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Abstract. Let (V ,E) be a locally finite weighted graph. We study some qualitative properties of positive
solutions of the Lichnerowicz equation

vt −∆v = v−p−2 − v p , (x, t ) ∈V ×R,

and of (sign-changing) solutions of the Ginzburg-Landau system{
ut −∆u = u −u3 −λuv2, (x, t ) ∈V ×R,

vt −∆v = v − v3 −λvu2, (x, t ) ∈V ×R,

where p > 0, λ> 0 and ∆ is the standard discrete graph Laplacian. Firstly, we prove that any positive solution
v of the Lichnerowicz equation satisfies v ≥ 1. Moreover, if we assume the boundedness of positive solution v ,
then it must be trivial, i.e v ≡ 1. We also construct a nontrivial positive solution of the Lichnerowicz equation
to show that the boundedness assumption is necessary. Secondly, we obtain sharp upper bound for solutions
of the Ginzburg-Landau system depending on the range of λ.

Résumé. Soit (V ,E) un graphe pondéré localement fini. Nous étudions certaines propriétés qualitatives des
solutions positives de l’équation de Lichnerowicz

vt −∆v = v−p−2 − v p , (x, t ) ∈V ×R,

et des solutions (avec changement de signe) du système de Ginzburg-Landau{
ut −∆u = u −u3 −λuv2, (x, t ) ∈V ×R,

vt −∆v = v − v3 −λvu2, (x, t ) ∈V ×R,

où p > 0, λ > 0 et ∆ est le laplacien discret standard des graphes. Tout d’abord, nous prouvons que toutes
les solutions positives de l’équation de Lichnerowicz satisfont à v ≥ 1. De plus, si nous supposons qu’une
solution positive v est bornée, alors elle doit être triviale, c’est-à-dire v ≡ 1. Nous construisons également une
solution positive non bornée de l’équation de Lichnerowicz. Deuxièmement, nous obtenons une majoration
précise pour les solutions du système de Ginzburg-Landau en fonction de l’étendue λ.
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1. Introduction

Throughout this paper, let (V ,E) be a locally finite connected graph, where V is the set of infinite
vertices and E is the set of edges. We always assume that the graph is simple, i.e., no loop and no
multi-edges. Denote by

µ : V ×V −→ [0,∞)

the edge weight satisfying

• µx y =µy x ,
• µx y > 0 if and only if (x, y) ∈ E .

Given a vertex x ∈V , we denote by y ∼ x if there is an edge between x and y , and in this case x
and y are called neighboring vertices. The weight of a vertex x ∈V is defined by

µ(x) = ∑
y∼x

µx y .

Let ℓ(V ) = {u; u : V →R}. The discrete Laplace operator on graph ∆ : ℓ(V ) → ℓ(V ) is defined by

∆u(x) = ∑
y∼x

µx y

µ(x)
(u(y)−u(x)) for u ∈ ℓ(V ) and x ∈V.

The reader is referred to [6] for some elementary properties of weighted graphs and discrete graph
Laplacian.

In this decade, elliptic and parabolic equations on weighted graphs have been extensively
studied, see e.g [4–17, 21]. The optimal Liouville-type theorem for the nonnegative solutions
of the elliptic inequality

∆u +uσ ≤ 0 in V

was established in [9]. Very recently, the result in [9] has been generalized to the system of elliptic
inequalities on weighted graph {

∆u + v p ≤ 0 in V ,

∆v +uq ≤ 0 in V ,

where p and q are real numbers, see [23].
By using the calculus of variations, the existence of solutions to the Kazdan–Warner equation

∆u = c −h(x)eu in V

was studied in [7]. For elliptic equations involving the p-Laplace operator, some existence results
were also obtained in [10].

In [21], the author established Kato’s inequality on graph and applied it to study the bounded-
ness of solutions of the Ginzburg–Landau equation

∆u +u(1−u2) = 0 in V.
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It was proved in [21] that any bounded solution u of the Ginzburg–Landau equation satisfies
|u| ≤ 1. Concerning some results on the existence, nonexistence and the blow-up property of
solution for parabolic equations, we refer to [14, 15, 18, 24, 25] and references given there.

The first purpose of this paper is to study some qualitative properties of positive solutions to
the parabolic Lichnerowicz equation on weighted graph

vt −∆v = v−p−2 − v p in V ×R, (1)

where p > 0. The elliptic counterpart of (1) is the following

−∆u = u−p−2 −up in V. (2)

In [19, 22], the authors obtained some Liouville-type results for the equation (2) on the Euclidean
space RN . Later, these results were reproved in [1] by using a simple argument. In fact, the
approach in [1] is a combination of a kind of maximum principle and the Keller–Osserman theory.
Moreover, some important remarks on the results in [19, 22] were also provided in [1].

Theorem A ([1]). The following assertions hold:

(i) If p > 0 and u is a positive solution of (2), then u ≥ 1.
(ii) If p > 1, then any positive solution of (2) must be trivial, i.e u = 1.

(iii) If 0 < p ≤ 1, the equation (2) has many nontrivial positive solutions.

Very recently, the uniform lower bound of positive solution and Liouville-type theorem have
been established for the Lichnerowicz equations of parabolic type on the Euclidean space RN ×R
involving the fractional Laplacian, see [2].

In this paper, we first address similar questions for positive solutions (in the classical sense)
of (1) as in [1, 2], but on the weighted graph V . In fact, we obtain the first main result as follows.

Theorem 1. Let p > 0 and v is a positive solution of (1). Then, the following assertions hold:

(i) v ≥ 1.
(ii) If, in addition, v is bounded, then v ≡ 1.

As a direct consequence of Theorem 1, when v is independent of t , we have the following.

Corollary 2. Let p > 0 and u is a positive solution of (2). Then, the following assertions hold:

(i) u ≥ 1.
(ii) If, in addition, u is bounded, then u ≡ 1.

Notice that, the boundedness assumption of solutions in Theorem 1 or in Corollary 2 is
necessary. Indeed, we explicitly construct an example of an unbounded positive solution of (2)
in the following example.

Example 3. Let V = N = {0,1,2, . . .} and the set of edges E = {(n,n +1),n ∈ N}, µn,n+1 = 1 for all
n ∈N. Then, the equation (2) with p > 0 becomes

u(1)−u(0)+u−p−2(0)−up (0) = 0

and
1

2
(u(n +1)+u(n −1))−u(n)+u−p−2(n)−up (n) = 0, n ≥ 1. (3)

Choosing u(0) = 2, we have

u(1) = 2+2p −2−p−2 > 2.

By an induction argument and (3), we obtain an increasing sequence (u(n)) which is a positive
unbounded solution of (2). Notice that (u(n)) is also a positive unbounded solution of (1) since it
is independent of t .
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The second purpose of this paper is to study the upper bound of solutions of the Ginzburg–
Landau system of parabolic type{

ut −∆u = u −u3 −λuv2 in V ×R,

vt −∆v = v − v3 −λvu2 in V ×R,
(4)

where λ> 0. Let us recall some related results on the Ginzburg–Landau equation/system on the
Euclidean setting. In [19], the author proved the boundedness of the Ginzburg–Landau equation
of elliptic type

∆u +u(1−u2) = 0 in RN . (5)

It was shown that any smooth solution u of (5) satisfies |u| ≤ 1. This result was then generalized
for the fractional Ginzburg–Landau equation in [20], see also [2] for some important remarks.
In [3], the authors have studied the Ginzburg- Landau system{

−∆u = u −u3 −λuv2 in RN ,

−∆v = v − v3 −λvu2 in RN ,
(6)

where λ> 0. Among other things, the following properties of solutions of (6) were proved in [3].

Theorem B ([3]). The following statements hold:

(i) If λ> 0 and (u, v) is a solution of (6), then |u| ≤ 1 and |v | ≤ 1.
(ii) If λ≥ 1 and (u, v) is a solution of (6), then u2 + v2 ≤ 1.

(iii) If 0 <λ< 1 and (u, v) is a solution of (6), then u2 + v2 ≤ 2
λ+1 .

To the best of our knowledge, there has been no work dealing with the system (4) on graphs.
Inspired by Theorem B, we prove the sharp boundedness of solutions of the system (4) on
weighted graph.

The second main result in this paper reads as follows.

Theorem 4. The following statements hold:

(i) If λ> 0 and (u, v) is a bounded solution of (4), then |u| ≤ 1 and |v | ≤ 1.
(ii) If λ≥ 1 and (u, v) is a bounded solution of (4), then u2 + v2 ≤ 1.

(iii) If 0 <λ< 1 and (u, v) is a bounded solution of (4), then u2 + v2 ≤ 2
λ+1 .

As a direct consequence of Theorem 4, we obtain similar results for the Ginzburg–Landau
system of elliptic type on weighted graph{

−∆u = u −u3 −λuv2 in V ,

−∆v = v − v3 −λvu2 in V.
(7)

Corollary 5. The following statements hold:

(i) If λ> 0 and (u, v) is a bounded solution of (7), then |u| ≤ 1 and |v | ≤ 1.
(ii) If λ≥ 1 and (u, v) is a bounded solution of (7), then u2 + v2 ≤ 1.

(iii) If 0 <λ< 1 and (u, v) is a bounded solution of (7), then u2 + v2 ≤ 2
λ+1 .

For the Ginzburg–Landau system, we also give an example showing that the boundedness
assumption of solutions is necessary in Theorem 4 and Corollary 5.

Example 6. Let V =Z= {...,−2,−1,0,1,2, ...} and the set of edges E = {(n,n +1),n ∈Z}, µn,n+1 = 1
for all n ∈Z. Then, (7) becomes{

1
2 (u(n +1)+u(n −1))−u3(n)−λu(n)v2(n) = 0,
1
2 (v(n +1)+ v(n −1))− v3(n)−λv(n)u2(n) = 0
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We take u(0) = v(0) = 1 and u(1) = v(1) = 1 and then{
u(n +1) = v(n +1) = 2(1+λ)u(n)−u(n −1),n ≥ 1

u(n −1) = v(n −1) = 2(1+λ)u(n)−u(n +1),n ≤ 0.

By an induction argument, we also obtain increasing sequence

(u(n)) = (v(n)) = (. . . ,−4(1+λ)2 +1,−2(1+λ),−1,0,1,2(1+λ),4(1+λ)2 −1, . . .)

and (u(n)), (v(n)) is an unbounded solution of (7) (and also of (4)).

Our idea to prove the main results is based on a kind of maximum principle, Kato’s inequality
on graph and especially, the Kelly–Osserman theory for parabolic inequality on graph, see
Lemma 8 below.

The paper is organized as follows. In Section 2, we prove Theorem 1. The proof of Theorem 4
is given in Section 3.

2. Proof of Theorem 1

We begin this section by considering the lower bound of positive solutions of (1).

2.1. The uniform lower bound of solutions

In order to prove the first assertion in Theorem 1, we establish a stronger result.

Lemma 7. Let f : (0,∞) → R be a continuous, strictly decreasing function such that there exists a
positive number α satisfying f (α) = 0. Then, any positive solution v of

vt −∆v ≥ f (v) in V ×R, (8)

satisfies v ≥α> 0.

Before proving Lemma 7, we show how to use it to get Theorem 1(i). Taking f (s) = s−p−2 − sp ,
s > 0. It is easy to verify that this function satisfies the hypotheses in Lemma 7 with α = 1.
Applying Lemma 7, we obtain that any positive solution v of (1) must be bounded from below
by one, i.e v ≥ 1.

Proof of Lemma 7. As in [2], we take

φ(t ) =


t 2 if |t | < 1

2t −1 if t ≥ 1

−1−2t if t ≤−1.

(9)

Then, we have φ ∈C 1(R), φ≥ 0 and

• φ(t ) →∞ as |t |→∞,
• sup

R

|φ′(t )| <∞,

• φ(0) = 0.

Let v be a positive solution of (8). Suppose that there exists (x0, t0) ∈V ×R such that v(x0, t0) <
α. In the case where v(x, t ) attains its minimum m := infV ×R v(x, t ) at this point (x0, t0), the
proof is easy. In fact, at this point, we have vt (x0, t0) = 0 and ∆v(x0, t0) ≥ 0, which leads to
vt (x0, t0)−∆v(x0, t0) ≤ 0. On the other hand, one has f (v(x0, t0)) = f (m) > 0 since m <α. This is
a contradiction.

Otherwise, there exists a decreasing sequence (v(xk , tk ))k≥0 such that

lim
k→∞

v(xk , tk ) = m.
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Let 0 < ϵ0 < f (v(x0,t0))
maxR |φ′(t )| . We construct an auxiliary function

w(x0, t ) = v(x0, t )+ϵ0φ(t − t0).

Since v is positive, then w(x0, t ) →∞ when |t |→∞. Consequently, there is a point (x0, t̃ 1) ∈V ×R
such that

w(x0, t̃ 1) = min{w(x0, t ); t ∈R} ≤ w(x0, t0) = v(x0, t0) <α.

By the property of local minimum, we have at (x0, t̃ 1) that wt = 0 or vt (x0, t̃ 1) =−ϵ0φ(t̃ 1−t0). This
and (8) give

−ϵ0φ
′(t̃ 1 − t0)−∆v(x0, t̃ 1) ≥ f (v(x0, t̃ 1)) > 0.

Without loss of generality, we may assume that v(x1, t1) ≤ v(x0, t̃ 1). Hence, we have the property

v(x1, t1) ≤ v(x0, t̃ 1) ≤ v(x0, t0) <α.

By repeating this argument, we obtain a decreasing sequence (v(xk , t̃ k )) such that

v(xk+1, tk+1) ≤ v(xk , t̃ k+1) ≤ v(xk , tk )

and
−ϵkφ

′(t̃ k+1 − tk )−∆v(xk , t̃ k+1) ≥ f (v(xk , t̃ k+1)) > 0, (10)

where ϵk is chosen such that 0 < ϵk < f (v(xk ,tk ))
maxR |φ′(t )| and ϵk → 0+ as k →∞.

Notice that

−∆v(xk , t̃ k+1) = ∑
x∼xk

µxxk

µxk

(v(xk , t̃ k+1)− v(x, t̃ k+1)) ≤ v(xk , t̃ k+1)−m.

Plugging this into (10) and letting k →∞ we obtain

0+m −m ≥ f (m) > f (α) = 0,

which is impossible. The proof of Lemma 7 is complete. □

2.2. The Liouville property

We now prove a version of the Keller–Osserman inequality for the parabolic equation on graphs.

Lemma 8. Given two positive constants p > 0 and β> 0. If v is a bounded nonnegative solution of

vt −∆v ≤−βv p in V ×R, (11)

then v ≡ 0.

Remark that a version of Keller–Osserman inequality for the elliptic equation was proved
in [21]. This can be seen as a consequence of Lemma 8 when v is independent of t .

Proof of Lemma 8. Suppose that there exists (x0, t0) such that v(x0, t0) > 0. As in the proof of
Lemma 7, if v attains its maximum at this point, then vt (x0, t0) = 0 and∆v(x0, t0) ≤ 0. This implies
that

vt (x0, t0)−∆v(x0, t0) ≥ 0,

which contradicts (11).
Otherwise, there exists a sequence (xn , tn) such that (v(xn , tn)) is increasing and

v(xn , tn) −→ sup
V ×R

v(x, t ) =: M > 0.

Given ε> 0 and let φ be the function in the proof of Lemma 7, we construct

w(x0, t ) = v(x0, t )−εφ(t − t0).

Since φ(t ) →+∞ as |t |→+∞, there exists t̃ 0 such that

w(x0, t̃ 0) = max
V ×R

w(x0, t ) ≥ w(x0, t0) = v(x0, t0).
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As above, by the maximum property, wt (x0, t̃ 0) = 0 or vt (x0, t̃ 0) = εφ′(t̃ 0 − t0). Hence,

−εφ′(t̃ 0 − t0)+ ∑
y∼x0

µx0 y

µx0

(v(y, t̃ 0)− v(x0, t̃ 0)) ≥βv p (x0, t̃ 0).

Without loss of generality, assume that v(x0, t̃ 0)) < v(x1, t1). Then, we have the property

v(x0, t0) < v(x0, t̃ 0)) < v(x1, t1).

Repeating this argument, there exists (xn , t̃ n) such that

−εφ′(t̃ n − tn)+ ∑
y∼xn

µxn y

µxn

(v(y, t̃ n)− v(xn , t̃ n)) ≥βv p (xn , t̃ n) (12)

and
v(xn , tn) < v(xn , t̃ n) < v(xn+1, tn+1).

The left hand side of (12) is bounded from above by

εsup
R

|φ′|+M − v(xn , t̃ n)

and consequently
εsup

R

|φ′|+M − v(xn , t̃ n) ≥βv p (xn , t̃ n). (13)

Letting n →∞ in (13) and choosing 0 < ε< βM p

supR |φ′| , we obtain a contradiction. □

With these preparations above, we are ready to prove Theorem 1(ii). Suppose that v is a
positive bounded solution of the equation (1). It results from Theorem 1(i) that v ≥ 1. Define
w = v −1 ≥ 0. Then, w is a nonnegative bounded solution of

wt −∆w = (w +1)−p−2 − (w +1)p in V ×R. (14)

Put
M1 = sup

V ×R
w <∞.

We now claim that

(s +1)−p−2 − (s +1)p ≤− γ

p +1
sp+1 for all 0 ≤ s ≤ M1, (15)

where γ is some positive constant satisfying

γ< (p +2)(M1 +1)−p−3

M p
1

.

Indeed, we put

g (s) = (s +1)−p−2 − (s +1)p + γ

p +1
sp+1, s ∈ [0, M1]

and then

g ′(s) =−(p +2)(s +1)−p−3 −p(s +1)p−1 +γsp

≤−(p +2)(s +1)−p−3 +γsp .

Hence, for all 0 ≤ s ≤ M1, by the choice of γ we have

g ′(s) ≤−(p +2)(M1 +1)−p−3 +γM p
1 < 0.

This implies that g is decreasing. Consequently, g (s) ≤ g (0) = 0 for all 0 ≤ s ≤ M1, which gives (15).
From (15) and (14), we get that w is a nonnegative bounded solution of

wt −∆w ≤− γ

p +1
w p .

According to Lemma 8, w ≡ 0 or equivalently v ≡ 1. The proof is complete. □
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3. Proof of Theorem 4

We prove Theorem 4 in this section by using some elementary arguments and developing a kind
of maximum principle.

Step 1. Proof of (i). We first show that u ≥ −1 and v ≥ −1. Suppose, on the contrary, that there
exists (x0, t0) ∈V ×R such that v(x0, t0) <−1. Let us put

m := inf
V ×R

v(x, t ).

We next split the proof into two cases.

Case 1. If v(x, t ) attains its minimum at this point (x0, t0), then we have vt (x0, t0) = 0 and
∆v(x0, t0) ≥ 0, which leads to vt (x0, t0)−∆v(x0, t0) ≤ 0. On the other hand, one has

vt (x0, t0)−∆v(x0, t0) = v(x0, t0)(1− v2(x0, t0)−λu2(x0, t0)) > 0

since v(x0, t0) <−1. This is a contradiction.

Case 2. There exists a decreasing sequence (v(xk , tk ))k≥0 such that

lim
k→∞

v(xk , tk ) = m.

Let ϵ0 be a small positive constant satisfying

0 < ϵ0 < v(x0, t0)(1− v2(x0, t0))

maxR |φ′(t )| = |v(x0, t0)(1− v2(x0, t0))|
maxR |φ′(t )| .

We define
w(x0, t ) = v(x0, t )+ϵ0φ(t − t0).

Since v is bounded, then w(x0, t ) → ∞ when |t | → ∞. Consequently, there is a point (x0, t̃ 1) ∈
V ×R such that

w(x0, t̃ 1) = min{w(x0, t ); t ∈R} ≤ w(x0, t0) = v(x0, t0) <−1.

By the property of local minimum, we have at (x0, t̃ 1) that wt = 0 or vt (x0, t̃ 1) = −ϵ0φ
′(t̃ 1 − t0).

This and (4) give

−ϵ0φ
′(t̃ 1 − t0)−∆v(x0, t̃ 1) ≥ v(x0, t̃ 1)(1− v2(x0, t̃ 1)−λu2(x0, t̃ 1)) > 0.

As above, we may assume that v(x1, t1) ≤ v(x0, t̃ 1). Hence,

v(x1, t1) ≤ v(x0, t̃ 1) ≤ v(x0, t0) <−1.

By repeating this argument, we obtain a sequence (t̃ k ) such that

v(xk+1, tk+1) ≤ v(xk , t̃ k+1) ≤ v(xk , tk )

and

−ϵkφ
′(t̃ k+1 − tk )−∆v(xk , t̃ k+1) ≥ v(xk , t̃ k+1)(1− v2(xk , t̃ k+1)−λu2(xk , t̃ k+1))

≥ v(xk , t̃ k+1)(1− v2(xk , t̃ k+1)) > 0,
(16)

where ϵk is chosen sufficiently small such that 0 < ϵk < v(xk ,tk )(1−v2(xk ,tk ))
maxR |φ′(t )| and ϵk → 0+ as k →∞.

Notice that

−∆v(xk , t̃ k+1) = ∑
x∼xk

µxxk

µ(xk )
(v(xk , t̃ k+1)− v(x, t̃ k+1)) ≤ v(xk , t̃ k+1)−m.

We plug this into (16). Since φ′ is bounded and limk→∞ v(xk , t̃ k+1) = m, we obtain by letting
k →∞

0+m −m ≥ m(1−m2) > 0,

which is impossible. Thus v ≥−1.
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Similarly, we also have u ≥−1. Note that (−u,−v) is also a solution of the system (4), then we
deduce that −u ≥−1,−v ≥−1 or equivalently u ≤ 1, v ≤ 1. Combining these estimates, we arrive
at |u| ≤ 1 and |v | ≤ 1.

Step 2. Proof of (ii). We use again contradiction argument. Suppose, contrary to the asser-
tion (ii), that there exists (x0, t0) ∈V ×R such that u2(x0, t0)+ v2(x0, t0) > 1. Let us put

M := sup
V ×R

(u2(x, t )+ v2(x, t )).

We again split the proof into two cases.

Case 1. If u2(x, t ) + v2(x, t ) attains its maximum at this point (x0, t0), then we have (u2 +
v2)t (x0, t0) = 0 and ∆(u2 + v2)(x0, t0) ≤ 0, which leads to (u2 + v2)t (x0, t0)−∆(u2 + v2)(x0, t0) ≥ 0.
On the other hand, we use [21, Lemma 2.2] to deduce that for any function ũ : ℓ(V ) →R,

∆ũ2(x) = 2ũ(x)∆ũ(x)+|∇x y ũ|2 ≥ 2ũ(x)∆ũ(x).

Then, at the point (x0, t0) we have

(u2 + v2)t −∆(u2 + v2) ≤ (2u(ut −∆u)+2v(vt −∆v))

= (2u(u −u3 −λuv2)+2v(v − v3 −λvu2))

= 2(−u4 − v4 +u2 + v2 −2λu2v2)

≤ 2(u2 + v2 − (u2 + v2)2) < 0,

(17)

where we have used λ≥ 1 and u2 + v2 > 1 at (x0, t0). Thus, we obtain a contradiction.

Case 2. There exists an increasing sequence ((u2 + v2)(xk , tk ))k≥0 such that

lim
k→∞

(u2(xk , tk )+ v2(xk , tk )) = M .

Let ϵ0 be a positive constant satisfying

0 < ϵ0 < |2((u2 + v2)(x0, t0)− (u2 + v2)2(x0, t0))|
maxR |φ′(t )| .

We put

w(x0, t ) = u2(x0, t )+ v2(x0, t )−ϵ0φ(t − t0).

Since v and u are bounded, then w(x0, t ) → −∞ when |t | → ∞. Consequently, there is a point
(x0, t̃ 1) ∈V ×R such that

w(x0, t̃ 1) = max{w(x0, t ); t ∈R} ≥ w(x0, t0) = u2(x0, t0)+ v2(x0, t0) > 1.

By the property of local maximum, we have at (x0, t̃ 1) that wt = 0 or (u2+v2)t (x0, t̃ 1) = ϵ0φ
′(t̃ 1−t0).

This and (17) give

ϵ0φ
′(t̃ 1 − t0)−∆(u2 + v2)(x0, t̃ 1) ≤ 2(u2(x0, t̃ 1)+ v2(x0, t̃ 1)− (u2(x0, t̃ 1)+ v2(x0, t̃ 1))2).

As above, without loss of generality, we may assume that (u2+v2)(x1, t1) ≥ (u2+v2)(x0, t̃ 1). Thus,

(u2 + v2)(x1, t1) ≥ (u2 + v2)(x0, t̃ 1) ≥ (u2 + v2)(x0, t0) > 1.

By repeating this argument, we obtain a sequence (t̃ k ) such that

(u2 + v2)(xk+1, tk+1) ≥ (u2 + v2)(xk , t̃ k+1) ≥ (u2 + v2)(xk , tk )

and

ϵkφ
′(t̃ k+1 − tk )−∆(u2 + v2)(xk , t̃ k+1) ≤ 2((u2 + v2)(xk , tk )− (u2 + v2)2(xk , tk )) < 0, (18)

where ϵk is chosen such that 0 < ϵk < |2((u2+v2)(xk ,tk )−(u2+v2)2(xk ,tk ))|
maxR |φ′(t )| and ϵk → 0+ as k →∞.
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Notice that

−∆(u2 + v2)(xk , t̃ k+1) = ∑
x∼xk

µxxk

µxk

((u2 + v2)(xk , t̃ k+1)− (u2 + v2)(x, t̃ k+1))

≥ (u2 + v2)(xk , t̃ k+1)−M .

Plugging this into (18) and letting k →∞ we obtain

0+M −M ≤ 2(M −M 2) < 0,

which is impossible.

Step 3. Proof of (iii). The proof in this case is quite similar to the Proof of (ii). So we omit the
details.
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