(k − i )!

1

i !
G (0,i )

y (s,0).

Thus (17) becomes

Ik,y =
k∑

i=0

∫ 2

1

(− log(s −1)
)k−i

(k − i )!

1

i !
G (0,i )

y (s,0)ds. (19)

Now we introduce a similar integral I ′k,y , given by evaluating G (0,i )(s,0) in the integrand at s = 1,
namely,

I ′k,y :=
k∑

i=0

1

i !
G (0,i )

y (1,0)
∫ 2

1

(− log(s −1)
)k−i

(k − i )!
ds. (20)

To handle I ′k,y , we substitute s = 1+e−t and obtain, for any j ≥ 0,∫ 2

1

(− log(s −1)
) j

j !
ds =

∫ ∞

0

e−t t j

j !
dt = Γ( j +1)

j !
= 1, (21)

as we are evaluating the Gamma function at j +1. Hence (20) simplifies as

I ′k,y =
k∑

i=0

1

i !
G (0,i )

y (1,0). (22)

In the upcoming subsections, we shall estimate Ik,y by means of the following lemmas for I ′k,y
and Ik,y − I ′k,y .

Lemma 14. Let y ≥ 1. We have I ′k,y =Gy (1,1)+Oy (y−k
1 ).

Lemma 15. Let y ≥ 2. We have Ik,y = I ′k,y +G (1,0)
y (1,2)/2k+1 +Oy (k3/3k ).

Proof of Theorem 3 assuming Lemmas 14 and 15. Recalling (16), we have

fk,y = Ik,y +O(1/(k yk
1 ))

= I ′k,y +G (1,0)
y (1,2)/2k+1 +Oy (k3/3k )

=Gy (1,1)+G (1,0)
y (1,2)/2k+1 +Oy (k3/3k )

(23)

for y ≥ 2. To compute the constants above, we first note Gy (1,1) = ∏
p≤y (1−1/p). Next, by (13)

and (14) with (s, z) = (1,2) we have

Gy (1,2) = ∏
p≤y

(
1− 1

p

)2 ∏
p≥y1

(
1− 2

p

)−1 (
1− 1

p

)2

= dy ,

G (1,0)
y (1,2) = 2Gy (1,2)

( ∑
p≤y

log p

p −1
− ∑

p≥y1

log p

(p −1)(p −2)
+γ

)
= 2dy cy

(24)

for y ≥ 2. Here we used (log(ζ(s)(s−1)))′|s=1 = γ. Hence plugging (24) and Gy (1,1) =∏
p≤y (1−1/p)

back into (23), we conclude

fk,y =
∏

p≤y

(
1− 1

p

)
+ cy dy /2k +Oy (k3/3k ). (25)

□
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2.3. Proof of Lemma 14

We use the notation [zn]A(z) = 1
n!

( dn

dzn A
)
(0) to denote the coefficient of zn in A, where A is a

function with Taylor series representation at z = 0. From the representation of I ′k,y in (22), we
have for all k ≥ 1,

I ′k,y = [zk ]
Gy (1, z)

1− z
= 1

2πi

∫
|z|=1/2

Gy (1, z)

1− z

dz

zk+1
,

using Cauchy’s integral formula. Here the integral ranges over a circle centered around z = 0,
oriented counterclockwise, with radius 1/2.

The function Gy (1, z) has simple poles at z = p for every prime p > y ; these are its only poles.
The rational function 1/(1− z) has a simple pole at z = 1. So recalling the smallest prime y1 > y ,
the only poles of Gy (1, z)/(1− z) in the range 1/2 < |z| < y1 +1/2 =: R occur at z = 1 and z = y1.
Thus by Cauchy’s residue theorem,

I ′k,y =
1

2πi

∫
|z|=R

Gy (1, z)

1− z

dz

zk+1
+Gy (1,1)− limz→y1 (z − y1)Gy (1, z)

(1− y1)yk+1
1

. (26)

Note that limz→y1 Gy (1, z)(z − y1) ≪y 1. Then we claim |Gy (1, z)|≪y 1 in the integrand of (26),
from which we conclude

I ′k,y =
∫
|z|=R

Oy (1)

R −1

dz

Rk+1
+Gy (1,1)− Oy (1)

(1− y1)yk+1
1

= Gy (1,1)+Oy (y−k
1 ). (27)

To show this claim, note that if |z| = R and p > 2R, then∣∣∣∣(1− 1

p

)z (
1− z

p

)−1∣∣∣∣=
∣∣∣∣∣exp

(∑
i≥2

zi − z

i p i

)∣∣∣∣∣≤ exp

(∑
i≥2

|z|i
p i

)
≤ exp

(
2R2

p2

)
.

Hence, recalling (13) with s = 1 we obtain

max
|z|=R

∣∣Gy (1, z)
∣∣= max

|z|=R

∣∣∣∣∣ ∏
p≤y

(
1− 1

p

)z ∏
p≥y1

(
1− 1

p

)z (
1− z

p

)−1
∣∣∣∣∣

≤ ∏
p≤y

(
1− 1

p

)−R ∏
p>2R

exp
(2R2

p2

)
·max
|z|=R

∏
y1≤p≤2R

∣∣∣∣(1− 1

p

)z (
1− z

p

)−1∣∣∣∣ ≪y 1.

This proves the claim, and hence Lemma 14 follows.

2.4. Proof of Lemma 15

By Taylor expansion at s = 1, we have uniformly for s ∈ [1,2]

G (0,i )
y (s,0) =G (0,i )

y (1,0)+ (s −1)bi +O
(
(s −1)2ci

)
,

for coefficients

bi :=G (1,i )
y (1,0) and ci := max

s′∈[1,2]

∣∣∣G (2,i )
y (s′,0)

∣∣∣ . (28)

Thus subtracting (19) from (20), we have

Ik,y − I ′k,y =
k∑

i=0

∫ 2

1

(− log(s −1)
)k−i

(k − i )!

1

i !

(
G (0,i )

y (s,0)−G (0,i )
y (1,0)

)
ds

=
k∑

i=0

∫ 1

0

(− log s
)k−i

(k − i )!i !

(
sbi +O(s2ci )

)
ds.

(29)
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Substituting s = e−t shows that

k∑
i=0

bi

i !(k − i )!

∫ 1

0
(− log s)k−i s ds =

k∑
i=0

bi

i !(k − i )!

∫ ∞

0
t k−i e−2t dt

=
k∑

i=0

bi 2i−k−1

i !(k − i )!

∫ ∞

0
vk−i e−v dv =

k∑
i=0

bi

i !
2i−k−1

(30)

and similarly

k∑
i=0

ci

i !(k − i )!

∫ 1

0
(− log s)k−i s2 ds =

k∑
i=0

ci

i !
3i−k−1. (31)

Plugging (30) and (31) back into (29) gives

Ik,y − I ′k,y =
k∑

i=0

(
bi

i !
2i−k−1 +O

(ci

i !
3i−k−1

))
. (32)

So proceeding as in the proof of Lemma 14 (as in (26)), by Cauchy’s integral formula and
residue theorem,

k∑
i=0

bi

i !
2i−k−1 = 2−1[zk ]

G (1,0)
y (1, z)

1− z
2

= 1

4πi

∫
|z|=1/2

G (1,0)
y (1, z)

1− z
2

dz

zk+1

= 1

2πi

∫
|z|=R

G (1,0)
y (1, z)

2− z

dz

zk+1
+G (1,0)

y (1,2)2−k−1 − limz→y1 (z − y1)G (1,0)
y (1, z)

(2− y1)yk+1
1

=G (1,0)
y (1,2)2−k−1 +Oy (y−k

1 )

(33)

holds where R := y1 +1/2.
Finally, we claim ci ≪y i !(i +1)2/y i

1, in which case

k∑
i=0

ci

i !
3i−k−1 ≪

k∑
i=0

y−i
1 (i +1)23i−k−1 ≪

k∑
i=0

(i +1)2 3−k ≪y k3/3k

since y1 ≥ 3 (as y ≥ 2). Thus combined with (33), we conclude

Ik,y − I ′k,y =G (1,0)
y (1,2)/2k+1 +Oy (k3/3k ). (34)

Hence to complete the proof of Lemma 15, it suffices to show ci ≪y i !(i + 1)2/y i
1, which by

definition means that uniformly for s ∈ [1,2],

[zi ]G (2,0)
y (s, z) ≪y (i +1)2/y i

1. (35)

To this end, recall G (1,0)
y (s, z) = zGy (s, z)c(s) by (14), where

c(s) = cy (s, z) := ∑
p≤y

log p

p s −1
− ∑

p≥y1

(z −1)log p

(p s −1)(p s − z)
+ (log(ζ(s)(s −1)))′.

So differentiating again with respect to s we obtain

G (2,0)
y (s, z) = zG (1,0)

y (s, z)c(s)+ zGy (s, z)c ′(s)

=Gy (s, z)
(
z2c(s)2 + zc ′(s)

)
.

(36)

The derivative of c with respect to s is

c ′(s) =− ∑
p≤y

p s (log p)2

(p s −1)2 + ∑
p≥y1

(z −1)(log p)2(2p2s − (z +1)p s )

(p s −1)2(p s − z)2 + (
log(ζ(s)(s −1))

)′′.



Ofir Gorodetsky, Jared Duker Lichtman and Mo Dick Wong 1581

For fixed s ∈ [1,2], note c and c ′ are meromorphic functions onC, with poles located only at z = p s

for each p ≥ y1. Thus

Gy (s, z) =
(
1− z

y s
1

)−1

Hy,1(s, z),

z2c(s)2 + zc ′(s) =
(
1− z

y s
1

)−2

Hy,2(s, z),

for functions Hy,1, Hy,2, whose smallest pole is at z = y s
2 where y2 is the smallest prime larger

than y1.
Letting Hy := Hy,1Hy,2, we see (36) becomes

G (2,0)
y (s, z) =

(
1− z

y s
1

)−3

Hy (s, z). (37)

Note Hy has no poles inside |z| ≤ y s−ε
2 so maxs∈[1,2] |Hy (s, z)| ≪y,ε 1 uniformly for |z| ≤ y s−ε

2 , as
we take the maximum of the continuous function |Hy (s, z)| over the compact set {(s, z) : 1 ≤ s ≤
2, |z| ≤ y s−ε

2 }.
Thus by Cauchy’s integral formula,

[zi ]Hy (s, z) = 1

2πi

∫
|z|=y s−ε

2

Hy (s, z)

zi+1
dz ≪ y−i (s−ε)

2 max
|z|=y s−ε

2

|Hy (s, z)|≪y,ε y−i (1−ε)
2

uniformly for s ∈ [1,2]. By the binomial theorem,

[zi ]

(
1− z

y s
1

)−3

= y−i s
1

(
i +2

2

)
≪ (i +1)2/y i

1

uniformly for s ∈ [1,2] and i ≥ 0. Hence by the product rule, from (37) we conclude

[zi ]G (2,0)
y (s, z) = ∑

i1+i2=i
[zi1 ]

(
1− z

y s
1

)−3

[zi2 ]Hy (s, z) ≪y (i +1)2/y i
1.

This gives (35) as desired, which completes the proof.

Remark 16. By a similar proof as of (35) above, for any y ≥ 2, m ≥ 0,

[zi ]G (m,0)
y (s, z) ≪m,y (i +1)m/y i

1 (38)

holds uniformly for s ∈ [1,2] and i ≥ 0.

3. Proof of Theorem 2

Recall fk = fk,1, F = F1 and G =G1. By (16) with y = 1, we have

fk = Ik +O

(
1

k2k

)
where

Ik =
∫ 2

1

1

k !
F (0,k)(s,0)ds.

We apply the product rule to

F (s, z) = (s −1)−zG(s, z) = (s −1)−z
(
1− z

2s

)−1
G2(s, z),

giving

1

k !
F (0,k)(s,0) = ∑

i+ j+l=k

(− log(s −1)
)l

l !
2− j s 1

i !
G (0,i )

2 (s,0),
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using the power series in (18), as well as
(
1− z

2s

)−1 =∑
j≥0 2− j s z j . Thus we have

Ik = ∑
i+ j+l=k

∫ 2

1

(− log(s −1)
)l

l !
2− j s 1

i !
G (0,i )

2 (s,0)ds. (39)

Now we introduce a similar integral I ′k , given by evaluating G (0,i )
2 (s,0) in the integrand at s = 1,

namely,

I ′k = ∑
i+ j+l=k

∫ 2

1

(− log(s −1)
)l

l !
2− j s 1

i !
G (0,i )

2 (1,0)ds. (40)

Hence to establish Theorem 2, it suffices to prove the following lemmas for I ′k and Ik − I ′k .

Lemma 17. We have I ′k = 1− log2
4 2−k

(
dk2 +O(k log(k +1))

)
.

Lemma 18. We have Ik = I ′k +O(k/2k ).

These are the y = 1 analogues of Lemmas 14 and 15.

3.1. Proof of Lemma 18

By the mean value theorem we have, uniformly for s ∈ [1,2],∣∣∣G (0,i )
2 (s,0)−G (0,i )

2 (1,0)
∣∣∣≤ (s −1)bi

for coefficients

bi := max
s′∈[1,2]

∣∣∣G (1,i )
2 (s′,0)

∣∣∣.
Thus subtracting (39) from (40), we find

∣∣Ik − I ′k
∣∣= ∣∣∣∣∣ ∑

i+ j+l=k

∫ 2

1

(− log(s −1)
)l

l !
2− j s 1

i !

(
G (0,i )

2 (s,0)−G (0,i )
2 (1,0)

)
ds

∣∣∣∣∣
≤ ∑

i+ j+l=k

∫ 2

1

(− log(s −1)
)l

l !
2− j s (s −1)

bi

i !
ds.

(41)

By (38), we have uniformly for t ∈ [1,2],

1

i !
G (1,i )

2 (t ,0) = [zi ]G (1,0)
2 (t , z) ≪ (i +1)3−i . (42)

Hence bi
i ! ≪ (i +1)3−i , so that (41) implies

Ik − I ′k ≪ ∑
i+ j+l=k

∫ ∞

0

t l

l !
2− j (1+e−t ) e−2t (i +1)3−i dt

≤ ∑
i+ j+l=k

(i +1)3−i 2− j
∫ ∞

0

t l

l !
e−2t dt

= ∑
i+ j+l=k

(i +1)3−i 2− j−l−1
∫ ∞

0

ul

l !
e−u du = ∑

i+ j+l=k
(i +1)3−i 2− j−l−1

where the last equalities follow from substituting u/2 for t and recalling the integral form (21) of
the Gamma function. Hence we conclude

Ik − I ′k ≪ ∑
i≤k

(i +1)3−i 2i−k
∑

j≤k−i
1 ≤ k2−k

∑
i≤k

(i +1)(2/3)i ≪ k2−k .
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3.2. Proof of Lemma 17

Recall

I ′k =
k∑

i=0

1

i !
G (0,i )

2 (1,0)
∑

j+l=k−i

∫ 2

1

(− log(s −1)
)l

l !
2− j s ds. (43)

We will prove in the next subsection that

Lemma 19. For k ≥ 1, we have∑
j+l=k

∫ 2

1

(− log(s −1)
)l

l !
2−s j ds = 2− log2

4
2−k

(
k2 +O

(
(k +1)log(k +2)

))
.

Remark 20. The relative saving is k/logk and it appears sharp. We find it to be an unusual
saving.

Using Lemma 19 we simplify the inner sum in (43) and find

I ′k =
k∑

i=0

1

i !
G (0,i )

2 (1,0)

(
2− log2

4
2i−k

(
(k − i )2 +O

(
(k +1− i ) log(k +2− i )

)))
= 2I ′k,2 −

log2

4
2−k B

(44)

where

I ′k,2 :=
k∑

i=0

1

i !
G (0,i )

2 (1,0), (45)

B :=
k∑

i=0

2i

i !

(
(k − i )2 +O

(
(k − i +1)log(k − i +2)

))
G (0,i )

2 (1,0). (46)

Lemma 14 with y = 2 yields

I ′k,2 =G2(1,1)+O(3−k ) = 1

2
+O(3−k ).

Similarly as in the proof of Lemma 14, Cauchy’s integral formula and residue theorem imply

B ′ :=
k∑

i=0

2i

i !
G (0,i )

2 (1,0) = [zk ]
G2(1,2z)

1− z

= 1

2πi

∫
|z|=1/4

G2(1,2z)

1− z

dz

zk+1

= 1

2πi

∫
|z|=2

G2(1,2z)

1− z

dz

zk+1
+G2(1,2)− limz→3/2(z −3/2)Gy (1,2z)

(1−3/2)(3/2)k+1

= d +O((3/2)−k ).

(47)

Here G2(1,2) = 1
4

∏
p>2(1− 2

p )−1(1− 1
p )2 = d . We also note G2(1, z) is meromorphic in |z| < 4 with

simple pole at z = 3 (so z = 3/2 is the smallest pole of G2(1,2z)). In particular,

1

i !
G (0,i )

2 (1,0) = [zi ]G2(1, z) ≪ 3−i . (48)

Thus combining (46), (47) and (48), we obtain

B −k2B ′ =
k∑

i=0

2i

i !
G (0,i )

2 (1,0)((k − i )2 +O((k − i +1)log(k − i +2))−k2)

≪
k∑

i=0
(2/3)i (i k +O(k log(k +1))) ≪ k log(k +1).
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Hence B = dk2 +O(k log(k +1)), so plugging back into (44) we conclude

I ′k = 1− log2

4
2−k(

dk2 +O(k log(k +1))
)
. (49)

3.3. Proof of Lemma 19

We may suppose k ≥ 2. Multiplying through by 2k , we aim to prove

Ak = 2k+1 − log2

4
k2 +O(k logk), (50)

for

Ak := 2k
∑

i+ j=k

∫ 2

1

(− log(s −1)
)i

i !
2− j s ds =

k∑
i=0

2i

i !
J (i )

where, substituting s = 1+e−u ,

J (i ) :=
∫ 2

1

(− log(s −1)
)i 2−(k−i )(s−1)ds =

∫ ∞

0
ui e−u 2−(k−i )e−u

du.

Note the trivial bound J (i ) ≤ i !, using 2−(k−i )e−u ≤ 1.
In order to conclude (50), it suffices to prove the following two estimates and apply them with

T = 15logk:∑
0≤i≤T

2i

i !
J (i ) = ∑

0≤i≤T
2i +O(kT ) for k ≥ T ≥ logk, (51)

∑
T<i≤k

2i

i !
J (i ) = 2k+1 − log2

4
k2 − ∑

0≤i≤T
2i +O(kT ) for k ≥ T ≥ 15logk. (52)

We first prove (51). For T ≥ logk, the contribution of eu ≥ k to J (i ), i.e. u ≥ logk, is handled by
the Taylor expansion 2−(k−i )e−u = 1−O(k e−u). Thus

J (i ) =
∫ logk

0
ui e−u 2−(k−i )e−u

du +
∫ ∞

logk
ui e−u(1+O(k e−u))du

=
∫ logk

0
ui e−u 2−(k−i )e−u

du +
∫ ∞

logk
ui e−u du +O(k2−i )

∫ ∞

0
v i e−v dv

=
∫ logk

0
ui e−u 2−(k−i )e−u

du +
∫ ∞

0
ui e−u du −

∫ logk

0
ui e−u du +O(k2−i i !)

= i !+
∫ logk

0
ui e−u(2−(k−i )e−u −1)du +O(k2−i i !).

Summing over i ≤ T , we obtain∑
0≤i≤T

2i

i !
J (i ) = ∑

0≤i≤T
2i − ∑

0≤i≤T

2i

i !

∫ logk

0
ui e−u(1−2−(k−i )e−u

)du +O(kT ). (53)

Thus to conclude (51) from (53), it remains show∑
0≤i≤T

2i

i !

∫ logk

0
ui e−u(1−2−(k−i )e−u

)du =O(k logk). (54)

The contribution of i ≤ logk is∑
0≤i≤logk

2i

i !

∫ ∞

0
ui e−u du ≤ ∑

0≤i≤logk
2i =O(2logk ) =O(k) (55)
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since 2 < e. Next recall the function u 7→ ui e−u is increasing for u ≤ i , implying∑
logk<i≤T

2i

i !

∫ logk

0
ui e−u du ≤ ∑

logk<i≤T

2i

i !
logk(logk)i e− logk ≤ logk

k

∞∑
i=0

(2logk)i

i !
= k logk. (56)

Combining (55) and (56) gives (54) as desired. This completes the proof of (51).
Now to prove (52), we begin by handling the contribution of small u to the integral J (i ). Since

the function u 7→ ui e−u increases for u ≤ i , for fixed a ∈ (0,1), the contribution of u ≤ ai to J (i ) is
at most ∫ ai

0
ui e−u 2−(k−i )e−u

du ≤
∫ ai

0
ui e−u du ≤ (ai )(ai )i e−ai ≪a i !

p
i (ea/ea)i

by Stirling’s approximation. Thus when a is small enough to satisfy ea > 2ea, we have∫ ai

0
ui e−u 2−(k−i )e−u

du ≪a i !2−i . (57)

For concreteness, we fix a = 0.21. Now let c := a/3. For T < i ≤ k, if u ≥ ci we have

(k − i )e−u ≤ k e−ci < k e−cT ≤ k1−15c = k−.05

since T ≥ 15logk. In particular, we may use the 2nd order Taylor expansion

2−(k−i )e−u = 1− log2(k − i )e−u +O(k2 e−2u).

Thus by (57) we have for T < i ≤ k,

J (i ) =
∫ ∞

ci
ui e−u 2−(k−i )e−u

du +O(i !2−i )

=
∫ ∞

ci
ui e−u (

1− log2(k − i )e−u +O
(
k2 e−2u))

du +O(i !2−i )

= Ai ,1 − log2(k − i )Ai ,2 +O(k2 Ai ,3)+O(i !2−i )

(58)

where, for j = 1,2,3,

Ai , j :=
∫ ∞

ci
ui e− j u du = j−i−1

∫ ∞

ci j
v i e−v dv = j−i−1 i ! (1+O(2−i )). (59)

In the last equality in (59) we used (57). Plugging (59) back into (58) and dividing through by i !,
we find that

J (i )

i !
= (1+O(2−i ))− log2(k − i )2−i−1(1+O(2−i ))+O(k23−i−1 +2−i )

= 1− log2(k − i )2−i−1 +O(k23−i +2−i ).
(60)

Summing over i ∈ (T,k], we conclude that∑
T<i≤k

2i

i !
J (i ) = ∑

T<i≤k

(
2i − log2(k − i )2−1 +O(k2(2/3)i +1)

)
= 2k+1 − ∑

i≤T
2i − log2

2

∑
T<i≤k

(k − i ) + O(k2(2/3)T +k)

= 2k+1 − ∑
i≤T

2i − log2

2

(
k2

2
+O(T k)

)
holds. Here k2(2/3)T ≤ k2+15log(2/3) < k−4 since T ≥ 15logk. This gives (52) as desired, and hence
completes the proof of Lemma 19.
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4. Probability-theoretic argument

In this section, we give an alternative probabilistic interpretation of Erdős sums, showing

Proposition 21. We have fk = 1+O(k/2k/4).

In view of Theorem 2 we haven’t tried to optimize the exponent 2k/4.
For an integer a ≥ 1, let P+(a) and P−(a) denote the largest and smallest prime factors of a,

respectively (here P+(1) := 1 and P−(1) := 1). Also let P j (n) denote the j th largest prime of n, with
multiplicity, so that n = P1(n) · · ·Pk (n). In particular P1(n) = P+(n).

Define the set of L-multiples La ,4

La := {ba ∈N : P−(b) ≥ P+(a)}.

We define the (natural) density of a set A ⊆ N to be d(A) := limx→∞ |A ∩ [1, x]|/x as long as this
limit exists. Note d(La) = 1

a

∏
p<P+(a)(1−1/p).

4.1. Preliminary lemmas

We begin with some preliminaries.

Lemma 22. For any a ∈N, we have ∑
p≥P+(a)

d(Lap ) = d(La).

Proof. Let y > 1. Consider the set of positive integers without prime factors smaller than y , and
partition it according to the smallest prime factor q ≥ y . This gives the disjoint union,{

b ∈N : P+(b) ≥ y
} = ⋃

q≥y

{
bq ∈N : P−(b) ≥ q

}
.

Taking the density of both sides, we find that∏
p<y

(
1− 1

p

)
= ∑

q≥y

1

q

∏
p<q

(
1− 1

p

)
. (61)

Now choosing y = P+(a), we divide (61) by a to conclude d(La) =∑
q≥P+(a) d(Laq ). □

From Lemma 22, a simple induction argument on j ≥ 1 gives∑
Ω(b)= j

p(b)≥P+(a)

d(Lab) = d(La). (62)

In particular when a = 1, for any j ≥ 1 we have
∑
Ω(b)= j d(Lb) = 1. We shall refine this result in the

lemma below.

Lemma 23. Uniformly for 0 < v < 1 and a ∈Z>1, we have∑
q≥P1(a)

1
v

d(Laq ) = v d(La)

(
1+O

(
1

logP1(a)

))
. (63)

Proof. Take 0 < v < 1. We first recall Mertens’ product theorem states that∏
p<x

(
1− 1

p

)
= e−γ

log x

(
1+O

(
1

log x

))
4L for lexicographic
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holds for x ≥ 2. In particular, for x = P1(a) ≥ 2,∏
P1(a)≤p<P1(a)

1
v

(
1− 1

p

)
= ∏

p<P1(a)

(
1− 1

p

)−1 ∏
p<P1(a)

1
v

(
1− 1

p

)

= logP1(a)

logP1(a)
1
v

(
1+O

(
1

logP1(a)

))
= v

(
1+O(1/logP1(a))

)
.

(64)

So by (64) and (61) with y = P1(n)
1
v ,∑

q≥P1(a)
1
v

1

q

∏
p<q

(
1− 1

p

)
= ∏

p<P1(a)
1
v

(
1− 1

p

)
= v

(
1+O(1/logP1(a))

) ∏
p<P1(a)

(
1− 1

p

)
.

Dividing through by a completes the proof. □

Lemma 24. For k ≥ 1, let c1 ≥ ·· · ≥ ck ≥ 0. If d1,D1,E1, . . . ,dk ,Dk ,Ek ≥ 0 satisfy Ei ≤∑i
j=1 d j ≤ Di

for all 1 ≤ i ≤ k (and let d0 = E0 = D0 = 0), then we have
k∑

i=1
ci (Ei −Ei−1) ≤

k∑
i=1

ci di ≤
k∑

i=1
ci (Di −Di−1).

Proof. We have
k∑

i=1
ci di =

k∑
i=1

ci

(
i∑

j=1
d j −

i−1∑
j=0

d j

)
=

k−1∑
i=1

(ci − ci+1)
i∑

j=1
d j + ck

k∑
i=1

di (65)

by summation by parts. Since ci − ci+1 ≥ 0 and
∑

j≤i d j ≤ Di , from (65) we obtain that

k∑
i=1

ci di ≤
k−1∑
i=1

(ci − ci+1)Di + ck Dk =
k∑

i=1
ci (Di −Di−1)

holds. Similarly, since
∑

j≤i d j ≥ Ei ≥ 0, from (65) we obtain that

k∑
i=1

ci di ≥
k−1∑
i=1

(ci − ci+1)Ei + ck Ek =
k∑

i=1
ci (Ei −Ei−1)

holds. □

To handle the contribution of smooth numbers, we use a simple bound of Erdős and
Sárközy [7, Lemma 2], whose proof we provide for completeness.

Lemma 25 (Erdős–Sárközy). For any k ≥ 1, y > 1, we have∑
Ω(n)=k

P1(n)<ey

1

n
≪ y2 k/2k .

Proof. Observe that 2k times our given sum is bounded by the following Euler product,∑
Ω(n)=k

P1(n)<ey

2k

n
≤ ∏

p<ey

(
1+ 2

p
+·· ·+ 2k

pk

)

≤ (k +1)
∏

2<p<ey

(
1− 2

p

)−1

≪ k y2

by Mertens’ product theorem. Dividing by 2k completes the proof. □

Corollary 26. For any 1 ≤ j ≤ k and y > 1, we have∑
Ω(n)=k

P j+1(n)<ey

1

n logn
≪ ∑

Ω(n)=k
P j+1(n)<ey

d(Ln) ≪ y2 k 2 j−k .



1588 Ofir Gorodetsky, Jared Duker Lichtman and Mo Dick Wong

Proof. First, for each n with Ω(n) = k, one can factor n uniquely as ab with Ω(b) = j and
p(b) ≥ P1(a) (namely take b =∏ j

i=1 Pi (n) and a = n/b). Thus by (62) we have∑
Ω(n)=k

P j+1(n)<ey

d(Ln) = ∑
Ω(a)=k− j
P1(a)<ey

∑
Ω(b)= j

p(b)≥P1(a)

d(Lab) = ∑
Ω(a)=k− j
P1(a)<ey

d(La).

On the right-hand side of the above identity we apply the simple bound d(La) ≪ 1/a, and on the
left-hand side we apply d(Ln) ≫ 1/(n logn). This gives∑

Ω(n)=k
P j+1(n)<ey

1

n logn
≪ ∑

Ω(n)=k
P j+1(n)<ey

d(Ln) ≪ ∑
Ω(a)=k− j
P1(a)<ey

1

a
≪ y2 k 2 j−k

by Lemma 25 with k replaced by k − j . □

4.2. Proof of Proposition 21

Let k ≥ 1 be sufficiently large. We shall choose y = 2 j for j = ⌊k/4⌋, and N = 4k . Let f ′
k denote the

sum fk restricted by P j+1(n) ≥ ey . Thus by Corollary 26,

fk = ∑
Ω(n)=k

1

n logn
= f ′

k +O(y2k2 j−k ) = f ′
k +O(k/2k/4) (66)

where, by Mertens’ product theorem,

f ′
k := ∑

Ω(n)=k
P j+1(n)≥ey

1

n logn
= ∑

Ω(n)=k
P j+1(n)≥ey

(
eγ+ O(1)

logP1(n)

)
logP1(n)

logn
d(Ln). (67)

Next, we rewrite the identity n = P1(n) · · ·Pk (n) as

logn

logP1(n)
= 1+ logP2(n)

logP1(n)

(
1+·· ·

(
1+ logP j+1(n)

logP j (n)

(
1+ log

(
P j+2(n) · · ·Pk (n)

)
logP j+1(n)

))
· · ·

)
.

Taking the reciprocal of identity above gives

logP1(n)

logn
= u j+1

(
logP2(n)

logP1(n)
, . . . ,

logP j+1(n)

logP j (n)
,

log(P j+2(n) · · ·Pk (n))

logP j+1(n)

)
,

for the functions u j : R j →R given by

u j (x1, . . . , x j ) := 1

1+x1(1+x2(· · · (1+x j ) · · · ))
. (68)

In particular, from P1(n) ≥ ·· · ≥ Pk (n) we infer the inequalities

logP1(n)

logn
≤ u j

(
logP2(n)

logP1(n)
, . . . ,

logP j+1(n)

logP j (n)

)
, (69)

logP1(n)

logn
≥ u j

(
logP2(n)

logP1(n)
, . . . ,

logP j+1(n)

logP j (n)
(k − j )

)
. (70)

By (69), we see (67) implies that

f ′
k ≤ ∑

Ω(a)=k− j
P1(a)≥ey

(
eγ+ O(1)

logP1(a)

) ∑
P1(a)≤p j ≤···≤p1

u j

(
log p2

log p1
, . . . ,

logP1(a)

log p j

)
d(Lap j ···p1 ). (71)
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Lemma 27. There is an absolute constant C > 1 such that for any a ∈Z>1,∑
P1(a)≤p j ≤···≤p1

u j

(
log p2

log p1
, . . . ,

logP1(a)

log p j

)
d(Lap j ···p1 )

≤
(
1+ C

logP1(a)

) j

N j

N∑
i1,...,i j =1

u j

(
i1 −1

N
, . . . ,

i j −1

N

)
d(La).

Proof. For each 1 ≤ r ≤ j , it suffices to show that

N 1−r
N∑

i1,...ir−1=1

∑
P1(a)≤p j ≤···≤pr+1≤pr

u j

(
i1 −1

N
, . . . ,

ir−1 −1

N
,

log pr+1

log pr
, . . . ,

logP1(a)

log p j

)
d(Lap j ···pr )

≤ N−r
N∑

i1,...,ir =1

∑
P1(a)≤p j ≤···≤pr+1

u j

(
i1 −1

N
, . . . ,

ir −1

N
,

log pr+2

log pr+1
, . . . ,

logP1(a)

log p j

)
d(Lap j ···pr+1 )

×
(
1+ C

logP1(a)

)
(72)

holds. Indeed, iterating (72) (with each r = 1,2, . . . , j in turn) completes the proof of the lemma.
To show that (72) holds, fix indices i1, . . . ir−1 ≤ N and primes p j ≤ ·· · ≤ pr+1 (p j ≥ P1(a)).

Define cir and dir by

cir := u j

(
i1 −1

N
, . . . ,

ir −1

N
,

log pr+2

log pr+1
, . . . ,

logP1(a)

log p j

)
dir := ∑

pr ∈[pN /ir
r+1 ,pN /(ir −1)

r+1 )

d(Lap j ···pr ).

(For ir = 1, the range of pr in the definition of dir is to be interpreted as [pN
r+1,∞).) Note for any

u ≤ N , by Lemma 23 we have
u∑

ir =1
dir =

∑
pr ≥pN /u

r+1

d(Lap j ···pr ) ≤ u

N
d(Lap j ···pr+1 )

(
1+ C

logP1(a)

)
=: Du .

In particular Du −Du−1 = 1
N d(Lap j ···pr+1 )(1+C /logP1(a)). Splitting up the sum over pr ≥ pr+1

below according to the ir for which pr ∈ [
pN /ir

r+1 , pN /(ir −1)
r+1

)
holds, and then applying Lemma 24,

we find that∑
pr ≥pr+1

u j

(
i1 −1

N
, . . . ,

ir−1 −1

N
,

log pr+1

log pr
, . . . ,

logP1(a)

log p j

)
d(Lap j ···pr )

≤
N∑

ir =1
cir

∑
pr ∈[pN /ir

r+1 ,pN /(ir −1)
r+1 )

d(Lap j ···pr ) =
N∑

ir =1
cir dir

≤
N∑

ir =1
cir (Dir −Dir −1) =

(
1+ C

logP1(a)

)
1

N

N∑
ir =1

cir d(Lap j ···pr+1 )

=
(
1+ C

logP1(a)

)
1

N

N∑
ir =1

u j

(
i1 −1

N
, . . . ,

ir −1

N
,

log pr+2

log pr+1
, . . . ,

logP1(a)

log p j

)
d(Lap j ···pr+1 ).

(73)

Summing (73) over i1, . . . , ir−1 ≤ N and p j ≤ ·· · ≤ pr+1, we obtain (72) as desired. □

Plugging Lemma 27 into (71) we obtain that

f ′
k ≤ eγ

∑
Ω(a)=k− j
P1(a)≥ey

d(La)

(
1+C /y

) j+1

N j

N∑
i1,...,i j =1

u j

(
i1 −1

N
, . . . ,

i j −1

N

)
(74)
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holds. By Corollary 26 and (62) with a = 1,∑
Ω(a)=k− j
P1(a)≥ey

d(La) = ∑
Ω(a)=k− j

d(La)+O(y2k2 j−k ) = 1+O(k/2k/4),

recalling the definitions y = 2 j , j = ⌊k/4⌋. Thus

f ′
k ≤ eγ

(
1+O(k/2k/4)

) j+1

N j

N∑
i1,...,i j =1

u j

(
i1 −1

N
, . . . ,

i j −1

N

)
. (75)

By an analogous argument (using the lower bound in (70), and Ei = i
N d(Lp2···p j a)(1 −

C /logP1(a)) in Lemma 24 instead of Di ), we may obtain a similar lower bound

f ′
k ≥ eγ

(
1−O(k/2k/4))

) j+2

N j

N∑
i1,...,i j =1

u j

(
i1

N
, . . . ,

i j

N
(k − j )

)
. (76)

Now for a sequence (c j ) j , define the integral

I j (c j ) :=
∫

[0,1] j
u j (x1, . . . , x j−1,c j x j )dx1 · · ·dx j . (77)

Observe that the sum in (75) is the upper Riemann sum for the integral I j (1), noting that
u j : [0,1] j → [0,1] is decreasing in each component. And since the upper and lower Riemann
sums (which squeeze I j (1)) overlap in (N −1) j points, their difference is ≪ (N j − (N −1) j )/N j =
1− (1−1/N ) j ≪ j /N . In particular the sum in (75) equals I j (1)+O( j /N ).

Similarly (75) is the lower Riemann sum for I j (k − j ). Thus we obtain

N− j
N∑

i1,...,i j =1
u j

(
i1 −1

N
, . . . ,

i j −1

N

)
= I j (1)+O( j /N ),

N− j
N∑

i1,...,i j =1
u j

(
i1

N
, . . . ,

i j

N
(k − j )

)
= I j (k − j )+O( j /N ).

Recalling N = 4k and j = ⌊k/4⌋, we see that (75) and (76) become

f ′
k ≤ (eγ+O(k/2k/4)) I j (1), (78)

f ′
k ≥ (eγ−O(k/2k/4)) I j (k − j ). (79)

In the next section, we shall establish the following quantitative result.

Theorem 28. Let (c j ) j be any nonnegative sequence. Then I j (c j ), as in (77), satisfies

I j (c j ) = e−γ+O
(
2− j (

1+ c j
))

.

Remark 29. The qualitative result that In(cn) = e−γ+o(1) may be established in the wider regime
where limsupn→∞

1
n logcn < 1 holds (see Lemma 35 for more precise statement) but the bound

above is sufficient for the purpose of this article.

In particular, Theorem 28 gives

I j (1) = e−γ+O(2− j ),

I j (k − j ) = e−γ+O(k/2 j ).

Thus plugging into (78) and (79) we obtain f ′
k = 1+O(k/2k/4). Hence by (66) we conclude that

fk = f ′
k +O(k/2k/4) = 1+O(k/2k/4). (80)

This completes the proof of Proposition 21.
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5. A sequence of integrals

In this section, we prove Theorem 28. This implies Theorem 6 for I j (1). Recalling u j in (68), we
defined the following sequence of integrals, for a sequence (c j ) j ,

I j = I j (c j ) :=
∫

[0,1] j

dx1 dx2 · · ·dx j

1+x1(1+x2(· · · (1+x j−1(1+ c j x j )) · · · ))
. (81)

This sequence of iterated integrals is closely related to the so-called Dickman–Goncharov
distribution, the properties of which are well studied in the literature (see e.g. [14, Props. 2.1
and 2.4], [3] and [15]). Since we need small refinements of existing results, we will provide self-
contained explanations for all the results below. Our approach will be based on techniques from
random iterated functions/stochastic fixed-point equations.

5.1. Probabilistic setup

In the following, all random variables are assumed to live in a common reference probability
space (Ω,F ,P).

Lemma 30. Let U ,U1,U2, . . . be i.i.d. Uniform[0,1] random variables. Define

Fn(x) := 1+Un x ∀x ∈R, n ∈N,

and consider the sequence of iterated random functions

S0(x) := x, Sn(x) := F1 ◦F2 ◦ · · · ◦Fn(x) ∀n ∈N. (82)

Then the following statements hold.

(i) The random variable

S∞ := lim
n→∞Sn(1) = 1+

∞∑
j=1

j∏
k=1

Uk (83)

exists almost surely and satisfies P(1 ≤ S∞ <∞) = 1.
(ii) Let θ ∈ (1,e). If (Vn)n is a sequence of random variables such that limn→∞θ−n |Vn | = 0

almost surely, then

lim
n→∞Sn(Vn) = S∞ almost surely. (84)

Remark 31. The composition of maps Sn(x) := F1◦· · ·◦Fn(x) in Lemma 30 may be identified with
products of random matrices, i.e.(

Sn(x)
1

)
=

(
U1 1
0 1

)
· · ·

(
Un 1

0 1

)(
x
1

)
∀x ∈R, n ∈N.

We choose the current formulation because many results in this section have natural extensions
to nonlinear random functions Fn with similar assumptions on their Lipschitz constants.

Proof. By definition,

Sn(1) = 1+
n∑

j=1

j∏
k=1

Uk

and it is immediate that Sn+1(1) ≥ Sn(1) ≥ 1 for all n ∈N. Therefore, the almost sure limit in (83)
exists by monotone convergence and we have P(S∞ ≥ 1) = 1. Moreover,

E[S∞] = 1+
∞∑

j=1
E

[
j∏

k=1
Uk

]
= 1+

∞∑
j=1
E[U ] j =

∞∑
j=0

2− j = 2 (85)

which implies P(S∞ <∞) = 1. Thus we have verified (i).
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Now suppose θ ∈ (1,e), and (Vn)n is a sequence of random variables such that θ−n |Vn |
converges almost surely to 0 as n → ∞. Since each of the functions Fn is linear with Lipschitz
constant ∥Fn∥Lip =Un , we have

|Sn(Vn)−Sn(1)| = |F1 ◦F2 ◦ · · · ◦Fn(Vn)−F1 ◦F2 ◦ · · · ◦Fn(1)|

=
[

n∏
j=1

∥F j ∥Lip

]
|Vn −1| =

[
n∏

j=1
Un

]
|Vn −1|

≤ exp

(
n∑

j=1
logU j

)
(1+|Vn |).

(86)

Since E[logUi ] = ∫ 1
0 logu du =−1, the strong law of large numbers gives

1

n

n∑
j=1

logU j
a.s.−−−−→

n→∞ −1.

In particular, if we choose ε ∈ (0,1− logθ), then almost surely there exists some (random) n0 =
n0(ε) ∈N such that

1

n

n∑
j=1

logU j ≤−1+ε for all n ≥ n0.

Substituting this into (86), we obtain

|Sn(Vn)−Sn(1)| ≤ (θ/e1−ε)n [
θ−n(1+|Vn |)

]=O
(
θ−n(1+|Vn |)

)
.

The assumption on Vn implies that Sn(Vn) − Sn(1) converges to 0 almost surely. Since Sn(1)
converges to S∞ almost surely by (i), we conclude that (ii) holds, i.e. Sn(Vn) also converges to
S∞ almost surely. □

Corollary 32. For the integral In as in (81), we have

In = E
[

1

Sn−1(1+ cnUn)

]
.

In particular, for any sequence (cn)n satisfying 0 ≤ cn = o(θn) for some θ ∈ (1,e),

lim
n→∞ In = E[S−1

∞ ] =: I∞.

Proof. The probabilistic representation of the iterated integral In follows immediately by con-
struction. If we let Vn−1 := 1+ cnUn , then θ−nVn converges to 0 almost surely as n →∞, and by
Lemma 30 we also obtain that Sn−1(Vn−1) converges almost surely to S∞. Since

1

Sn−1(Vn−1)
≤ 1

Sn−1(1)
≤ 1,

we conclude by dominated convergence that

lim
n→∞ In = lim

n→∞E
[

1

Sn−1(Vn−1)

]
= E[S−1

∞ ]. □

The next step is a simple but crucial characterisation of the distribution of S∞.

Lemma 33. Let U , X be two independent random variables such that U ∼ Uniform[0,1] and

X
(d)= 1+U X . (87)

If P(|X | <∞) = 1, then X
(d)= S∞.
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Remark 34. While Lemma 33 is conveniently formulated in terms of random variables, the
statement ultimately concerns the law of X only and does not require the knowledge of the
underlying probability space. For instance, the distributional equality (87) can be reformulated as

E[g (X )] =
∫ 1

0
E[g (1+uX )]du

for all suitable test functions g (provided both sides are well defined), and the conclusion of the
lemma says that we necessarily have E[g (X )] = E[g (S∞)], or equivalently P(X ≤ x) = P(S∞ ≤ x)
for any x ∈R.

Proof. Without loss of generality (by Remark 34), assume that X is defined on the same prob-
ability space in Lemma 30 such that X is independent of all the uniformly distributed random
variables U ,U1,U2,U3, . . . ; our goal is to verify the following two claims:

(1) The random variable S∞ := limn→∞ Sn(1) satisfies the distributional equality (87), i.e.

S∞
(d)= 1+U S∞.

This is straightforward by a quick reordering of the underlying i.i.d. random vari-
ables/iterated maps. Indeed,

Sn(1) = F1 ◦ · · · ◦Fn(1)
(d)= Fn ◦F1 ◦F2 ◦ · · · ◦Fn−1(1)

= 1+UnSn−1(1)
(d)−−−−→

n→∞ 1+U S∞.

(2) If X satisfies P(|X | <∞) and (87), then X
(d)= S∞.

To establish this claim, observe that for any n ∈Nwe have

X
(d)= F1(X )

(d)= ·· · (d)= F1 ◦F2 ◦ · · · ◦Fn(X ) = Sn(X ).

Since P(|X | <∞) and in particular 2−n |X | a.s.−−−−→
n→∞ 0, we apply Lemma 30 with Vn = X and

obtain Sn(X )
a.s.−−−−→

n→∞ S∞. In other words,

X
(d)= S∞ = 1+

∞∑
j=1

j∏
k=1

Uk ,

which concludes the proof. □

5.2. Proof of Theorem 28

The recursive distributional equation (87) is a very convenient tool that helps us control the rate
of convergence of Sn(·) and extract information about the statistical behaviour of S∞ at the same
time. We first explain how to estimate the difference between In(cn) and its limit I∞.

Lemma 35. For any nonnegative sequence (cn)n , we have

|In(cn)− I∞| ≤ 21−n +E
[

min

(
1,cn

∏
j≤n

U j

)]
≤ 2−n(2+ cn). (88)

Proof. Recall that Vn−1 := 1+ cnUn and

In(cn) = E
[

1

Sn−1(Vn−1)

]
.

On the other hand, if we introduce a new random variable T
(d)= S∞ that is independent of all of

the U j ’s, we see that

Sn−1(T )
(d)= S∞ and hence I∞ = E[S−1

∞ ] = E
[

1

Sn−1(T )

]
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by the distributional fixed point equation (87).
Since Sn−1(·) is linear with Lipschitz constant ∥Sn−1∥Lip =∏

j≤n−1 U j , we have

|In(cn)− I∞| =
∣∣∣∣E[

1

Sn−1(Vn−1)
− 1

Sn−1(T )

]∣∣∣∣
≤ E

[∥Sn−1∥Lip |Vn−1 −T |
Sn−1(Vn−1)Sn−1(T )

]
≤ E

[∥Sn−1∥Lip |T −1|
Sn−1(T )

]
+E

[∥Sn−1∥Lip |Vn−1 −1|
Sn−1(Vn−1)

]
.

(89)

Since E[U j ] = 1/2, E[T ] = E[S∞] = 2 by (85) and P(T ≥ 1) =P(Sn−1(T ) ≥ 1) =P(S∞ ≥ 1) = 1, the first
term on the right-hand side of (89) satisfies

E

[∥Sn−1∥Lip |T −1|
Sn−1(T )

]
≤ E[∥Sn−1∥Lip |T −1|]
= E

[( ∏
j≤n−1

U j

)
|T −1|

]
= E[T −1]

∏
j≤n−1

E
[
U j

]= 21−n .

Next, observe that Vn−1 −1 = cnUn and Sn−1(x) ≥ 1 for any x ≥ 0. This means

∥Sn−1∥Lip |Vn−1 −1|
Sn−1(Vn−1)

≤ cn
∏
j≤n

U j .

On the other hand, Sn−1(Vn−1) ≥ 1+Vn−1∥Sn−1∥Lip ≥ ∥Sn−1∥Lip |Vn−1 −1|, which leads to a slightly
improved bound

∥Sn−1∥Lip |Vn−1 −1|
Sn−1(Vn−1)

≤ min

(
1,cn

∏
j≤n

U j

)
.

Taking expectation both sides and plugging this back into (89) yields the first inequality in (88),
and the second inequality in (88) follows from E[cn

∏
j≤n U j ] = 2−ncn . □

It remains to show that the value of I∞ equals e−γ. This will be achieved using the recursive
distributional equation (87) with the help of Laplace transform φ(t ) := E[e−tS∞ ], which is intrin-
sically related to our problem because

I∞ = E[S−1
∞ ] = E

[∫ ∞

0
e−tS∞ dt

]
=

∫ ∞

0
φ(t )dt (90)

by Fubini’s theorem. Let us first highlight that:

Lemma 36. The Laplace transform φ(t ) := E[e−tS∞ ] satisfies

t et φ(t ) =
∫ t

0
φ(v)dv, t ≥ 0. (91)

In particular,

I∞ = lim
t→∞ t et φ(t ). (92)

Proof. From the recursive distribution equation (87), we have

φ(t ) := E[e−tS∞ ] = E[e−t (1+U S∞)]

= e−t
∫ 1

0
E[e−tuS∞ ]du = e−t

t

∫ t

0
E[e−vS∞ ]dv.

Hence t et φ(t ) = ∫ t
0 φ(v)dv , as claimed. In particular limt→∞ t et φ(t ) = ∫ ∞

0 φ(v)dv = I∞. □
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Proof of Theorem 28. Differentiating the equality (91) yields t et φ′(t )+ (t et )′φ(t ) = φ(t ), which
may be rewritten as

φ′(t )

φ(t )
= 1− (t et )′

t et = e−t −1

t
−1.

Since φ(0) = 1, we then obtain

logφ(x) = logφ(x)− logφ(0) =
∫ x

0

d

du

[
logφ(u)

]
du =

∫ x

0

φ′

φ
(u)du

=
∫ x

0

(
e−u −1

u
−1

)
du =

∫ x

0

(
e−u −1

) du

u
−x

= [
(e−u −1)logu

]x
0 +

∫ x

0
e−u logu du −x.

From Euler’s identity for γ [9, Equation (2.2.8)],

γ=−
∫ ∞

0
e−u logu du,

we see as x →∞,

logφ(x) =− log x −x −γ+o(1).

Substituting this into (92), we obtain I∞ = limx→∞ x ex φ(x) = e−γ. Combining this with
Lemma 35, we conclude that In = e−γ+O(2−n(1+ cn)). □
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