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Abstract. In the Bogoliubov–Fröhlich model, we prove that an impurity immersed in a Bose–Einstein con-
densate forms a stable quasi-particle when the total momentum is less than its mass times the speed of
sound. The system thus exhibits superfluid behavior, as this quasi-particle does not experience friction. We
do not assume any infrared or ultraviolet regularization of the model, which contains massless excitations
and point-like interactions.

Résumé. Dans le modèle Bogoliubov–Fröhlich, nous prouvons qu’une impureté immergée dans un conden-
sat de Bose–Einstein forme une quasi-particule stable lorsque la quantité de mouvement totale est inférieure
à sa masse multipliée par la vitesse du son. Le système présente donc un comportement superfluide, car cette
quasi-particule ne subit pas de frottement. Nous ne supposons aucune régularisation infrarouge ou ultravio-
lette du modèle, qui contient des excitations sans masse et des interactions ponctuelles.
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1. Introduction

An impurity in a Bose–Einstein condensate will create excitations out of the ground state and may
form a quasi-particle, called the Bose polaron, consisting of the particle and a surrounding cloud
of excitations. The system is of interest in physics as the impurity can reveal properties of the
condensate, such as superfluidity. Moreover, Bose–Einstein condensates are finely controllable
experimental platforms from which one hopes to learn about polaron physics in solids by
analogy.

The Bogoliubov–Fröhlich Hamiltonian is an effective model for such a system, in which
the particle is linearly coupled to Bogoliubov’s excitation field. This model is relevant if the
interaction between the particle and the bosons is sufficiently weak to not significantly impact
the condensate [24], though there is some debate in the physics literature on what effects this
model can or cannot capture [5, 25]. Recent mathematical results prove that it provides an
accurate description of the system in certain mean-field [36, 43] and dilute [38] regimes.

In this letter we start from the translation-invariant Bogoliubov–Fröhlich Hamiltonian in R3

and prove that the Bose polaron is stable when the total momentum is less than the impurity
mass times the speed of sound. Mathematically, this corresponds to proving that the Hamiltonian
at fixed total momentum has an eigenvalue at the bottom of its spectrum. Since the excitations
in this model are massless, this eigenvalue is always embedded in the essential spectrum. One
expects that beyond some critical momentum this eigenvalue disappears and the system exhibits
a Cherenkov transition. That is, the polaron would radiate sound waves, thereby slowing down
to a stable state of smaller momentum. This has been validated numerically in [49, 50], but there
does not seem to be a mathematical proof of such a statement.

The dichotomy of stability at small velocities and a friction effect at high velocities has been
studied in a model of a classical particle interacting with sound waves in the series of works [14,
15, 17–20], and later in [39]. This model can be related to the Bose polaron system in a mean-field
regime with a heavy impurity [10]. A simplified model is obtained by decoupling the directions
of propagation of the particle and the waves, which limits the back-reaction of the field on the
particle. Such a model was studied in [4] in the classical and [3, 8] in the quantum mechanical
setting.

1.1. The Bogoliubov–Fröhlich Polaron

The Bogoliubov–Fröhlich Hamiltonian is characterized by the dispersion relation of the field of
excitations, or phonons, and the form factor of the interaction. The dispersion relation is

ω(k) :=
√

c2|k|2+ξ2|k|4, (1)

where c> 0 is the speed of sound and ξ= 1/(2mB), for the mass mB of the bosons in the gas. The
form factor of the particle-phonon interaction is

vΛ(k) := g1|k|<Λ
√

|k|2/ω(k), (2)

where Λ is an ultraviolet cutoff (that may take the value infinity) and g is a coupling constant,
whose value will not be important in our analysis.

Our model is then realized as a selfadjoint lower-semibounded Hamiltonian on the bosonic
Fock space F over L2(R3). We use the standard notation ak , a∗

k for the creation and annihi-
lation operators on F in the sense of operator-valued distributions. As usual, writing dΓ( f ) =∫

f (k)a∗
k akdk and ϕ(g ) = ∫

(g (k)∗ak + g (k)a∗
k )dk for second quantization and field operators,

respectively, we define the Bogoliubov–Fröhlich Hamiltonian at momentum P ∈ R3 with cutoff
Λ<∞ by

HΛ(P ) := 1

2
(P −dΓ(p̂))2 +dΓ(ω)+ϕ(vΛ), (3)
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where p̂ = (p̂1, p̂2, p̂3) denotes the vector of multiplication operators on L2(R3) given by p̂ i f (k) =
ki f (k). Note that we have set the impurity mass equal to one, keeping c, ξ and g as the model
parameters. Moreover, we may choose g ≥ 0 without loss of generality, as the models with
different signs (phases) in the coupling are unitarily equivalent via e i arg(g)dΓ(1).

By the Kato–Rellich theorem, it follows from standard estimates that HΛ(P ) is a selfadjoint
lower-semibounded operator with D(HΛ(P )) = D(H0(0)) = D(dΓ(p̂)2)∩D(dΓ(ω) for all Λ < ∞,
since vΛ,ω−1/2vΛ ∈ L2(R3).

For Λ = ∞, H(P ) is defined by the following renormalization result from [33]. For the
convenience of the reader, we sketch the proof in Section 2.

Proposition 1. There exist (ΣΛ)Λ≥0 ⊂ R and, for all P ∈ R3, a selfadjoint lower-semibounded
operator H(P ) (given in Theorem 5) such that HΛ(P ) −ΣΛ converges to H(P ) as Λ → ∞ in the
norm resolvent sense.

Proof. The statement is that of Theorem 5 with κ= 0. □

We are interested in studying the critical momentum of the operator H(P ).

1.2. Critical Momentum

As described earlier in this introduction, the polaron may become unstable for large momentum.
We define the the critical momentum as

P∗ := sup{P ∈R3 : infσ(H(P )) is an eigenvalue of H(P )}. (4)

The main result of this article can now easily be stated.

Theorem 2. For any coupling constant g≥ 0 and any speed of sound c> 0, we have

P∗ ≥ c.

Proof. The statement is an immediate corollary of Theorem 8. □

Remark 3. It would be interesting to show that P∗ is finite, and that there is a unique transition,
i.e., infσ(H(P )) is an eigenvalue if and only if P < P∗. The numerical study [50] supports this
picture and indicates that the second derivative of E has a jump at P∗. Moreover, [50, Figure 3(e)]
suggests that P∗ increases from c to infinity as g→∞.

Remark 4. An interpretation of the statement is to think of P∗ = m∗c, where m∗ is the effective
mass of the polaron (compare [49]). Then we have shown m∗ ≥ 1, meaning that the quasi-particle
is heavier than the impurity of mass one, in agreement with the picure that the particle is dressed
by a cloud of phonons, increasing its effective mass. This definition of an effective mass is, of
course, different from the common definition by the curvature ∂2

|P |E(P )|P=0 at zero, but one may
still expect similar qualitative behavior, see [13, 51] for a discussion of the latter quantity in the
Fröhlich polaron model.

In order to prove Theorem 2, we have to deal with both an ultraviolet and an infrared
problem. The first is due to the fact that v∞ ∉ L2(R3) (and also ω−1/2v∞ ∉ L2(R3)). Using the
method of interior boundary conditions, we can nevertheless describe the Bogoliubov–Fröhlich
Hamiltonian, in particular its domain, without any ultraviolet regularization. This goes back
to a recent article by the second author [33], building on techniques developed for the related
Fröhlich and Nelson models in [37] and improved on in the subsequent articles [32, 35, 47, 48].

The infrared problem is due to the fact that ω(0) = 0, which entails that H(P ) does not have a
spectral gap and infσ(H(P )) = infσess(H(P )). For massive polaron models, i.e., models satisfying
essinfω > 0, the existence of ground states is well known, see for example [11, 16, 52]. In the
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massless case, one distinguishes between the infrared singular case v/ω ∉ L2(R3) and the infrared
regular one v/ω ∈ L2(R3). In the infrared singular case, e.g., the famous Nelson model [44],
absence of ground states at arbitrary total momentum (and all non-zero couplings) has been
shown, cf. [6, 7, 16, 26]. In our case, however, the model is infrared-regular, as can be easily
checked. There exists a variety of perturbative methods to prove existence of ground states in
such a case for small values of the total momentum and the coupling constant, e.g., operator
theoretic renormalization [1], iterated perturbation theory [12, 45] and functional integration
methods [2, 53]. In particular, in presence of an ultraviolet cutoff Λ<∞ and for small coupling,
the fact that P∗ > 0 follows from [12, Proposition 1.1]. Hence, we extend the existence of a ground
state to the case without ultraviolet cutoff, arbitrary coupling and a larger set of total momenta.
The method we use in our proof is an adaption of a compactness argument first applied in [22]
and subsequently employed in the study of various models, e.g., the spin boson model [27], the
Nelson model [28, 31] and the Pauli–Fierz model [29, 41]. The general strategy is to introduce an
artificial boson mass κ> 0, and then prove that the set of ground states with κ→ 0 is pre-compact
and provides a minimizing sequence for H(P ).

In the remainder of this letter, we sketch the renormalization procedure leading to Proposi-
tion 1 in Section 2 and give the proof of Theorem 2 in Section 3.

2. Renormalization and Properties of the Bogoliubov–Fröhlich Polaron

In this section, we sketch the proof of Proposition 1, by reviewing the renormalization method
employed in [34]. The key idea is to identify a divergent and P-independent contribution ΣΛ to
infσ(HΛ(P )). This contribution is of the form

ΣΛ = e1Λ+e2 logΛ+O (1). (5)

The two divergent contributions of different orders arise in a two-step procedure of rewriting
HΛ(P ).

Throughout this section, we assume P ∈R3 to be fixed. We emphasize that most of the defined
objects, except for the contributions toΣΛ, do have a P-dependence. We now fix some parameter
µ> 0 and define

GΛ =−(
a(vΛ)(H0(P )+µ)−1)∗. (6)

Employing that ω−1v ∈ L2(R3), one can show that GΛ is a bounded operator, including the case
Λ=∞, see the proof of Theorem 5 below for more details. Further, forΛ<∞, we have the simple
identity

HΛ(P ) = (1−G∗
Λ)(H0(P )+µ)(1−GΛ)−G∗

Λ(H0(P )+µ)GΛ−µ, (7)

which follows by expanding the product. The first singular contribution is contained in the term

−G∗
Λ(H0(P )+µ)GΛ =−a(vΛ)(H0(P )+µ)−1a∗(vΛ) (8)

To make it explicit, we will put the creation and annihilation operators in this expression in
normal order. With the pull-through formula ak (H0(P )+µ)−1 = (H0(P −k)+ω(k)+µ)−1ak , which
holds by inspection on every n-particle sector of F (see for example [1, Lemma IV.8]), we find

−a(vΛ)(H0(P )+µ)−1a∗(vΛ)

=−
∫

ak
vΛ(k)vΛ(ℓ)

H0(P )+µ a∗
ℓ dk dℓ

=−
∫

vΛ(k)2

H0(P −k)+ω(k)+µ dk −
∫

a∗
ℓ

vΛ(k)vΛ(ℓ)

H0(P −k −ℓ)+ω(k)+ω(ℓ)+µak dk dℓ. (9)

With this order of a∗
ℓ

, ak , the second term will be well defined also for Λ =∞ as an unbounded
operator, since the decay of akΨ in k for an element Ψ of its domain will make the integral
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convergent. For the first term this is not the case, and we will need to first subtract its divergent
contribution to takeΛ→∞. This can be chosen as

Σ(1)
Λ

=−
∫

vΛ(k)2

1
2 k2 +ω(k)

dk, (10)

which has a divergence proportional to Λ since vΛ(k) is of order one for large k. We then
define TΛ,1 = ΘΛ,1,0 +ΘΛ,1,1, where ΘΛ,1,0 = θΛ,1,0(dΓ(p̂),dΓ(ω)) is a multiplication operator in
the momentum representation and ΘΛ,1,1 = ∫

a∗
ℓ
θΛ,1,1(dΓ(p̂),dΓ(ω),k,ℓ)akdkdl is an integral

operator, with

θΛ,1,0(p,η) =−
∫ (

vΛ(k)2

1
2 (P −p −k)2 +η+ω(k)+µ − vΛ(k)2

1
2 k2 +ω(k)

)
dk

θΛ,1,1(p,η,k,ℓ) =− vΛ(k)vΛ(ℓ)
1
2 (P −p −k −ℓ)2 +η+ω(k)+ω(ℓ)+µ .

(11)

Now, TΛ makes sense also for Λ=∞, since the integral defining θΛ,1,0 has a limit for Λ→∞, and
hence we could try to employ the identity

G∗
Λ(H0(P )+µ)GΛ−Σ(1)

Λ
= TΛ (12)

to define the second term in (7) for a definition of H(P ). This is not enough, however, to remove
the cutoff completely, since the (form) domain of the first term (1−G∗∞)(H0(P )+µ)(1−G∞) is not
contained in the (form) domain of T∞. To remedy this issue, we include TΛ with the free operator.

ForΛ ∈R+∪ {∞}, let

G̃Λ =−(
a(vΛ)(H0(P )+TΛ+µ)−1)∗. (13)

Then we can write a similar identity to (7) forΛ<∞, explicitly

HΛ = (1−G̃∗
Λ)(H0(P )+TΛ+µ)(1−G̃Λ)−a(vΛ)(H0(P )+TΛ+µ)−1a∗(vΛ)−TΛ−µ. (14)

Expanding the resolvent gives

−a(vΛ)(H0(P )+TΛ+µ)−1a∗(vΛ)−TΛ

=Σ(1)
Λ

+a(vΛ)(H0(P )+TΛ+µ)−1TΛ(H0(P )+µ)−1a∗(vΛ)

=Σ(1)
Λ

+a(vΛ)(H0(P )+µ)−1TΛ(H0(P )+µ)−1a∗(vΛ)

−a(vΛ)(H0(P )+µ)−1TΛ(H0(P )+TΛ+µ)−1TΛ(H0(P )+µ)−1a∗(vΛ). (15)

The term in the last line is regular in the caseΛ=∞ and will be treated as a remainder, while the
first still contains the logarithmic divergence. To extract this, we proceed as before and put the
creation and annihilation operators in normal order. However, there is now also the possibility
of picking up a commutator between the operators in ΘΛ,1,1 and the outer creation/annihilation
operators. With this in mind, the term with no remaining creation and annihilation operators
reads∫

vΛ(k)2θΛ,1,0(dΓ(p̂)+k,dΓ(ω)+ω(k))

(H0(P −k)+ω(k)+µ)2 dk −
∫

vΛ(k)vΛ(ℓ)θΛ,1,1(dΓ(p̂),dΓ(ω),k,ℓ)

(H0(P−k)+ω(k)+µ)(H0(P−ℓ)+ω(ℓ)+µ)
dk dℓ.

These integrals have a logarithmic divergence asΛ→∞, captured by

Σ(2)
Λ

=
∫

vΛ(k)2θΛ,1,0(k,ω(k))( 1
2 k2 +ω(k)

)2 dk−
∫

vΛ(k)2vΛ(ℓ)2( 1
2 k2+ω(k)

)( 1
2 (k+ℓ)2+ω(k)+ω(ℓ)

)( 1
2ℓ

2+ω(ℓ)
) dk dℓ. (16)
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After subtracting this, we define T̃Λ = ΘΛ,2,0 +ΘΛ,2,1 +ΘΛ,2,2, where ΘΛ,2,0 is a multiplication
operator of the same type as ΘΛ,1,0, and ΘΛ,2,1,ΘΛ,2,2 are integrals with one, respectively two,
remaining creation and annihilation operators. The expression forΘΛ,2,0 is given by

θΛ,2,0(p,η) =
∫

vΛ(k)2θΛ,1,0(p +k,η+ω(k))( 1
2 (P −p −k)2 +η+ω(k)+µ)2 dl

+
∫

vΛ(k)vΛ(ℓ)θΛ,1,1(p,η,k,ℓ)( 1
2 (P −p −k)2 +η+ω(k)+µ)( 1

2 (P −p −ℓ)2 +η+ω(ℓ)+µ) dk dℓ−Σ(2)
Λ

, (17)

where we observe that Σ(2)
Λ

is simply the value of the integrals at P = p = η = µ = 0. The integral
operators have the kernels

θΛ,2,1(p,η,k,ℓ) = vΛ(k)vΛ(ℓ)θΛ,1,0(p +k +ℓ,η+ω(k)+ω(ℓ))( 1
2 (P −p −k)2 +η+ω(k)+µ)( 1

2 (P −p −ℓ)2 +η+ω(ℓ)+µ)
+

∫
vΛ(ξ)2θΛ,1,1(p +ξ,η+ω(ξ),k,ℓ)( 1

2 (P −p −ξ)2 +η+ω(ξ)+µ)2 dk dl (18)

θΛ,2,1(p,η,k1,k2,ℓ1,ℓ2) = vΛ(k1)vΛ(ℓ1)θΛ,1,1(p +k1 +ℓ1,η+ω(k1)+ω(ℓ1),k2,ℓ2)( 1
2 (P −p −k1)2 +η+ω(k1)+µ)( 1

2 (P −p −ℓ1)2 +η+ω(ℓ1)+µ) . (19)

Again, the definition of T̃Λ may be extended to Λ =∞ since these functions are defined also for
this value. Finally, the definition of the remainder term reads

RΛ =−a(vΛ)(H0(P )+µ)−1TΛ(H0(P )+TΛ+µ)−1TΛ(H0(P )+µ)−1a∗(vΛ)

=G∗
ΛTΛ(H0(P )+TΛ+µ)−1TΛGΛ,

(20)

which defines a bounded operator also forΛ=∞.
Since we require an infrared regularization in Section 3 additionally to the ultraviolet one

provided by the cutoff Λ, we directly consider the family of operators Hκ,Λ given by (3) with ω

replaced by ωκ =ω+κ, i.e.,

Hκ,Λ(P ) := HΛ(P )+κN −Σ(1)
Λ

−Σ(2)
Λ

for κ≥ 0, Λ ∈R+, (21)

where N = dΓ(1) is the particle number operator as usual and we incorporated the ultraviolet
renormalization, by directly subtracting the divergent energy contributions as defined in (10)
and (16). Note that D(Hκ,0(P )) =D(H0,0(0))∩D(κN ), so we simply denote this domain by D(Hκ,0).
ForΛ<∞, (21) immediately defines a selfadjoint lower-semibounded operator on D(Hκ,0), since
ω−1/2vΛ ∈ L2(R3).

The preceding discussion applies in the same way with ωκ, yielding objects TΛ = Tκ,Λ, G̃Λ =
G̃κ,Λ, T̃Λ = T̃κ,Λ, whose dependence on κ we will not make explicit. Proposition 1 is now a
consequence of the following theorem for κ= 0.

Theorem 5 ([34]). Let κ ≥ 0 and let G̃∞, T∞, T̃∞, R∞ be defined by (13), (11), (17)–(19), and (20)
with ω=ωκ respectively. The operator

Hκ,∞(P ) = (1−G̃∗
∞)(Hκ,0(P )+T∞+µ)(1−G̃∞)+ T̃∞+R∞−µ

D(Hκ,∞(P )) = {
ψ ∈F : (1−G̃∞)ψ ∈D(Hκ,0)

}
is selfadjoint and bounded from below. We have the convergence

Hκ,Λ(P ) −→ Hκ,∞(P )

in norm resolvent sense.

Sketch of the proof. We give a short outline of the proof with references to key technical lemmas
for the convenience of the reader. Throughout this proof, κ≥ 0 is fixed.
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The first step is to prove that

∥TΛψ∥ ≤C
∥∥(Hκ,0(P )+1)1/2ψ

∥∥ forΛ ∈R+∪ {∞},

∥(TΛ−T∞)ψ∥ ≤CΛ
∥∥(Hκ,0(P )+1)1/2+εψ

∥∥ ,
(22)

with ε > 0 and limΛ→∞CΛ = 0 (the part ΘΛ,1,0 can be bounded by an elementary calculation;
concerning ΘΛ,1,1, see [32, Lemma 17] and [35, Lemma B.2] for proofs in the case κ > 0 that are
easily adapted to κ= 0).

Using this, one shows that forΛ ∈R+∪ {∞}, G̃Λ are bounded operators on F , satisfying

∥(Hκ,0(P )+µ)sG̃Λ∥ ≤C , (Hκ,0(P )+µ)s (G̃Λ−G̃∞)
Λ→∞−−−−→ 0 for 0 ≤ s < 1/4. (23)

This follows easily from the bound ∥a( f )dΓ(η)−1/2∥ ≤ ∥ f /η∥, v/ω ∈ L2(Rd ) and the fact that TΛ is
an infinitesimal perturbation of Hκ,0(P ).

In particular, for µ large enough, ∥G̃Λ∥ < 1, so 1−G̃Λ is invertible. This shows that D(Hκ,∞(P ))
is dense and combined with (22), the operator

K := (1−G̃∗
∞)(Hκ,0(P )+T∞+µ)(1−G̃∞) (24)

is selfadjoint and bounded from below on this domain. The terms T̃∞, R∞ will be treated as
perturbations of K . For R∞, boundedness follows directly from the properties of TΛ and G̃Λ.

For T̃Λ one can again show

∥T̃Λψ∥ ≤C∥(Hκ,0(P )+1)εψ∥, (25)

∥(T̃Λ− T̃∞)ψ∥ ≤CΛ∥(Hκ,0(P )+1)εψ∥ (26)

for ε> 0 and limΛ→∞CΛ = 0 (cf. [35, Lemma B.2], [32, Lemma 19]). This implies that

∥T̃∞ψ∥ ≤ ∥T̃∞(1−G̃∞)ψ∥+∥T̃∞G̃∞ψ∥
≤C (∥(Hκ,0(P )+1)ε(1−G̃∞)ψ∥+∥(Hκ,0(P )+1)εG̃∞ψ∥)

≤ δ∥Kκψ∥+Cδ∥ψ∥
(27)

for any δ> 0. Thus Hκ,∞(P ) is selfadjoint by the Kato–Rellich theorem.
Convergence of resolvents follows from the identity (14), the resolvent formula and the con-

vergence properties of TΛ, G̃Λ already mentioned. □

From the proof, we also obtain the following Lemma 6, which relates the domains of H(P ) and
N . It will be important to our proof of Theorem 2 in the next section.

Lemma 6. For any P ∈ R3, the subspace D(N ) ∩D(H0,∞(P )) is a core for H0,∞(P ). Further,
D(Hκ,∞(P )) =D(N )∩D(H0,∞(P )) for all κ> 0 and Hκ,∞(P ) = H0,∞(P )+κN .

Proof. From Theorem 5, we know that D(Hκ,∞(P )) = (1 − G̃∞)−1D(Hκ,0). Moreover, for any
core C of Hκ,0(P ), (1 − G̃∞)−1C is a core for Hκ,∞(P ), since (1 − G̃∞)−1 : D(Hκ,0) → D(K ) is
continuous for the graph norms. Hence, to prove the domain statements, it suffices to show
(1−G̃∞)D(N ) =D(N ). This follows from the observation NG̃∞ = G̃∞(N +1), implying

∥N (1−G̃∞)ψ∥ ≤ ∥Nψ∥+∥G̃∞∥∥(N +1)ψ∥, (28)

∥Nψ∥ ≤ ∥N (1−G̃∞)ψ∥+∥NG̃∞ψ∥ ≤ ∥N (1−G̃∞)ψ∥+∥G̃∞∥∥(N +1)ψ∥, (29)

from where we conclude using ∥G̃∞∥ < 1. Moreover,

Hκ,∞(P ) = H0,∞(P )+κN (30)

holds since both sides are the weak graph limit of Hκ,Λ(P ), by Theorem 5, [46, Theorem VIII.26],
and the uniform bound ∥Nψ∥ ≤C∥(Hκ,Λ(P )+µ)ψ∥. □
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Remark 7. One can observe that D(H(P )) ̸=D(H(P ′) for P ̸= P ′. This is the case because

(H0(P )+µ)−1dΓ(p̂)G∞, (31)

which is proportional to the difference of G∞ for two different values of P , does not map D(H0(0))
to itself. It does, however, map the form domain of Hκ,0(P ) to itself, so the operators with different
total momenta still have comparable quadratic forms. Notwithstanding, this fact will not be used
in our arguments.

3. Existence of Ground States

In this Section 3, we prove the following Theorem 8.

Theorem 8. If |P |< c, then infσ(H(P )) is an eigenvalue of H(P ).

To prove the statement, we approximate H(P ) = H0,∞(P ) by the infrared regularized Hamilto-
nians Hκ,∞(P ) with κ> 0 introduced in (21). Further, we write

Eκ,Λ(P ) := infσ(Hκ,Λ(P )) for all κ≥ 0,Λ ∈R+∪ {∞}, P ∈R3. (32)

Let us first observe that the ground state energies converge, when removing any regularization.

Lemma 9. For any fixed κ≥ 0,Λ ∈R+∪ {∞} and P ∈R3, we have

Eκ,∞ = lim
σ→∞Eκ,σ and E0,Λ = lim

η↓0
Eη,Λ.

Proof. The first statement is a consequence of the norm resolvent convergence established in
Theorem 5 (cf. [9]). For the second statement, we observe that D(N )∩D(H0,Λ(P )) is a core for
H0,Λ(P ), by the Kato–Rellich theorem for Λ<∞ and by Lemma 6 for Λ=∞. Hence, picking any
ε > 0, there exists ϕε ∈ D(N )∩D(H0,Λ(P )) with ∥ϕε∥ = 1 such that 〈ϕε, H0,Λ(P )ϕε〉 < E0,Λ(P )+ε.
Further employing that Hη,Λ(P )−H0,Λ(P ) ≥ 0 (as a form inequality), again by (21) and Lemma 6,
we find

E0,Λ(P ) ≤ Eη,Λ(P ) ≤ 〈ϕε, Hη,Λ(P )ϕε〉 = 〈ϕε, H0,Λ(P )ϕε〉+η〈ϕε, Nϕε〉 ≤ E0,Λ+ε+η〈ϕε, Nϕε〉 .

First taking η ↓ 0 and then ε ↓ 0 finishes the proof. □

The mass term κN ensures the existence of a spectral gap for small enough P , as a conse-
quence of the following well-known HVZ-type theorem [16, 42].

Proposition 10 ([42, Theorem 1.2]). For all κ> 0,Λ ∈R+, we have

infσess(Hκ,Λ(P )) = inf
k1,...,kn∈R3

n∈N

[
Eκ,Λ(P −k1 −·· ·−kn)+ω(k1)+·· ·ω(kn)+nκ

]
. (33)

In view of the above Proposition 10, we need to estimate the difference E(P −k)−E(P ). This
can be done using simple convexity arguments, cf. [28, 40].

Lemma 11. Let κ≥ 0,Λ ∈R+∪ {∞} and P,K ∈R3. Then

Eκ,Λ(P −K )−Eκ,Λ(P ) ≥−|K ||P |.
Proof. First, we assume that κ> 0 andΛ<∞ and prove the inequalities

0 ≤ Eκ,Λ(P )−Eκ,Λ(0) ≤ 1

2
|P |2 for all P ∈R3. (34)

The first inequality goes back to Gross [23], see [30, Lemma 3.4] for a recent adaption which covers
our case. Now, note that Proposition 10 combined with the first inequality yields

infσess(Hκ,Λ(0)) ≥ Eκ,Λ(0)+κ, (35)
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so Eκ,Λ(0) is a discrete eigenvalue with corresponding normalized eigenvector ψ0 ∈D(Hκ,Λ(0)) =
D(Hκ,Λ(P )). Then

Eκ,Λ((P )) ≤ 〈ψ0, Hκ,Λ(P )ψ0〉 = Eκ,Λ(0)+ 1

2
|P |2+〈ψ0,P ·dΓ(p̂)ψ0〉 .

This implies 1
2 |P |2+〈ψ0,P ·dΓ(p̂)ψ0〉 ≥ 0 for all P ∈R3. Letting P → 0, this yields e ·〈ψ0,dΓ(p̂)ψ0〉 ≥

0 for all normalized e ∈R3, whence 〈ψ0,dΓ(p̂)ψ0〉 = 0. This proves the upper bound in (34).
Clearly, the map

P 7−→ 1

2
P 2 −Eκ,Λ(P ) =− inf

ψ∈D(Hκ,Λ(P ))

〈
ψ,

(
−P ·dΓ(p̂)+ 1

2
dΓ(p̂)2 +Hκ,Λ(0)

)
ψ

〉
(36)

is convex, as a supremum over linear functions of P . By a general result on convex functions
taking nonnegative values below the standard parabola (essentially the fact that such a function
must lie below any segment that intersects its graph and is tangent to the parabola, cf. [40,
Appendix A] or [28, Corollary A.6]), this gives for κ> 0,Λ<∞

Eκ,Λ(P −K )−Eκ,Λ(P ) ≥
{
−|K ||P |+ 1

2 |K |2 if |K |≤ |P |,
− 1

2 |P |2 if |K |> |P |. (37)

In both cases the right hand side is larger than −|K ||P | as claimed. This proves the claim for κ> 0
andΛ<∞. The general statement follows from the convergence results of Lemma 9. □

Corollary 12. If |P |≤ c, then Eκ,Λ(P ) is a discrete eigenvalue of Hκ,Λ(P ) for all κ > 0 and Λ ∈
R+∪ {∞}.

Proof. First assumeΛ<∞. Combining the HVZ Theorem, Proposition 10, with Lemma 11 gives

infσess(Hκ,Λ(P ))−Eκ,Λ(P ) ≥ inf
k1,...,kn∈R3

n∈N

(
n∑

i=1
(ω(ki )+κ)−|P |

∣∣∣∣∣ n∑
i=1

ki

∣∣∣∣∣
)

. (38)

Since the absolute value is subadditive and ω(k) ≥ c|k|, this is larger than κ for |P |≤ c, which
proves the statement in the case Λ <∞. The case Λ =∞ directly follows from Theorem 5, since
norm resolvent convergence implies convergence of infσess(Hκ,Λ(P )) and Eκ,Λ(P ). □

We now identify a compact set in Fock space containing the (normalized) ground states of
Hκ,Λ(P ). To this end, we define

Gr :=
{
ψ ∈F : ∥akψ∥≤ r√

|k|∨ |k|2
, ∥(ak+p −ak )ψ∥≤ r |p|

|k|2 for a.e. k, p ∈R3, |p|≤ 1

2
|k|

}
. (39)

Lemma 13. For all r > 0, the set Gr is pre-compact in F .

Proof. The elements of Gr are localized by the first bound, and regular by the second. Conditions
of this type are well-known to yield compactness, see [28, Theorem 3.4] for a detailed proof. □

Now, we prove that Gr contains the ground states of Hκ,Λ(P ).

Proposition 14. If |P |< c , there exist r > 0 (depending on |P |, g and c) such that for all κ> 0 and
Λ ∈R+∪ {∞} and any normalized ψ ∈D(Hκ,Λ(P )) with Hκ,Λ(P )ψ= Eκ,Λ(P )ψ, we have ψ ∈Gr .

Proof. Throughout this proof, r > 0 denotes a (not necessarily fixed) constant solely depending
on |P |, g and c. Especially, r is independent of κ or Λ. Further, fix κ > 0, Λ <∞ and ψ as in the
statement.

The starting point of our proof is the the pull-through formula

akψ=−vΛ(k)Rκ,Λ(P,k)ψ with Rκ,Λ(P,k) := (
Hκ,Λ(P −k)−Eκ,Λ(P )+ω(k)+κ)−1 , (40)
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which holds true for almost every k ∈R3. To check this, compute using the commutation relations

0 = ak (Hκ,Λ(P )−Eκ,Λ(P ))ψ= vΛ(k)ψ+ (Hκ,Λ(P −k)+ω(k)+κ−Eκ,Λ(P ))akψ. (41)

The formula then follows by applying Rκ,Λ(P,k), which is well defined since Eκ,Λ(P−k) ≥ Eκ,Λ(P )−
|k||P |≥ Eκ,Λ(P )−ω(k), by Lemma 11 and the assumption |P |≤ c, see e.g. [6, 21] for more details.

To estimate the resolvent, we use Lemma 11 to obtain the bounds

Eκ,Λ(P −k)−Eκ,Λ(P )+ω(k) ≥ω(k)−|P ||k|≥
{

(c−|P |)|k| for all k ∈R3,
ξ
2 |k|2 if |k|> 2ξ−1|P |. (42)

Then, using that Hκ,Λ(P −k) ≥ Eκ,Λ(P −k), it follows directly from the spectral theorem that

∥Rκ,Λ(P,k)∥≤
{

((c−|P |)|k|)−1 for all k ∈R3,

2ξ−1|k|−2 if |k|> 2ξ−1|P |. (43)

Further employing |v(k)| ≤ g(
√

|k|/c∧1) we find, for an appropriate choice of r ,

∥vΛ(k)Rκ,Λ(P,k)∥ ≤ r√
|k|∨ |k|2

, (44)

which combined with (40) proves the desired bound on akψ in the definition (39).
Now let |p|≤ 1

2 |k|. The resolvent identity gives

ak+pψ−akψ= (
vΛ(k +p)− vΛ(k)

)
Rκ,Λ(P,k +p)ψ

+ vΛ(k)Rκ,Λ(P,k +p)[p · (P −k −dΓ(p̂))]Rκ,Λ(P,k)ψ. (45)

Since |∇vΛ(ℓ)| ≤Cω−1/2(k) for 1
2 |k| ≤ ℓ≤ 3

2 |k|, cf. (2), using (43) yields

∥(
vΛ(k +p)− vΛ(k)

)
Rκ,Λ(P,k +p)ψ∥ ≤ 8C |p|

(c−|P |)|k|pω(k)
≤ r |p|

|k|2 . (46)

As ∥|P −k −dΓ(p̂)|Rκ,Λ(P,k)∥≤ 1, (44) also implies

∥vΛ(k)Rκ,Λ(P,k +p)[p · (P −k −dΓ(p̂))]Rκ,Λ(P,k)ψ∥ ≤ r |p|
|k|2 . (47)

Combining (45), (46) and (47) and the definition (39), this proves that ψ ∈Gr in the caseΛ<∞.
As a consequence of norm-resolvent convergence and the uniform gap estimate in Corol-

lary 12, the spectral projections of Hκ,Λ(P ) converge to those of Hκ,∞(P ) (cf. [46, Theo-
rem VIII.23]), whence the ground states of Hκ,∞ are contained in the closure Gr . □

We conclude with the proof of our main result.

Proof of Theorem 8. Let ψκ denote any normalized ground state of Hκ,∞(P ) for κ > 0. Since
D(Hκ,∞(P )) ⊂D(H(P )), cf. Lemma 6, we find

0 ≤ 〈ψκ, (H(P )−E(P ))ψκ〉 ≤ 〈ψκ, (Hκ,∞(P )−E(P ))ψκ〉 = Eκ,∞(P )−E0,∞(P )
κ↓0−−→ 0, (48)

by Lemma 9. Further, since (ψκ)κ>0 ⊂ Gr by Proposition 14, which is compact by Lemma 13,
there exists a zero sequence (κn)n∈N such that the limit ψ∞ = limn→∞ψκn exists. The estimate
(48) then implies that ψ∞ ∈D(H(P )1/2), whence ψ∞ is a minimizer of the closed quadratic form
of H(P ), and thus an eigenvector, which finishes the proof. □
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