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Abstract. The theory of the Okounkov body is a usual tool for analyzing the asymptotic behaviour of the
sectional ring of a line bundle over a projective manifold. In this note, combined with the algebraic reduction,
we study the asymptotic behaviour of the sectional ring of a line bundle over any arbitrary compact, normal,
irreducible complex space.

Résumé. La théorie du corps d’Okounkov est un outil puissant pour analyser le comportement asymptotique
de l’anneau canonique d’un fibré en droites sur une variété projective. Dans cette note, combiné avec la
réduction algébrique, nous étudions le comportement asymptotique de l’anneau canonique d’un fibré en
droites sur tout espace complexe compact, normal et irréductible arbitraire.
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In the general context, we consider the following question. Let X be a compact, normal, irre-
ducible (reduced) complex space. We denote the meromorphic function field over X as M (X ).
According to [1, 20], and [21], M (X ) is a finitely generated extension over C. Consequently„ there
exists a (reduced irreducible) projective variety, denoted by Y , such that M (X ) is isomorphic to
the rational function field of Y (referred to as a model of M (X )). Any two models are bimeromor-
phic.

Now, let L be a line bundle over X (or a Cartier divisor if the space is singular). In classical
terms,we define the sectional ring of L by:

R(X ,L) := ⊕
k≥0

H 0(X ,kL)

We also use the notationN(L) := {k ∈N,h0(X ,kL) ̸= 0}. Throughout this note, we assume that L is
Q-effective, meaning that N(L) ̸= {0}. Otherwise, the Kodaira–Iitaka dimension of L is defined to
be −∞ (as introduced in [15]).

Let v be a valuation of M (X ). The theory of the Okounkov body produces a tool to study the
asymptotic behaviour of the sectional ring of L via the image of the valuation. This theory was
independently developed by Lazarsfeld and Mustaţǎ [17] and Kaveh and Khovanskii [16], offering
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a systematic exploration of Okounkov’s construction [18], [19]. In particular, we can show that the
limit

lim
k∈N(L),k→∞

h0(X ,kL)

kκ(L)

exists, where κ(L) is the Kodaira–Iitaka dimension of L. By the definition of the Kodaira–Iitaka
dimension of L, a priori, the limit superior

limsup
k∈N(L),k→∞

h0(X ,kL)

kκ(L)

exists and is strictly positive. Note that by the projection formula, the sectional ring is a bimero-
morphic invariant. In other words, if ν : X̃ → X is a modification of X , R(X ,L) ≃ R(X̃ ,ν∗L).

In our general context, the centre of a valuation does not necessarily exist on X . It’s worth
mentioning that the existence of the centre in the projective setting is deduced from the valuation
characterization of the properness of a scheme. Therefore, the centre exists on any model of
M (X ) since the model is projective, although it is not necessarily a bimeromorphic model for a
non-projective irreducible complex space.

To study the asymptotic behaviour of the sectional ring R(X ,L) using the valuation approach,
we opt for a model such that the sectional ring of L is isomorphic to some sectional ring of a
Q−line bundle over this model. This is achieved through the following fundamental Theorem 9
of Campana, which was communicated to the author via unpublished personal correspondence.

Recall first the following definitions due to Campana.

Definition 1 ([8, Definition 1.21]). Let f : X → Y be a holomorphic fibration between compact
manifolds (i.e. surjective with connected fibres), and S be an effective divisor on X . We define S as
being partially supported on the fibres of f if f (S) ̸= Y and for any irreducible component T of f (S)
with codimension one in Y , it is the case that f −1(T ) contains an irreducible component mapping
onto T by f which is not contained in the support of S.

We have the following basic property.

Lemma 2 ([8, Lemma 1.22]). Let f : X → Y be a holomorphic fibration between manifolds, and
S be a divisor of X that is partially supported on the fibres of f . Let L be a line bundle on Y . Then
the natural injection of sheaves L ⊂ f∗( f ∗(L)⊗O (S)) is an isomorphism.

Proof. We sketch the proof for the case when L is trivial for reader’s convenience. Let U be a
Stein open set on Y . Since S is partially supported on the fibres of f and U is Stein, there exists
an effective divisor T on U such that O (S) ⊂ f ∗O (T ). Consequently,

f∗O (S) ⊂O (T ) ⊂MU .

Any section of f∗O (S) on U can be regarded as the pull-back of some meromorphic function
on U , which at most has poles along S. Since S is partially supported on the fibres of f , the
meromorphic function must indeed be holomorphic. □

Definition 3 ([8, Definition 1.2]). Let f : X → Y be a holomorphic fibration between (connected)
compact manifolds. An irreducible divisor D on X is said to be f -exceptional if the image f (D) has
codimension at least 2 in Y . We say that f : X → Y is neat if there moreover exists a bimeromorphic
holomorphic map u : X → X ′ with X ′ being a smooth manifold such that each f −exceptional
divisor of X is also u−exceptional.

Note that an f −exceptional divisor is partially supported on the fibres of f . With the help of
the resolution of singularities [12, 13] and the Hironaka flattening theorem [14], we can establish
the following lemma by the proof of [8, Lemma 1.3].
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Lemma 4. Let f : X → Y be a holomorphic fibration between (connected) compact manifolds.
Then, there exists a base change f̃ : X̃ → Ỹ and bimeromorphic maps u : X̃ → X , v : Ỹ → Y where
X̃ , Ỹ are smooth manifolds that result in a commuting diagram:

X̃ X

Ỹ Y

u

f̃ f

v

such that each f̃ −exceptional divisor of X̃ is also u−exceptional. Moreover, f̃ is neat with u as a
possible choice for the bimeromorphic holomorphic map.

The fundamental property of a “neat” morphism is as follows:

Lemma 5. Assume that f : X → Y is a neat holomorphic fibration between (connected) compact
manifolds. Let u : X → X ′ be a bimeromorphic holomorphic map with X ′ being a smooth
manifold, and suppose that each f −exceptional divisor of X is also u−exceptional. Let E be
an f −exceptional divisor of X (hence u−exceptional) and L be a line bundle over X ′. Then the
restriction induces an isomorphism

H 0(X ,u∗L) ≃ H 0(X \ E ,u∗L).

In particular, multiplication with the canonical section sE of E induces an isomorphism

H 0(X ,u∗L) ≃ H 0(X ,u∗L+E).

Proof. It will be enough to prove surjectivity. Since u : X → X ′ is bimeromorphic, there exists
a closed analytic subset S ⊂ X ′ with codimension at least 2 such that the restriction of u to
u−1(X ′ \ S) is biholomorphic.

The first statement can be derived from the following diagram:

H 0(X ′,L) H 0(X ,u∗L) H 0(X \ E ,u∗L)

H 0(X ′ \ S,L) H 0(X \ f −1(S),u∗L)

u∗

i∗ j∗

≃

Here, i : X ′ \ S → X ′ and j : X \ u−1(S) → X \ E represent the inclusions. Notice that j∗ is injective.
Note that the morphism i∗ is an isomorphism by Hartogs’ theorem. For any s ∈ H 0(X ,u∗L+E),

by the first statement, we have (s/sE )|X \E = s′|X \E for some s′ ∈ H 0(X ,u∗L). This implies s = s′sE ,
leading to the second isomorphism. □

We also recall the definition of non-polar divisors, as defined in [11]. For more information on
non polar divisors, we refer to the paper [7].

Definition 6. An irreducible divisor on a complex manifold X is called non-polar if it is not
contained in the pole of any meromorphic function on X .

For any compact connected manifold X , we have the following algebraic reduction (cf. [22,
p. 25] or [6, Lemma 1 (p. 163)]):

Definition 7. For any compact connected manifold X , there exist morphisms represented as:

X ′ X

A

a

m

where X ′ is a smooth bimeromorphic model of X , m is a proper modification, A is a smooth
projective variety, and a is a surjective holomorphic map with connected fibres such that M (X ) ∼=
M (A) ∼=M (X ′).



1392 Xiaojun Wu

In this case, an irreducible divisor on X ′ is non-polar if and only if its image under a is A. Note
that A may not be bimeromorphic to X .

Lemma 8. Using above notations, let N be a non-polar divisor over X ′ and S be a divisor over X ′

without any common irreducible component with N . Then, for any p ≥ 0, the multiplication with
the canonical section spN of pN induces an isomorphism

H 0(X ′,S) ≃ H 0(X ′,S +pN ).

Proof. The sections of H 0(X ′,S +pN ) are the meromorphic functions f ∈M (A) such that

a∗ div( f )+S +pN ≥ 0.

This condition is equivalent to a∗ div( f ) + S ≥ 0, as N is non-polar, and S has no common
irreducible component with N . Consequently, we have:

H 0(X ′,S) ≃ H 0(X ′,S +pN )

for any p ≥ 0. □

We are now ready to prove the following theorem:

Theorem 9. Let L be a line bundle over a compact irreducible normal complex space X . Let
k ∈ N∗ be such that kL is effective. There exists a smooth projective variety A (independent of k)
an algebraic reduction of X such that the rational function field of A is isomorphic to M (X ) and a
Q−effective divisor D over A such that for m > 0 sufficient divisible,

H 0(A,mD) ∼= H 0(X ,mkL).

Such an A is unique up to bimeromorphism.

Proof. Up to a possible desingularisation of X , we can assume X to be a compact connected
complex manifold. Using the notations of Definition 7, by Lemma 4, we can assume that a is
neat.

We claim that there existQ−effective divisors (as kL is effective) such that

km∗L+R = a∗D +E

where R is an effective, a-exceptional divisor, E is a sum of non-polar divisors N and an effective
divisor PSSF(a) partially supported on the fibres of a. Note that R is thus m−exceptional since a
is neat. Thus for sufficiently divisible l ,

H 0(X , lkl ) = H 0(X ′,m∗(lkL)
)= H 0(X ′,m∗(lkL)+ lR)

by Lemma 5.
The construction of the above decomposition is as follows. Let D ′ be an irreducible compo-

nent of m∗(kL) such that G := a(D ′) is an irreducible divisor of A. Then

a∗G =∑
i

ki Di +R

with R a−exceptional and Di irreducible divisors such that a(Di ) =G . Let

G ′ =∑
i

gi Di

be the maximal effective divisor which is a linear combination of Di such that m∗(kL)−G ′ is
effective. Note that G ′ is not trivial since G ′ ≥ D ′.

Similarly, let N be the maximal effective divisor which is a linear combination of non-polar
irreducible components of m∗(kL) such that m∗(kL)− N is effective. Here the support of N is
contained in the support of m∗(kL); thus, the set of such divisors is finite. In general, the set of
non-polar divisors is always finite by results of [7].
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Define mG := mini
gi
ki

. Then mG = 0 if and only if there exists i such that gi = 0. In this case,
G ′ is partially supported on the fibres of a, and we define RG = 0 in this case. If mG > 0, there
exists an a−exceptional Q−effective divisor RG such that G ′−mG a∗G +RG is Q−effective and is
partially supported on the fibres of a.

Consider m∗(kL)−∑
G mG a∗G where the sum is taken over all irreducible divisors G that can

be writen as a(D ′) for some irreducible component D ′ of m∗(kL). Define

D :=∑
G

mG a∗G .

Then m∗(kL)−∑
G mG a∗G+R, where R :=∑

G RG (which is a−exceptional,Q−effective), is a sum
of non-polar divisor N and aQ−effective divisor

PSSF(a) := m∗(kL)+R −D −N

partially supported on the fibres of a.
To relate the sectional ring of kL to the sectional ring of a line bundle on A, for any p > 0

sufficient divisible such that pmG ∈Z for any mG , we consider

H 0(X , pkL) = H 0(X ′, pm∗kL+pR) = H 0(X ′, pa∗D +pN +pPSSF(a)
)= H 0(A, pD).

The third equality follows from Lemma 2 and 8. (In fact, it is enough to take p to be a common
multiple of the set of all ki . Note that up to Q−linear equivalence, 1

k D is uniquely determined
by L.) □

In general, we hope to use the above theorem to construct the Okounkov body over an
arbitrary compact, normal, irreducible complex space. Let L be a line bundle over a compact,
normal, irreducible complex space X . Let v be a valuation of M (X ). With the same notations
as above, we hope to define the Okounkov body of (X ,L) ∆v (X ,L) to be the Okounkov body of
the algebraic reduction (A, 1

k D) which is defined in [17, Definition 4.3]. Note that the bigness
condition [17, Definition 4.3] is used to show the independence of numerical equivalence of
divisors which is unnecessary for the independence of linear equivalence. The difficulty is
whether this definition depends on the choice of k and D and the algebraic reduction. A general
construction seems to be difficult.

However, we can still study some asymptotic behaviour of the sectional ring.
For the convenience of the reader, we recall briefly the construction of the Okounkov body in

the projective case following [16, Section 2.4, 3.2]. Assume that ξ is the center of v over A. (Its
existence is deduced from the properness of A.) Assume that D is a line bundle over A. For any
σ ∈ H 0(A,mD) \ {0}, we define naturally the valuation of σ associated to v as follows. Let e be
a local trivialisation of O (D) near ξ. Then there exists a local holomorphic function f such that
σ= f ·e near ξ (over a Zariski open set). Define

v(σ) := v( f )

which can be easily shown to be independent of the choice of local trivialisation.
LetΛv := v(M (A)∗), which forms a lattice in Vv := v(M (A)∗)⊗ZR. Define in Vv , the Okounkov

body ∆v (A,D) associated to D as the closure (with respect to the Euclidean topology) of the set
of all 1

m v(σ) for σ ∈ H 0(A,mD) \ {0}. It can be proven to be equal to the closure of the set of all
v(E) where E is an effective Q−divisor Q−linearly equivalent to D with respect to the Euclidean
topology on Vv . Here for an irreducible divisor E , we define v(E) to be the valuation v of any local
defining function of the divisor E . We can extend by linearity to define the valuation v of any
Q−divisor. Thus we can extend the definition of Okounkov body to the linearly equivalent class
ofQ−divisors.
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Example 10. Let T be a generic torus so that M (T ) = C the constant functions. Let X be the
blow-up of a point in T ×Pn . Then the composition π of the blow-up and the projection onto Pn

gives an algebraic reduction of X . In particular, we have that

M (X ) ∼=M (T ×Pn) ∼=M (Pn).

Consider L := π∗O (1) ⊗ O (E) where E is the exceptional divisor of the blow-up. Using the
construction from Theorem 9, we can find a Q−divisor 1

k D which is Q−linearly equivalent to
O (1) for any k > 0 so that for any m ≥ 0,

H 0(X ,mL) = H 0(Pn ,O (m)).

In this case, one can define the Okounkov body of (X ,L) as

∆v (X ,L) :=∆v
(
Pn ,O (1)

)
.

As an application of Theorem 9, we have the following proposition.

Proposition 11. Let L be a line bundle over a compact, normal, irreducible complex space X . Then
we have that the limit

lim
k∈N(L),k→∞

h0(X ,kL)

kκ(L)

exists where κ(L) is the Kodaira–Iitaka dimension of L.

Proof. This is an application of Theorem 9 and the corresponding result in the projective case.
We sketch briefly the proof of the projective case for the convenience of the reader. Here we follow
the arguments in [16, Section 2.4, 3.2].

We use the same notations as in Theorem 9.
Recall that the rational rank of v is defined to be the rank of Λv which is the maximal size of

a set of Z−linear independent elements in Λv . It can be shown that the rational rank of v is less
than the dimension of the algebraic reduction A which is also equal to the transcendental degree
of M (X ) over C. Fix v a valuation with maximal rational rank. This is always possible (cf. [17,
Section 5.2]).

Letµv be the Lebesgue measure on Vv normalised by the latticeΛv . By Theorem 9, there exists
k0 sufficient divisible such that k0L is effective and there is an effective line bundle D over A such
that

H 0(A,mD) ∼= H 0(X ,mk0L) (∀m ≥ 0).

In particular,

κ(D) = κ(k0L) = κ(L).

By Okounkov body theory ([16, Corollary 3.11]), for any valuation v with maximal rational rank
(which is called a faithfulZdimCX −valued valuation for the field M (X ) in the terminology of [16]),

lim
k∈N(L),k→∞

h0(A,kD)

kκ(D)
=µv

(
∆v (A,D)

)
.

This is a consequence of the equidistribution of the sets 1
k v(H 0(A,kD)) in the Okounkov body

∆v (A,D). Thus we have

lim
kk0∈N(L),k→∞

h0(X ,kk0L)

(kk0)κ(L)
= lim

kk0∈N(L),k→∞
h0(A,kD)

(kk0)κ(D)
=µv

(
∆v (A,D)

)
k−κ(L)

0 .

SinceN(L) is a semi-group, there exists d large enough such that

N(L)∩ [k1d ,∞[ = k1N∩ [k1d ,∞[
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for some k1 > 0. Without loss of generality, we can assume that k0 is a multiple of k1d . In
particular k0L,k0L +k1L, . . . ,k0L + (k0 −k1)L are all effective and for any k ≥ 1 large enough and
any 0 ≤ i < k0/k1, we have inclusions

O
(
(k −1)k0L

)⊂O (kk0L+k1i L) ⊂O
(
(k +2)k0L

)
.

Thus we have for 0 ≤ i ≤ k0/k1 −1,

lim
k→∞

h0(X ,kk0L+k1i L)

(kk0 +k1i )κ(L)
=µv

(
∆v (A,D)

)
k−κ(L)

0 .

This implies the conclusion

lim
k≥d ,k→∞

h0(X ,k1kL)

(k1k)κ(L)
= lim

k→∞
h0(X ,kk0L+k1i L)

(kk0 +k1i )κ(L)
=µv

(
∆v (A,D)

)
k−κ(L)

0

since the right-hand side is independent of i . □

The existence of such a limit was previously studied in [10] for the base of a big line bundle
over a projective manifold (cf. [9, Remark 15.8]).

By these methods, we can also show the differentiability of the volume function on a Moishe-
zon manifold. To demonstrate this, we require the following observation concerning the defini-
tion of the movable intersection product in [2–4] on a compact Kähler manifold.

Remark 12. Let (Y ,ω) be a compact Kähler manifold. Let π : Ỹ → Y be a modification. Assume
that π is a composition of blow-ups of smooth centres. In particular, the cohomology classes of
the irreducible components of the exceptional divisor are linearly independent. Let α j be big
classes on Y such that π∗α j are still big classes on Ỹ . (For example, this holds when α j are
the first Chern classes of big line bundles over Y .) By the construction of the movable positive
product over a compact Kähler manifold, we have

π∗
〈
π∗α1, . . . ,π∗αk

〉= 〈α1, . . . ,αk〉 . (∗)

The reason is as follows. Observe that when all cohomology classes are big, in the construction of
the movable intersection product described in [3], we can replace Kähler currents with logarith-
mic poles with positive currents that have logarithmic poles. This substitution is possible due to
the continuity of the movable positive product over the big cone. Let T j be positive currents in
π∗α j (1 ≤ j ≤ k). Then T j = π∗π∗T j since π∗α j = π∗π∗π∗α j and the cohomology classes of the
irreducible components of the exceptional divisor are linearly independent. With this, it is easy
to check (∗).

In particular, let L be a big line bundle over a Moishezon manifold X . We can define the
movable positive product of c1(L) as follows. Let π : X̃ → X be a modification fo X such that
X̃ is a projective manifold. Without loss of generality, we may assume that π is a composition of
blow-ups of smooth centres.

Thus, we define for any p > 0, 〈
c1(L)p〉

:=π∗
〈
π∗c1(L)p〉

in H p,p
BC (X ,C). By the filtration property of the modification, we can easily check that the product

is independent of the choice of modification using (∗). In other words, we have the same product
for the push forward from any modification of X such that X̃ is a projective manifold and that π
is a composition of blow-ups of smooth centres.

Remark 13. Let L be a big line bundle over a Moishezon manifold X . Then for any ξ ∈ NS(X )⊗ZQ,
we have

lim
t∈Q,t→0+

Vol(L+ tξ)−Vol(L)

t
= 〈

c1(L)n−1〉 · c1(ξ)
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where the movable positive product is defined as in the previous remark. The proof uses the
birational invariance of the volume and reduces the case to a smooth projective bimeromorphic
model. The projective case is proven in [5].
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[17] R. Lazarsfeld and M. Mustaţă, “Convex bodies associated to linear series”, Ann. Sci. Éc.
Norm. Supér. 42 (2009), no. 5, pp. 783–835.

[18] A. Okounkov, “Brunn–Minkowski inequality for multiplicities”, Invent. Math. 125 (1996),
no. 3, pp. 405–411.

[19] A. Okounkov, “Why would multiplicities be log-concave?”, in The orbit method in geometry
and physics (Marseille, 2000), Birkhäuser, 2003, pp. 329–347.

[20] R. Remmert, “Meromorphe Funktionen in kompakten komplexen Räumen”, Math. Ann.
132 (1956), pp. 277–288.

[21] W. Thimm, “Meromorphe Abbildungen von Riemannschen Bereichen”, Math. Z. 60 (1954),
pp. 435–457.

[22] K. Ueno, Classification theory of algebraic varieties and compact complex spaces. Notes
written in collaboration with P. Cherenack, Springer, 1975, pp. xix+278.


	Acknowledgement
	Declaration of interests
	References

