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Abstract. We extend our theory of Compensated Integrability of positive symmetric tensors, to the case where
the domain is the product of a linear space Rk and of a torus Rm /Λ, Λ being a lattice of Rm . We apply our
abstract results in two contexts, for which k = 1 is associated with a time variable, while m = d is a space
dimension. On the one hand to d-dimensional inviscid gas dynamics, governed by the Euler equations, when

the initial data is space-periodic; we obtain an a priori space-time estimate of our beloved quantity ρ
1
d p. On

the other hand to hard spheres dynamics in a periodic box LTd . We obtain a weighted estimate of the average
number of collisions per unit time, provided that the “linear density” N a/L (N particles of radius a) is smaller
than some threshold.

Résumé. Nous étendons notre théorie d’Intégrabilité par Compensation au cas des domaines Rk × (Rm /Λ),
produits d’un facteur linéaire et d’un tore plat. Nous appliquons les résultats abstraits à deux contextes,
pour lesquels k = 1 est associé à une variable de temps, tandis que m = d est la dimension de l’espace
physique ambiant. Le premier est la dynamique des gaz non visqueux, gouvernée par les équations d’Euler,
lorsque les données initiales sont périodiques en espace. Nous obtenons une estimation a priori de notre

quantité favorite ρ
1
d p. Le second est la dynamique des sphères dures, dans une boîte périodique LTd .

Nous obtenons une estimation pondérée du nombre moyen de collisions par unité de temps, pourvu que
la « densité linéique » N a/L (N particules de rayon a) soit inférieure à un certain seuil.
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Notations

The space of n × n symmetric matrices with real entries is Symn . The open cone of positive
definite symmetric matrices is SPDn , its closure being Sym+

n . The latter defines the natural
order ≺ in Symn . Transposition of matrices and vectors is written A 7→ AT . The cofactor matrix
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of M ∈ Mn(R) is M̂ ; we recall that M̂ M T = M T M̂ = (det M)In , and det M̂ = (det M)n−1. When
a,b ∈ Rn , a ⊗b is the n ×n matrix with entries ai b j . The operator norm of an endomorphism u
is |u|op.

Partial derivatives in Rn are denoted ∂1, . . . ,∂n . The inner product of Rn is either x · y or 〈x, y〉,
and the unit sphere is Sn−1. The Hessian matrix of a function θ :Rn →R is D2θ.

Given an open domain U ⊂ Rn , the space M (U ) of finite Radon measures over U is equipped
with the norm

∥µ∥M = sup{µ(φ) |φ ∈Cb(U ) and ∀x ∈U , |φ(x)| ≤ 1}.

The notation M is also used in the context of vector-valued measures. The cone of non-negative
test functions in D(U ) is D+(U ). The norm in Lp (U ) is denoted ∥ ·∥p .

An inequality F (X ) ≤n G(X ) between functionals F and G means that there exists a constant
C (n) ∈ (0,+∞) such that F (X ) ≤ C (n)G(X ) for every argument X under consideration. The
parameter n is in general the dimension of some underlying space.

The canonical m-dimensional torus is Tm = (R/2πZ)m . If Λ ⊂ Rn is a lattice, and the
measurable function f : Rn → R+ is Λ-periodic, then

∫
f (x)d x denotes its mean value over the

torus Rn/Λ.

1. Introduction and statements

1.1. State of the art

Let n ≥ 2 be an integer. The objects under consideration in Compensated Integrability (in short
CI) are symmetric tensors

A = (ai j )1≤i , j≤n , a j i = ai j ,

where the entries are finite Radon measures over an open domain U ⊂ Rn . Two properties are at
stake in the theory:

Divergence control. The coordinates of the row-wise Divergence,

(Div A)i :=
n∑

j=1

∂ai j

∂x j
,

are finite measures too.
When this condition is met, we say that A is Divergence-BV. The space DivBV(U ) of such

tensors is equipped with the norm
∥A∥M +∥Div A∥M ,

which makes it a Banach space.
If actually Div A ≡ 0, then we say that A is Div-free.

Positive semi-definiteness. For every ξ ∈Rn , the measure

ξT Aξ=
n∑

i , j=1
ξiξ j ai j

is non-negative.

When A is positive semi-definite in the sense above, its entries are absolutely continuous with
respect to the positive measure µ= Tr A :

ai j = fi jµ, fi j ∈ L1(dµ).

The tensor F = ( fi j )i , j is positive semi-definite too and, since (detF )
1
n ∈ L1(dµ), we may define

unambiguously the positive measure:

(det A)
1
n := (detF )

1
n µ.
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CI tells us that (det A)
1
n enjoys a higher integrability, which is reminiscent to the Gagliardo–

Nirenberg–Sobolev embedding BV (Rn) ⊂ L
n

n−1 (Rn). The main statement of the theory deals with
the case U =Rn :

Theorem 1 (D. S. [10, 11]). Let A be positive semi-definite and Div-BV over Rn . Then (det A)
1
n

is actually a measurable function, belonging to L
n

n−1 (Rn). Its norm is controlled by a functional
inequality ∫

Rn
(det A)

1
n−1 dx ≤ cn∥Div A∥

n
n−1
M

. (FIn)

The above statement includes the fact that in the Radon–Nikodym decomposition

A = Aac dx + As ,

the singular part satisfies (det As )
1
n ≡ 0, µ-almost everywhere. In other words, rk As ≤ n − 1, µ-

almost everywhere. This provides an example of a much more general result established in [2].
The best constant cn in (FIn) is actually known. The equality case occurs for instance if

A(x) = χB (x)In where χB is the characteristic function of a ball B . More generally, if V ⊂ Rn is
open and A(x) =χV (x)In , then (FIn) is nothing but the Isoperimetric Inequality:(

volV

volB

) 1
n ≤

(
area∂V

area∂B

) 1
n−1

.

We are interested herebelow in the case where the tensor A, defined over Rn , is periodic :

∀γ ∈ Γ, A( ·+γ) = A.

Hereabove, Γ is a discrete subgroup of Rn , of rank m ≤ n. If m = n, Γ is a lattice, but we wish to
allow the possibility that m < n. Thus we shall be able to treat the physically relevant situation of
a space-periodic process in the physical space Rd , which evolves as time goes on; then we have
n = 1+d and m = d .

The periodicity prevents A from being Div-BV in Rn ; the measures ai j and (Div A)i have
infinite mass. Therefore Theorem 1 does not apply to A. Instead we shall assume that their
masses per cell,

∥ai j ∥M (Rn /Γ), ∥(Div A)i∥M (Rn /Γ)

are finite. The only known result about periodic tensors so far, which tells us that the function
det

1
n−1 is Div-quasiconcave over Sym+

n , is limited to the Div-free case. It reads as follows.

Theorem 2 (D. S. [10, 11]). Let A be symmetric, positive semi-definite over Rn , periodic with
respect to a lattice Λ, and Div-free. Then∫

Rn /Λ
(det A)

1
n−1 dx ≤

(
det

∫
Rn /Λ

A dx

) 1
n−1

.

Notice that the inequality with the exponents 1
n , instead of 1

n−1 , is true even without Div-

freeness; it follows from Jensen Inequality and the concavity of det
1
n over Sym+

n .

1.2. Abstract statements

Our intention below is to unify somehow Theorems 1 and 2 above. In particular, we wish to relax
the hypotheses in the latter by allowing A to be Div-BV, instead of Div-free. From a physical point
of view, the periodic context has the great advantage of introducing a notion of characteristic
length. Whenever the data contains a velocity field, we inherit therefore a characteristic time too.

Our main result in this direction is sharp, except for the fact that the constants in the functional
inequality are not. For the sake of simplicity, we begin with the simple case where the compact
factor is the canonical torus :
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Theorem 3 (Periodic tensors.). Denote n = k+m. Let A be positive semi-definite and Div-BV over
Rk ×Tm . Then (det A)

1
n is actually a measurable function, belonging to L

n
n−1 (Rk ×Tm). Its norm is

controlled by the functional inequality∫
Rk×Tm

(det A)
1

n−1 dx ≤k,m

(
∥Div A∥M (Rk×Tm ) +∥Trm A∥M (Rk×Tm )

) n
n−1

, (FIper)

where Trm A, defined as the m-terms sum

Trm A =
n∑

j=k+1
a j j ,

is the trace of the down-right block in the decomposition

A =
(

Auℓ ∈ Mk×k Aur ∈ Mk×m

Adℓ ∈ Mm×k Adr ∈ Mm×m

)
.

Notice that since there are finitely many partitions n = k+m, we may write ≤n instead of ≤k,m .

The case where the compact factor is an arbitrary torus Rm/Γ follows from the observation
(see [10, Lemma 1.1] for the Div-free case) that for every P ∈ GLn(R), the congruence

A 7−→ B(z) := PA(P−1z)P T

acts over DivBVloc(Rn). There holds

Divz B(z) = P (Divx A)(P−1z).

This transformation brings us back to the context of Theorem 3, by choosing Q ∈ GLm(R) such
that Γ= 2πQ−1Zm , and setting P = diag(Ik ,Q). Applying (FIper) to B , we receive easily our most
general estimate:

Corollary 4. If instead A is positive and Div-BV over T := Rk × (Rm/Γ), and P = diag(Ik ,Q) with
Γ= 2πQ−1Zm , then we have∫

T
(det A)

1
n−1 dx ≤k,m (detP )−

1
n−1

(∥P Div A∥M (T ) +∥TrmPAP T ∥M (T )
) n

n−1 , (1)

where it may be noticed that

detP = detQ, TrmPAP T = TrQ Adr QT .

Strategy of the proof. Since the dual of Ln is L
n

n−1 , Theorem 3 amounts to having the following
functional inequality: for every positive semi-definite Div-BV tensor A over Rk ×Tm , and every
ψ ∈D+(Rk ×Tm), 〈

(det A)
1
n ,ψ

〉
≤n ∥ψ∥n(∥Div A∥M +∥Trm A∥M ). (2)

It is actually sufficient to have (2) whenever A is smooth (Lemma 7 below). The core of the
proof proceeds by induction over the dimension m of the compact factor. The case m = 0 is
nothing but Theorem 1. When the statement is valid at the level m−1 (induction hypothesis), we
embed isometrically Tm as Tm−1 ×S1 in Rm+1. Transporting A, we obtain a tensor A′ over Rn+1,
supported by the cylinder Rn−1 ×S1, which is still Div-BV. This new tensor is periodic in m − 1
coordinates xk+1, . . . , xn−1 only. Two important remarks must be made at this stage:

• The isometric embedding results in an extrinsic curvature of the image (the cylinder),
although Rk ×Tm itself is flat. This curvature causes Div A′ to have a normal component
of the form Tr(Aκ), where κ is the curvature tensor, a phenomenon already observed
in [13]. Here this contribution is nothing but ann .
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• The tensor A′ is singularly supported and so is (det A′)
1

n+1 . Saying that the latter is a
function of class Lp (for p = 1 + 1

n here) means that (det A′)
1

n+1 ≡ 0; this can be seen
directly by observing that A′ν ≡ 0 where ν is the normal unit vector to the cylindrical
support. Therefore applying CI directly to A′ is useless.

This leads us to improve CI, so as to handle singular contributions of the tensor under
consideration. Such a step was carried out, in an even more singular situation, in [12].
Doing so, we must apply CI not to A′ itself, but to A′ +φν⊗ν where φ ≥ 0 is a smooth
function; this correction restores the full-rank quality of the tensor. Then we optimize
the resulting estimate by choosing carefully the auxiliary function φ.

Since this strategy combines several difficulties, we offer in Appendix B a proof1 that CI in
dimension n + 1 implies CI in dimension n. It covers, in a rather simple context, the aspects
of i) transporting a tensor, ii) dealing with a now singularly supported tensor, and iii) adding a
parametrized corrector. Being familiar with this appendix, the interesting reader will find the
proof of Theorem 3 easier to follow.

1.3. Application to gas dynamics

The second aspect of this paper deals, as it is often the case, with the Euler equations governing
the flow of and inviscid gas. Here n = 1+d and x = (t , y) where t is the time variable and y stands
for the space coordinates. The system reads

∂tρ+divy (ρu) = 0,

∂t (ρu)+Divy (ρu ⊗u)+∇y p = 0,

∂t

(
1

2
ρ|u|2 +ρε

)
+divy

((
1

2
ρ|u|2 +ρε+p

)
u

)
= 0.

The mass density ρ, the pressure p and the specific internal energy ε are non-negative quantities,
often related to each other by an equation of state. The vector field u is the fluid velocity. The two
first equations above can be recast as Divx A = 0, where

A = ρ
(

1

u

)
⊗

(
1

u

)
+

(
0 0
0 pId

)
≻ 0n , (3)

the mass-momentum tensor, is symmetric.
Let us recall an a priori estimate established for the Cauchy problem when the physical

domain is Rd , and the total mass and energy are finite, that is

M :=
∫
Rd
ρ(0, y)dy <+∞, E0 :=

∫
Rd

(
1

2
ρ|u|2 +ρε

)
(0, y)dy <+∞.

We say that a flow is admissible if it preserves the total mass, while the total energy is a non-
increasing function of time. Using CI, and noticing that det A equals ρpd , we proved in [10] that
admissible flows satisfy ∫ +∞

0
dt

∫
Rd
ρ

1
d p dy ≤d M

1
d
√

ME0 .

Herebelow we consider the alternate situation where the initial data is space-periodic, say with
respect to LZd , where L is a characteristic length. We define instead the mass and energy per cell:

M :=
∫
Rd /LZd

ρ(0, y)dy, E0 :=
∫
Rd /LZd

(
1

2
ρ|u|2 +ρε

)
(0, y)dy.

We define also the mean density ρ := L−d M . Our new estimate applies to gases which obey the
equation of state (perfect gas law) p = (γ−1)ρε where γ> 1 is the adiabatic constant.

1Of course we do not need it, as CI is proved directly in every dimension. Its role is purely pedagogical.
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Theorem 5. Let a perfect gas flow be LZd -periodic in the space variable, and admissible. Then it
satisfies the estimate

∀T > 0,
∫ T

0
dt

∫
Rd /LZd

ρ
1
d p dy ≤d γM

1
d

(√
ME0 + T E0

L

)
. (4)

Interpretation. When t →+∞, (4) expresses that in the Cesàro sense (“in time average”),∫
Rd /LZd

ρ
1
d p dy

Ces.= O
(
γρ

1
d E0

)
.

1.4. Collision estimate for the billiard on a torus

Our second application concerns the dynamics of hard spheres of equal radii a > 0 in Rd , which
interact through elastic collisions. In absence of a force field, a particle travels with constant
speed along a segment, until it collides with another one. The linear momentum and kinetic
energy are conserved in every collision. As long as the collisions involve only pairs of particles,
and infinitely many collisions do not accumulate, the dynamics can be continued in a unique
manner; these are the motions that we consider herebelow. Recall that for finitely many particles,
these globally defined motions occur for almost every initial data [1]; we are not aware of such a
result for space-periodic configurations.

Since Sinai’s seminal paper [14], the major question of the theory has been estimating the
number of collisions that happen along the dynamics. So far, the literature seems to focus on
finite configurations in the whole space Rd . Vaserstein [15] proved first that the collisions are
finitely many. Huge upper bounds were derived in terms of the number N of particles : O(N cN 2

)
by Burago & al. [3], then O(N cN ) by Burdzy [5]. It is known [4] from explicit constructions that
the number of collisions may be as large as 2N /2. Thus Burdzy’s super-exponential bound could
not be improved in a better form than exponential. Nevertheless we showed in [12] that it can be
converted into a quadratic bound, provided that each collision is weighted by the jump of the ve-
locity [v] of its particles (the exchange of linear momentum between both). Our estimate reads as∑

coll.
|[v]| ≤d N 2v , (5)

where v is the standard deviation of the velocity, a constant of the motion; the sum runs over all
collisions. Even though (5) does not imply the finiteness of the collision set, it tells us that all but
an O(N 2) collisions are negligible, in the sense that |[v]| << v . For instance, most of the collisions
of the motion exhibited in [4] must be exponentially weak.

Our method was based upon the construction of a mass-momentum tensor M encoding the
dynamics. This Div-free tensor over R1+d is supported by a graph formed by the trajectories
of the centers of the balls, together with the segments joining the centers of colliding pairs.
Compensated Integrability does not apply directly because (detM)

1
1+d ≡ 0. To overcome this flaw,

we elaborated a version of CI dedicated to singular tensors, which we recall below (Theorem 10).
The situation is rather different for space-periodic configurations, because the particles are

infinitely many. In particular, we do not expect the collisions per cell to be finitely many over the
whole time interval (0,+∞). However, using the same tensor M, and a version of Theorem 10
adapted to tensors over Rk ×Tm (we use actually the pair (k = 1,m = d)), see Theorem 11, we
establish here a weighted estimate of the collisions over finite time intervals. Interestingly, our
result involves an assumption about the “linear” density aN /L, where L is the length of the torus.

Theorem 6. There exists two constants κd ,Cd ∈ (0,+∞) such that for every L,T > 0 and hard
sphere dynamics over (0,T )×LTd satisfying

N a < κd L, (6)
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one has the estimate
(0,T )∑
coll.

|[v]| ≤Cd N 2v

(
1+ vT

L

)
. (7)

Herabove, the summation runs over all the collisions happening in (0,T )×LTd .

Comments.

• Estimate (7) plays the same role as (4) does for perfect gases. It can be interpreted again
in the Cesàro sense as t →+∞, namely

(t ,t+1)∑
coll.

|[v]| Ces.= O

(
N 2v2

L

)
, (8)

where v2 can be viewed as the temperature of the medium. Since there are
(N

2

)
pairs of

particles, this means that, in average over a unit time interval, each pair (p, q) experiences
finitely many non-negligible collisions.

• Curiously, the hypothesis (6) involves a “linear” (that is, a one-dimensional) density. It
assumes that if the balls were pearls along a necklace of length 2πL, their density would
be less than κd /π. Estimate (8) seems a little pessimistic for large L, unless d = 1. At
fixed (N , a, v ,T ) and L →+∞, one should expect an O

(
L−d

)
instead of an O

(
L−1

)
, at least

for generic initial data. But our bound is valid for arbitrary configurations, including the
worst ones. Our result says that the latters are those for which all the particles move along
a single line, and therefore behave as if d = 1.

• Let us consider the applicability of the theorem to physical situations, for which we have
d = 3. The rarefied gas must consist of inert atoms like He or Ar because our analysis
is limited to spherical molecules. A typical radius is a ∼ 10−10m, while the number of
particles is N = N0L3, where N0 is their number per cube meter. Because of (6), an
admissible characteristic length must be smaller than

105
√
κ3

N0
.

Of course, the gas distribution is never space-periodic, and the gas is made of non-
spherical molecules H2 in general, but our analysis gives a hint of what is expected in
more realistic situations, in particular when a characteristic length is given. The following
table tells us that our analysis might be useless for a dense gas such as the atmosphere on
earth, though it could be meaningful for gases at a much larger scale and lower density.

particles per m3 admissible length L (meters)

atmosphere 3 ·1025 10−8

interstellar cloud 3 ·105/3 ·107 100/1000

galactic corona 10−3/10−4 106

Plan of the paper. The proof of Theorem 3 is given in Section 2. That of Theorem 5 is detailed
in Section 3. Section 4 is dedicated to the theory of so-called Determinantal masses, initiated
in [12]. It culminates with Theorem 11, which is adapted to the periodic context. Its application
to billiard dynamics is analyzed in Section 5. An appendix gives a short proof of Theorem 3 in the
special case k = 0. Another one shows how the technique developed in Section 2 can be used in a
rather simple manner, to prove that CI in dimension n +1 implies the same in dimension n.
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2. Proof of Theorem 3

We recall that A is a non-negative Div-BV tensor over Rk ×Tm (n = k +m).

2.1. From smooth tensors to general ones

Lemma 7. If the functional inequality (2) is true for C ∞-periodic tensors A ≻ 0n , then it is so for
all periodic Div-BV-tensors A ≻ 0n .

Proof. Let A ≻ 0n be Div-BV over Rk ×Tm . Let ρ ∈ D+(Rn) be even and such that
∫
ρ(x)dx = 1,

and let us denote ρϵ(x) = ϵ−nρ(x/ϵ). The tensor ρϵ⋆ A is smooth and Div-BV over Rk ×Tm . From
the assumed smooth case of (2), we have〈(

detρϵ⋆ A
) 1

n ,ψ
〉
≤n ∥ψ∥n

(∥Div(ρϵ⋆ A)∥M +∥Trm(ρϵ⋆ A)∥M

)
for every ψ ∈D+(Rk ×Tm). On the right-hand side, we use

∥Div(ρϵ⋆ A)∥M = ∥ρϵ⋆Div A∥M ≤ ∥Div A∥M , ∥Trm(ρϵ⋆ A)∥M ≤ ∥Trm A∥M .

For the left-hand side, we recall that det
1
n is a concave function over Sym+

n (see for instance [9,
Theorem 6.10]). We thus have (

det(ρϵ⋆ A)
) 1

n ≥ ρϵ⋆ (det A)
1
n .

We infer 〈
ρϵ⋆ (det A)

1
n ,ψ

〉
≤n ∥ψ∥n (∥Div A∥M +∥Trm A∥M ) .

The left-hand side in the inequality above can be recast as〈
(det A)

1
n ,ρϵ⋆ψ

〉
,

which converges to
〈

(det A)
1
n ,ψ

〉
as ϵ→ 0. This proves (2) in full generality. □

2.2. Transporting the tensor

Our proof proceeds by induction over m. The case m = 0 is covered by Theorem 1. We therefore
assume m ≥ 1 and suppose that, for every ℓ ∈ N, the statement of Theorem 3 is valid for every
non-negative Div-BV tensors over Rℓ×Tm−1.

We start by defining a “transported tensor” A′ over Rk ×Tm−1 ×R2. Supported by the cylinder
C := Rk ×Tm−1 ×S1, it will be shown positive semi-definite and Div-BV. The factor Tm−1 means
that A′ is (2πZm−1)-periodic in the variable z := (yk+1, . . . , yn−1) ∈ Rm−1. We denote as well
w := (y1, . . . , yk ) and θ := yn , so that y = (w, z,θ).

To define A′, we use the canonical isometry J :Rk ×Tm →Rk ×Tm−1 ×S1,

J (w, z,θ) = (w, z,cosθ, sinθ).

The differential dJ maps Rk ×Tm onto the tangent bundle:

dJ(w,z,θ)(a,b,ξ) = (a,b,−ξsinθ,ξcosθ).

The entries of A′ being distributions (actually measures), they are defined by their action over
test functions φi j ∈D(Rn+1) (1 ≤ i , j ≤ n +1). The action of A′ over Φ= (φi j )i , j is given by

〈A′,Φ〉 :=
n−1∑
α,β=1

〈aαβ,φαβ ◦J 〉+
n−1∑
α=1

〈
aαn , (φα,n+1 +φn+1,α)◦J cosθ− (φαn +φnα)◦J sinθ

〉
+〈

ann ,φnn ◦J sin2θ− (φn,n+1 +φn+1,n)◦J sinθcosθ+φn+1,n+1 ◦J cos2θ
〉

.
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In other words, with dJy ∈ Mn+1,n(R),

〈A′,Φ〉 = 〈dJ A(dJ )T ,Φ◦J 〉. (9)

That A′ is symmetric and its entries are finite measures are obvious. By construction, A′ vanishes
in the normal direction to the cylinder:〈

A′
 0

cosθ
sinθ

 ,ψ⃗

〉
=

〈
A′,

 0
cosθ
sinθ

⊗ ψ⃗
〉
≡ 0.

Formula (9) shows that A′ is positive semi-definite as well; for η ∈Rn+1 and Γ ∈D(Rn+1), one has

〈ηT A′η,Γ〉 = 〈η̂T Aη̂,Γ◦J 〉,
for η̂T dJ = ηT . When Γ≥ 0, the above quantity is non-negative.

2.2.1. The Divergence of the transported tensor

Let ψ⃗ be a test vector field over Rn+1. Forming Φ=∇ψ⃗, we express the Divergence of A′ by the
following calculation, in which we use Einstein’s convention of summation over repeated indices:

〈Div A′,ψ⃗〉 =−〈A′,∇ψ⃗〉 =−〈
dαJi aαβdβJk , (diψk )◦J

〉
=−〈

aαβdβJk ,dα(ψk ◦J )
〉= 〈

dα(aαβdβJk ),ψk ◦J
〉

= 〈
dJk ·Div A+Tr(A∇2Jk ),ψk ◦J

〉
.

We infer the estimate

∥Div A′∥M (Rk×Tm−1×R2) ≤
∥∥|dJ |op Div A

∥∥
M (Rk×Tm ) +

∥∥Tr(A∇2J )
∥∥

M (Rk×Tm ) ,

from which we know that A′ is Div-BV.
On the one hand, J being an isometry, we have |dJ |op ≡ 1. On the other hand dαdβJk

vanishes, unless α = β = n and k = n or n + 1, in which cases it equals either −cosθ or −sinθ.
Thus Tr(A∇2J ) reduces to the vector-valued measure (0, . . . ,0,−ann cosθ,−ann sinθ). We obtain
therefore

∥Div A′∥M (Rk×Tm−1×R2) ≤ ∥Div A∥M (Rk×Tm ) +∥ann∥M (Rk×Tm ). (10)

2.3. Compensated Integrability vs singular support

Thanks to Lemma 7, we assume from now on that the tensors A : Rk ×Tm → Sym+
n under

consideration are C ∞. We split the coordinates in Rk ×Tm−1 ×R2 as x = (x̂, x ′), where x ′ ∈ R2.
When using cylindrical coordinates (x̂,r,θ) with x ′ = r e iθ , we denote e⃗r = (0̂,e iθ). The support of
the tensor A′ is the cylinder C defined by r = 1, whose unit normal is ν = e⃗r . The density of A′

with respect to the Lebesgue measure over C is a C ∞ function denoted S(x̂,e iθ) ∈ Sym+
n+1.

We now define a few auxiliary positive symmetric tensors. On the one hand

Σ(x̂, x ′) :=
(

In−1 0
0 r I2

)
S

(
x̂,

x ′

r

)(
In−1 0

0 r I2

)
is smooth away from the origin. If µ is a positive measure, compactly supported over (0,+∞), we
set

Bµ(x̂, x ′) =µ(r )Σ(x̂, x ′).

For instance Bµ = A′ when µ is the Dirac mass at r = 1.

Lemma 8. We have

∥DivBµ∥M ≤ c(µ)∥Div A′∥M , c(µ) = max(〈µ,r 〉,〈µ,r 2〉).
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Proof. The general formula Div(µΣ) =µDivΣ+Σ∇µ gives, because of Se⃗r ≡ 0,

DivBµ =µDivΣ.

Choosing µ= δr=1, this gives in particular

∥Div A′∥M =
Ï

|DivΣ|
(
x̂,eiθ

)
dx̂ dθ.

We notice that the entries σi j of Σ are homogeneous in r , of respective degrees 0, 1 or 2,
depending on whether i , j are ≤ n − 1 or ≥ n. Consequently, the coordinates (DivΣ) j are
homogeneous in r , of respective degrees 0 or 1, depending on whether j is ≤ n −1 or ≥ n. This
allows us to express ∥(DivBµ) j ∥M in terms of ∥(Div A′) j ∥M . For instance if j ≤ n −1,∥∥(DivBµ) j

∥∥
M

=
Ï

µ(r )|(DivΣ) j (x̂, x ′)|dx̂ dx ′ =
Ñ

µ(r )
∣∣∣(DivΣ) j

(
x̂,r eiθ

)∣∣∣ dx̂ r dr dθ

=
∥∥∥(Div A)′j

∥∥∥
M

∫
rµ(r )dr.

Likewise, when j = n or n +1, one has∥∥(DivBµ) j
∥∥

M
=

∥∥∥(Div A)′j
∥∥∥

M

∫
r 2µ(r )dr. □

We select from now on some function η ∈ D+(0,+∞), with η ̸≡ 0. Since this function will not
vary any more, we denote B for Bη for simplicity. For every test function φ ∈D+(Rk ×Tm−1 ×R2),
the tensor φe⃗r ⊗ e⃗r +B is positive and Div-BV. Since the tensor r−1e⃗r ⊗ e⃗r is Div-free (see [11]), we
actually have

Div(φe⃗r ⊗ e⃗r ) = 1

r
∂r (rφ) e⃗r . (11)

Lemma 9. We have

det(φe⃗r ⊗ e⃗r +B)(x̂, x ′) = η(r )nφ(x̂, x ′)det A(x̂,θ).

Proof. Writing blockwise

A =
(

Â Z
Z T ann

)
,

we have

φe⃗r ⊗ e⃗r +B =
 ηÂ ηZ ⊗ ( sinθ

−cosθ

)
η(Z ⊗ ( sinθ

−cosθ

)
)T ηann

(
sin2 θ −sinθcosθ

−sinθcosθ cos2 θ

)
+φ

(
cos2 θ sinθcosθ

sinθcosθ sin2 θ

) ,

this matrix being unitarily similar to (
ηA 0
0 φ

)
. □

End of the proof

The tensor φe⃗r ⊗ e⃗r +B being periodic in m −1 coordinates (xk+1, . . . , xn−1), we may apply to
it the induction assumption, namely (FIper) with (n + 1,m − 1) instead of (n,m). Mind that we
identify Rk+2 ×Tm−1 ∼Rk ×Tm−1 ×R2, so that Trm−1 A′ equals

∑n−1
k+1 a′

j j . Together with Lemma 8,
Lemma 9 and (11), this givesÑ

φ
(
x̂,r eiθ

) 1
n

(det A(x̂,θ))
1
n η(r )r dx̂ dr dθ

≤n

(Ñ
|∂r (rφ)|dx̂ dr dθ+∥Div A′∥M +

n−1∑
k+1

∥a′
j j ∥M

)1+ 1
n
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Since a′
j j is nothing but a j j , transported isometrically, we have ∥a′

j j ∥M = ∥a j j ∥M . With (10), we
obtain thereforeÑ

φ
(
x̂,r eiθ

) 1
n

(det A(x̂,θ))
1
n η(r )r dx̂ dr dθ

≤n

(Ñ
|∂r (rφ)|dx̂ dr dθ+∥Div A∥M +

n∑
k+1

∥a j j ∥M

)1+ 1
n

. (12)

Our last step is a classical scaling argument. Given any test function ψ ∈ D+(Rk ×Tm), and
scalar parameter λ> 0, we apply (12) to the function φ=λη(r )ψ(x̂,θ)n :

λ
1
n

∫
η(r )1+ 1

n r dr
∫
ψ(det A)

1
n dy ≤n

(
λ

∫
ψn dy +∥Div A∥M +

n∑
k+1

∥a j j ∥M

)1+ 1
n

.

We choose

λ= ∥Div A∥M +∑n
k+1 ∥a j j ∥M∫

ψn dy
and we conclude that ∫

ψ(det A)
1
n dy ≤n ∥ψ∥n

(
∥Div A∥M +

n∑
k+1

∥a j j ∥M

)
This ends the proof of the validity of (2) for smooth tensors. Notice that the a j j are positive
measures, so that

n∑
k+1

∥a j j ∥M = ∥Trm A∥M .

3. The estimate for space-periodic perfect gas flows

Let (ρ,u, p,ε) be a space-periodic solution of the Euler system, over (0,T )×Rd , with lattice of
periods 2πLZd . We assume that the total mass M and initial energy E0 (per cell) are finite and
that the flow is admissible.

We apply Corollary 4 to the tensor A′ obtained by extending the mass-momentum tensor
(see (3)) by 0n (we recall n = 1+d and m = d) away from (0,T )×Rd . Therefore Div A′ consists
in the vector-valued measure (

ρ

ρu

)
Hd

∣∣∣∣∣
t=T

−
(
ρ

ρu

)
Hd

∣∣∣∣∣
t=0

,

where Hd is the d-dimensional Hausdorff measure, or equivalently here the Lebesgue measure
over subspaces of dimension d . The matrix Q being 1

L Id , we infer

∥P Div A′∥M ≤
(∫

{T }×LTd

+
∫

{0}×LTd

)(
ρ+ 1

L
ρ|u|

)
dy ≤ 2

(
M + 1

L

√
2ME0

)
.

On the other hand, Trd A = ρ|u|2 +d p yields

∥Trd PA′P T ∥M = 1

L2

∫ T

0
dt

∫
Rd

(ρ|u|2 +dp) ≤ max
{
2,(γ−1)d

} T

L2 E0.

The functional inequality (1) therefore writes∫ T

0
dt

∫
LTd

ρ
1
d p dy ≤d γL

(
M +

p
ME0

L
+ T E0

L2

)1+ 1
d

. (13)

We notice the uncomfortable fact that the parenthesis above is not homogeneous from a phyisical
point of view, with only the last two terms being of the same dimension (a mass per time).
Meanwhile, the left-hand side has the same dimension as M 1+ 1

d LT −1. We have explained in our
seminal paper [10] how to cure this flaw, with the help of a scaling argument.
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The appropriate scaling concerns both dependent and independent variables. If µ > 0 is a
constant parameter, we form

(τ, z,r, v, q,ϵ) :=
(
µt , y,ρ,

u

µ
,

p

µ2 ,
ε

µ2

)
,

which still satisfies the Euler system. It is space-periodic according to the same lattice, with same
mass M , but with initial energy (per cell) µ−2E0. Let us apply the estimate (13) to this flow, on the
time interval (0,µT ) : ∫ µT

0
dτ

∫
LTd

r
1
d q dz ≤d γL

(
M +

p
ME0

µL
+ T E0

µL2

)1+ 1
d

.

Expressing the integral in terms of the original (t , y) variables, we obtain∫ T

0
dt

∫
LTd

ρ
1
d p dy ≤d γµL

(
M +

p
ME0

µL
+ T E0

µL2

)1+ 1
d

.

To balance the terms of different physical dimensions, we choose

µ= 1

M

(p
ME0

L
+ T E0

L2

)
,

which yields the desired estimate∫ T

0
dt

∫
LTd

ρ
1
d p dy ≤d γM

1
d

(√
ME0 + T E0

L

)
.

4. CI with determinantal masses, for periodic tensors

We adapt here the Section 4 of [12], to the periodic context. We recall that the Theorem 4.1 of [12]
dealt with positive Div-BV tensors S over Rn which are, in the neighborhood of finitely many
points, Div-free and positively homogeneous of degree 1−n. This situation is extreme in the
realm of Div-free tensors (see [11, 12]), in that such tensors are special : they derive locally from
a convex potential θ, meaning that S = D̂2θ is the cofactor matrix of the Hessian. In addition, the
potential is positively homogeneous of degree 1. Its existence follows from Pogorelov’s solution
to Minkowski’s Problem [8]; uniqueness occurs up to the addition of an affine function.

Given such a singularity at X ∗ ∈ Rn , the Determinantal mass Dm(S; X ∗) was defined as the
volume of the convex body enclosed in the image ∇θ(Rn \ {X ∗}). This body is nothing but the
subgradient of ∂θ(X ∗). We proved in [12] the following improvement of Theorem 1,

Theorem 10. Let S ≻ 0n be symmetric and Div-BV over Rn . Let X 1, . . . , X r ∈Rn be points at which
S is locally Div-free and positively homogeneous of degree 1−n. Then we have the estimate∫

Rn
(detS)

1
n−1 dx +

r∑
1

Dm(S; X j ) ≤n ∥DivS∥
n

n−1
M

. (FI:Dm)

In other words, (detS)
1

n−1 behaves as if it contained Dirac masses Dm(S; X j )δx=X j . Let
us emphasize that the constant understated by ≤n does not depend upon the number r of
singularities.

We shall prove below the following adaptation to the periodic context.

Theorem 11. Let S ≻ 0n be symmetric and Div-BV over Rk ×Tm , with n = k +m. Let X 1, . . . , X r ∈
Rk ×Tm be points at which S is locally Div-free and positively homogeneous of degree 1−n. Then
we have the estimate∫

Rk×Tm

(detS)
1

n−1 dx +
r∑
1

Dm(S; X j ) ≤n (∥DivS∥M +∥TrmS∥M )
n

n−1 . (14)
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Proof. We follow the strategy developed in [12], approximating S by tensors Sϵ which are smooth
at the singularities X j . Then we apply (FIper) to Sϵ and pass to the limit as ϵ→ 0+. Since the
smoothing is done locally around each X j separately, it suffices to consider only one singularity,
say at X ∗ = 0. Thus S = D̂2θ in some ball B(0;ρ), and θ is convex, positively homogeneous of
degree 1.

We begin by smoothing out θ in a neighborhood of the origin. We may always assume
Dm(S;0) > 0, which means that the bounded convex subset K = ∂θ(0) has a non-empty interior.
Up to the addition of an affine function to θ, we may assume that 0 is interior to K .

We recall (John’s Theorem [6]) that there exists a smallest ellipsoid E containing K , and that
the homothetic F = 1

n E is contained in K (by convention, 0 is the center of E ). Let xTΣ−1x ≤ 1

be the equation of F , with Σ ∈ SPDn , and denote g (x) =
p

xTΣx . We have

∂g (0) =F ⊂ ∂θ(0) ⊂ E = ∂(ng )(0).

Since these functions are positively homogeneous of degree one, this means g ≤ θ ≤ ng .
Choosing

J (s) =
{

1
2 |s| if |s| ≥ 1,
1+s2

4 if |s| ≤ 1,

a convex increasing function, we set

θ = max{θ, J ◦ g },

which is a convex function. For g (x) < 2n−
p

4n2 −1 =: an , we have J ◦g > ng ≥ θ, hence θ = J ◦g ,

and actually θ = 1+g 2

4 . This happens in the domain anF 0. Likewise, for g > 2−p
3 =: b, we have

J ◦ g < g ≤ θ, hence θ = θ. This happens away from bF 0 (we denote F 0 the polar set of F ).
Eventually we set θϵ(x) = ϵθ( x

ϵ ), which coincides with θ away from ϵbF 0. Whenever ϵ > 0 is
small enough, so that ϵbF 0 ⊂ B(0;ρ), we may define (both formulæ below agree in the coronna
B(0;ρ) \ϵbF 0)

Sϵ =
{

S away from ϵbF 0,�D2θϵ in B(0;ρ).

We observe that DivSϵ ≡ DivS, because they both vanish in B(0;ρ). Likewise, (detSϵ)
1

n−1 differs
from (detS)

1
n−1 only within ϵbF 0, where the former is detD2θϵ, while the latter vanishes identi-

cally. Again TrmS and TrmSϵ differ only within ϵbF 0. On the one hand∫
ϵbF 0

TrmS
ϵ→0−→ 0

because TrmS does not charge the origin. On the other hand∫
ϵbF 0

TrmSϵ = ϵ
∫

bF 0
TrmD̂2θθ(x)dx −→ 0.

Applying (FIper) to Sϵ, we therefore have∫
Rk×Tm

(detS)
1

n−1 dx +
∫
ϵbF 0

detD2θϵdx ≤n (∥DivS∥M +∥TrmS∥M +O(ϵ))
n

n−1

Observing that ∫
ϵbF 0

detD2θϵdx ≥
∫
ϵanF 0

detD2θϵdx = vol
(∇θϵ(ϵanF 0)

)
and

∇θϵ(x) = (∇θ)
( x

ϵ

)
= 1

2
Σ

x

ϵ
,

we find (invoquing John’s Theorem for the last inequality)∫
ϵbF 0

detD2θϵdx ≥ vol
( an

2
ΣF 0

)
=

( an

2

)n
vol(F ) ≥

( an

2n

)n
vol(K ).
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Letting ϵ→ 0, we infer∫
Rk×Tm

(detS)
1

n−1 dx +vol(K ) ≤n (∥DivS∥M +∥TrmS∥M )
n

n−1

Recalling that vol(K ) = Dm(S;0), we have proved Formula (14). □

5. Collisions estimate for the billiard in a torus

In [12], we constructed the mass-momentum tensor M as the sum of terms that describe on the
one hand the kinematics of each particle, and on the other hand the collisions (the latter terms
being called collitons). A given particle p is associated with its center p(t ), whose graph γ(p) is
a broken line. The kinks correspond to the collisions experienced by p. In terms of the velocity
v = ṗ, the tensor associated with this particle is the tensor-valued measure(

1

v

)
⊗

(
1

v

)
dt |γ(p) .

When a pair (p, q) collides a time τ, with incoming/outgoing velocities v±(p, q), the conservation
of momentum implies v+(p)−v−(p) = v−(q)−v+(q) (denoted herebelow [v]). The corresponding
colliton is defined as

1

|[v]|

(
0

[v]

)
⊗

(
0

[v]

)
dℓ|[(τ,p(τ)),(τ,q(τ))] ,

where dℓ is the element of length along the segment. Notice that |q(τ) − p(τ)| = 2a. It was
shown that summing all these constributions results in a (locally) Div-free tensorM over Rn , with
n = 1+d . Remark that M is rank-one on its support (a graph), so that (detM)

1
n ≡ 0. However M

is homogeneous of degree 1−n =−d about each node of this graph. This suggests that we apply
Theorem 11, though to a suitable modification ofM.

We denote N the finite number of particles per cell. Another meaningful quantity is the kinetic
energy

E =∑
p

1

2
|v |2,

a constant of the motion. Notice that we may always assume, after the choice of a suitable
Galilean frame, that the mean velocity

∑
p v vanishes. Then E = N

2 v2, where v is again the root
mean square velocity, a constant of the motion.

We begin by considering Td -periodic configurations. We proceed as in [12], by adding
correctors at each nodes of the graph suporting M. If X = (τ, p(τ)) is such a node, we choose
a unitary basis {z1, . . . , zd−1} of the subspace orthogonal to

( 1
v±(p)

)
and form the tensor

SX :=
d−1∑

1
z j ⊗ z j dℓ|[X−ϵz j ,X+ϵz j ] .

Given a time interval (0,T ), we now consider the augmented tensor

S =
{
M+∑

nodes bX SX in (0,T )×Td ,

0n otherwise.

The positive parameters bX will be chosen later on. We may always assume that T is not a
collision time, and choose ϵ> 0 small enough so that the support of the corrector does not meet
the initial/final times 0 and T .

Let us apply (14) to S. Since (detS)
1
n ≡ 0, the left-hand side consists only in the sum of the

determinantal masses at nodes. These have been calculated in [12] :

Dm(S : X ) = 2d−3b
1− 1

d
X

∣∣∣∣∣
(

1

v−(p)

)
∧

(
1

v+(p)

)∣∣∣∣∣
1
d

.
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In particular

Dm(S : X ) ≥ 2d−3b
1− 1

d
X max(|[v]|, |v−(p)∧ v+(p)|) 1

d . (15)

We now evaluate the right-hand side of (14). As noticed in [12], DivS consists in two parts: – the
restriction of its first column to the initial and final hyperplanes, t = 0 or t = T , – the Divergence
of the correctors, which concentrate at the ends of the segments [X − ϵz j , X + ϵz j ]. Overall, we
have

∥DivS∥M ≤ N +
p

2N E +2(d −1)
∑

nodes
bX . (16)

The tracial contribution is

TrdM=∑
p
|v |2 dt |γ(p) +

∑
coll.

|[v]| dℓ|[(τ,p(τ)),(τ,q(τ))] ,

so that
∥TrdM∥M = 2ET +2a

∑
coll.

|[v]| . (17)

On the other hand ∥Trd SX ∥M ≤ 2ϵ. Assembling (16) and (17) in (14), we therefore have

∑
nodes

b
1− 1

d
X |[v]| 1

d ≤d

(
N +

p
N E +ET +a

∑
nodes

|[v]|+ ∑
nodes

bX +O(ϵ)

)1+ 1
d

,

in which we may let ϵ→ 0+. We thus have

∑
nodes

b
1− 1

d
X |[v]| 1

d ≤d

(
N +

p
N E +ET +a

∑
nodes

|[v]|+ ∑
nodes

bX

)1+ 1
d

.

Let us relax the parameters bX by setting bX = κβ
d

d−1
X , where βX , to be chosen later, are positive.

Taking

κ= N +p
N E +ET +a

∑
nodes |[v]|∑

β
d

d−1
X

,

we obtain ∑
nodes

βX |[v]| 1
d ≤d ∥β⃗∥ d

d−1

(
N +

p
N E +ET +a

∑
nodes

|[v]|
) 2

d

.

The latter inequality, being valid for every positive β⃗, yields and estimate in (ℓ
d

d−1 )′ = ℓd of the
vector whose coordinates are the quantities |[v]| 1

d . This reads∑
coll

|[v]| ≤d

(
N +

p
N E +ET +a

∑
coll

|[v]|
)2

. (18)

So far, (18) is not homogeneous in terms of physical units. We remedy to this flaw by the same
scaling argument as in Paragraph 3. If µ > 0 is a constant parameter, the change of time τ = µt
yields another motion, though with particle velocities v

µ . The corresponding energy per cell is

µ−2E . Appplying (18) to this new motion, over the times interval (0,µT ), we obtain

1

µ

∑
coll

|[v]| ≤d

(
N + 1

µ

(p
N E +ET +a

∑
coll

|[v]|
))2

.

Taking

µ= 1

N

(p
N E +ET +a

∑
coll

|[v]|
)

,

we conclude ∑
coll

|[v]| ≤d N

(p
N E +ET +a

∑
coll

|[v]|
)

.
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There exists therefore a number θ(d) > 0 such that, whenever N a < θ(d), we have∑
coll

|[v]| ≤d N (
p

N E +ET ). (19)

We close our analysis by considering LTd -periodic configurations, where L > 0 is a character-
istic length. Such a motion can be reduced to a Td -configuration, via the transformation

(t , y, v,E , a) 7−→
(

t ,
y

L
,

v

L
,

E

L2 ,
a

L

)
.

Applying (19) to the latter, we obtain our final estimate∑
coll

|[v]| ≤d N

(p
N E + ET

L

)
, (20)

valid whenever N a < θ(d)L.

Further estimate. Because of (15), the estimate (18) implies also

∑
nodes

|v−(p)∧ v+(p)| ≤d

(
N +

p
N E +ET +a

∑
nodes

|[v]|
)2

.

After the time-scaling argument, we thus have (mind that we estimate a quadratic quantity in
terms of velocities)

∑
nodes

|v−(p)∧ v+(p)| ≤d

(p
N E +ET +a

∑
nodes

|[v]|
)2

for Td -periodic configurations. This becomes

∑
nodes

|v−(p)∧ v+(p)| ≤d

(p
N E + ET

L
+ a

L

∑
nodes

|[v]|
)2

for LTd -periodic configurations.
Combined with (20), this yields∑

nodes
|v−(p)∧ v+(p)| ≤d

(p
N E + ET

L

)2

whenever the initial configuration satisfies N a < θ(d)L.

Appendix A. Short proof of Theorem 3 when k = 0

If the tensor A is fully Tn-periodic, it suffices to revisit the proof of Theorem 2, see [10], and
consider Div-BV tensors instead of Div-free tensors.

Let f > 0 be a periodic smooth test function. For every S ∈ SPDn satisfying

detS =
∫

f (x)dx, (21)

there exists (see [7]) a unique (up to and additive constant) smooth periodic solution θ of the
elliptic Monge–Ampère equation

det(S +D2θ) = f , (22)

S +D2θ(x) ∈ SPDn , ∀x ∈Rd . (23)

The constraint (23) means that x 7→ 1
2 xT Sx +θ(x) is a strongly convex function.
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Because both S +D2θ and A are symmetric positive, the spectrum of their product is real, non
negative. Applying the AM-GM Inequality, we have

( f det A)
1
n = (

det((S +D2θ)A)
) 1

n ≤ 1

n
Tr((S +D2θ)A) (24)

≤ 1

n
(Tr(S A)+div(A∇θ)− (Div A) ·∇θ).

Integrating (24) over Tn , we have∫
( f det A)

1
n dx ≤ 1

n

(
Tr

(
S

∫
A(x)dx

)
−

∫
(Div A) ·∇θdx

)
.

We actually choose

S =µIn , µ=
(∫

f (x)dx

) 1
n

,

so that det(µIn +D2θ) = f and∫
( f det A)

1
n dx ≤ 1

n

(
µ

∫
Tr A(x)dx −

∫
(Div A) ·∇θdx

)
. (25)

To estimate the second term in the right-hand side, we use the

Lemma 12. Let θ ∈C 2(Tn) be such that x 7→ µ
2 |x|2 +θ(x) is convex. One has

sup
x

|∇θ(x)| ≤ 2µ
p

nπ .

We infer ∫
( f det A)

1
n dx ≤ µ

n

(∫
Tr A(x)dx +2

p
nπ

∫
|Div A|dx

)
.

In terms of g = f
1
n , this reads∫

g (det A)
1
n dx ≤ 1

n

(∫
Tr A(x)dx +2

p
nπ

∫
|Div A|dx

)
∥g∥n .

This inequality, being valid whenever g is smooth and positive, extends by Fatou Lemma to
uniformly positive Ln-functions, then to non-negative Ln-functions. This implies (det A)

1
n ∈

(Ln(Tn))′ = L
n

n−1 (Tn) and the inequality(∫
(det A)

n
n−1 dx

)1− 1
n ≤ 1

n

(∫
Tr A(x)dx +2

p
nπ

∫
|Div A|dx

)
.

To prove Lemma 12, we use the monotonicity of the gradient of a convex function:〈
µx +∇θ(x)−µy −∇θ(y), x − y

〉≥ 0.

Replacing x by x +ω where ω ∈ 2πZn , and using the periodicity of ∇θ, we infer〈
µω+µx +∇θ(x)−µy −∇θ(y),ω+x − y

〉≥ 0, ∀ω ∈ 2πZn .

To minimize the left-hand side with respect to ω, we choose ω such that

α :=ω+x − y + 1

2
µ−1 (∇θ(x)−∇θ(y)

) ∈ [−π,π]n .

Then the inequality rewrites

∥∇θ(x)−∇θ(y)∥ ≤ 2µ∥α∥ ≤ 2µ
p

nπ .

Choosing a point y at which θ reaches its maximum, we obtain the announced inequality.

Remark 13. An alternate proof consists in applying Theorem 1 to the tensor φA, where φ ∈
D+(Rn) is ≡ 1 on a fundamental domain F , and vanishes on every cell F+ω that is not a neighbour
of F .
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Appendix B. Proving CI in Rn , from CI in Rn+1

Given n ≥ 2, let us pretend that we know CI in Rn+1 only. We shall prove that it is valid in Rn too.
In other words, CI can be established by backward induction. We warn the reader that we are not
interested in sharp constants. Embedding Rn into Rn+1 by the isometry y 7→ (0, y), we denote the
general coordinate in Rn+1 by x = (x0, y).

Let A ≻ 0n be a Div-BV tensor in Rn . The first step is to transport A to the subspace {0}×Rn .
This allows us to define a tensor over Rn+1,

A′ :=
(
0 0
0 δx0=0 ⊗ A

)
≻ 0n+1.

Since

Divx A′ =
(

0

δx0=0 ⊗ (Divy A)

)
,

the tensor A′ is Div-BV, with ∥Divx A′∥M = ∥Divy A∥M .
Let us choose an η ∈ D+(R) so that η(0) = 1. Likewise, let an even function ρ ∈ D+(Rn+1) be

such that ∫
Rn+1

ρ(x)dx = 1.

We denote as usual ρϵ(x) = ϵ−n−1ρ( x
ϵ ) the approximate Dirac mass.

For every f ∈D+(Rn) and ϵ> 0, we consider the non-negative tensor

B f +ρϵ⋆ A′ =
(
η(x0) f (y) 0

0 ρϵ⋆ (δx0=0 ⊗ A)

)
.

From

Divx (B f +ρϵ⋆ A′) =
(

η′ f

ρϵ⋆ (δx0=0 ⊗ (Divy A))

)
,

we infer ∥Divx (B f +ρϵ⋆A′)∥M ≤ 2∥ f ∥1+∥Divy A∥M . The hypothesis (CI inRn+1) tells us thereforeÏ
(η f )

1
n

(
det

(
ρϵ⋆ (δx0=0 ⊗ A)

)) 1
n dy dx0 ≤n

(∥ f ∥1 +∥Divy A∥M

)1+ 1
n .

Since det
1
n is a concave function over Sym+

n (see for instance [9, Theorem 6.10]), we have by
Jensen Inequality(

det
(
ρϵ⋆ (δx0=0 ⊗ A)

)) 1
n ≥ ρϵ⋆

((
det(δx0=0 ⊗ A)

) 1
n

)
= ρϵ⋆

(
δx0=0 ⊗

(
(det A)

1
n

))
.

The above inequality therefore impliesÏ
(η f )

1
n ρϵ⋆

(
δx0=0 ⊗

(
(det A)

1
n

))
dy dx0 ≤n

(∥ f ∥1 +∥Divy A∥M

)1+ 1
n .

The left-hand side can be recast as〈
δx0=0 ⊗

(
(det A)

1
n

)
,ρϵ⋆

(
(η f )

1
n

)〉
.

Passing to the limit as ϵ→ 0, there remains〈
δx0=0 ⊗

(
(det A)

1
n

)
, (η f )

1
n

〉
≤n

(∥ f ∥1 +∥Divy A∥M

)1+ 1
n ,

where the left-hand side is nothing but 〈(det A)
1
n , f

1
n 〉.

The end of the proof uses a classical argument of scaling. For every φ ∈D+(Rn) and parameter
λ≥ 0, we apply the above inequality to f = (λφ)n , so that〈

(det A)
1
n ,λφ

〉
≤n

(
λn∥φ∥n

n +∥Divy A∥M

)1+ 1
n ,
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Choosing

λ := ∥Divy A∥
1
n
M

∥φ∥n
,

we receive 〈
(det A)

1
n ,φ

〉
≤n ∥φ∥n∥Divy A∥M .

We conclude with Radon–Nikodym.
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