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Abstract. We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection
of parabolic subgroups in Euclidean Braid groups A[Ãn ] is again a parabolic subgroup. To that end, we use
that the spherical-type Artin group A[Bn+1] is isomorphic to A[Ãn ]⋊Z .

Résumé. Nous donnons une démonstration courte du fait, déjà démontré par Thomas Haettel, que l’inter-
section arbitraire de sous-groupes paraboliques dans les groupes de tresses euclidiens A[Ãn ] est à nouveau
un sous-groupe parabolique. À cette fin, nous utilisons le fait que le groupe d’Artin de type sphérique A[Bn+1]
est isomorphe à A[Ãn ]⋊Z.
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An Artin (or Artin-Tits) group AS is any group with a presentation

〈S| st s · · ·︸ ︷︷ ︸
mst

= t st · · ·︸ ︷︷ ︸
mst

, s, t ∈ S, ms,t ̸=∞, s ̸= t〉

where S is a finite set of generators and (ms,t )s,t∈S is a symmetric matrix with 1’s in the diagonal
and the other entrances in {2,3, . . . ,∞}. The number of known global results for these groups
is very limited, and for some decades now, classic problems such as the word problem, the
conjugacy problem, or the K (π,1) conjecture have been the subject of study by group theorists.
Specifically, it has become necessary to better study the properties of certain specific subgroups:
the parabolic subgroups. A standard parabolic subgroup AX of AS is a subgroup generated
by a subset X ⊂ S, and thanks to [8], we also know that it coincides with the Artin group
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on X with the same relations that these generators have in AS . A parabolic subgroup is any
conjugate of a standard parabolic subgroup. These subgroups play a principal role in the
construction of simplicial complexes associated with Artin groups [1–4, 7], either as stabilizers
of simplices or as the building blocks of the complexes. In the case of braid groups, the parabolic
subgroups coincide with the isotopy classes of non-degenerate multicurves in the n-punctured
disc (containing the vertices of the same curve complex). However, the basic question of whether
the arbitrary intersection of parabolic subgroups is a parabolic subgroup remains open in most
cases.

To establish notations, we will use Coxeter graphs. A Coxeter graph ΓS encodes the informa-
tion of an Artin group AS as follows: each generator corresponds to a vertex, and two vertices s, t
are connected by an edge if the vertices do not commute. This edge is labeled by ms,t if ms,t > 3
and by ∞ if there is no relation between s and t . In this way, we can also refer to AS as A[ΓS ].
The Euclidean braid group (also known as affine braid group) with n +1 generators is the group
A[Ãn], where Ãn is the graph in Figure 1:

Figure 1. The Coxeter graph Ãn .

In this article, we will give an alternative and concise proof of the following theorem:

Theorem 1 ([5, Corollary N]). Any intersection of parabolic subgroups in A[Ãn] is a parabolic
subgroup.

We know, according to [2], that the intersection of parabolic subgroups of a spherical-type
Artin group remains a parabolic subgroup. In particular, this is true in the group A[Bn+1], where
Bn+1 is the graph illustrated in Figure 2.

Figure 2. The Coxeter graph Bn+1.

Using the notation of the figure, let ρ = r1 . . .rnrn+1. For 1 ≤ i ≤ n−1, it holds that ρriρ
−1 = ri+1.

If we additionally define r0 := ρrnρ
−1, we can state that the previous equality is true modulo

n +1 (observing that ρ2rnρ
−2 = r1 is sufficient). Furthermore, we consider the following exterior

automorphism f of A[Ãn]:

f : A[Ãn] −→ A[Ãn]

ti 7−→ ti+1,

again with the indexes taken modulo n+1. Given this, we can define an action of the infinite cyclic
groupZ∼= 〈u〉 on A[Ãn] by setting u ·g = ug u−1 := f (g ), for all g ∈ A[Ãn]. With this action, we can
define the semidirect product A[Ãn]⋊ 〈u〉, that has a presentation with generators {t1, . . . , tn ,u}
and relations given by the union of the Artin relations of A[Ãn] and the set {uti u−1 = ti+1 |
0 ≤ i ≤ n} modulo n +1.
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Theorem 2 ([6]). The map ϕ : A[Ãn] ⋊ 〈u〉 −→ A[Bn+1] that sends ti to ri and u to ρ is an
isomorphism.

Remark 3. The restriction of ϕ to A[Ãn] gives an embedding of this Artin group in A[Bn+1].

The proof of the next result is a straightforward consequence of the definition of ϕ.

Lemma 4. Let ξ be the group homomorphism defined by

ξ : A[Bn+1] −→Z

ri 7−→ 0 for 1 ≤ i ≤ n,

rn+1 7−→ 1.

Then ρ is mapped to 1, and the kernel of ξ is ϕ(A[Ãn]).

Proof of Theorem 1. Firstly, notice that if P is a proper parabolic subgroup of A[Ãn], thenϕ(P ) is
a parabolic subgroup of A[Bn+1]. The only case in which this is not clear is when P = g A[Ãn]X g−1

and X contains t0, which is sent to ρrnρ
−1 by ϕ. However, since P is proper, X does not contain

all the generators of A[Ãn], thus, using ρ, we can always conjugate ϕ(X ) to a subset of {r1, . . . ,rn}.
Now suppose that P1 and P2 are two parabolic subgroups of A[Ãn]. Since in A[Bn+1] the
intersection of parabolic subgroups is a parabolic subgroup, we have, in particular, that ϕ(P1 ∩
P2) =ϕ(P1)∩ϕ(P2) is a parabolic subgroup of A[Bn+1].

To complete the proof, it remains to show that if Q is a parabolic subgroup of A[Bn+1]
such that P := ϕ−1(Q) ⊂ A[Ãn], then P is a parabolic subgroup of A[Ãn]. We can write Q =
h A[Bn+1]Y h−1, with Y ⊂ {r1, . . . ,rn+1} and h ∈ A[Bn+1]. First, we show that rn+1 ̸∈ Y . If we suppose
otherwise, then hrn+1h−1 ∈ Q and ϕ−1(hrn+1h−1) ∈ P ⊂ A[Ãn]. In particular, by Lemma 4, the
element hrn+1h−1 must belong to the kernel of ξ, that coincides with ϕ(A[Ãn]). But computing
ξ(hrn+1h−1) = 1, we get a contradiction. Therefore, Y ⊂ {r1, . . . ,rn} =ϕ({t1, . . . , tn}). Furthermore,
since A[Ãn]⋊ 〈u〉 ∼= A[Bn+1], we can write h = h1ρ

m , with ϕ−1(h1) ∈ A[Ãn] and m ∈ Z. Thus,
Q = h1ρ

m A[Bn+1]Y ρ
−mh−1

1 , and exploiting the fact that um A[Ãn]ϕ−1(Y )u
−m = f m(A[Ãn]ϕ−1(Y )),

we get

P =ϕ−1(Q) =ϕ−1(h1) f m(A[Ãn]ϕ−1(Y ))(ϕ−1(h1))−1 =ϕ−1(h1)A[Ãn] f m (ϕ−1(Y ))(ϕ
−1(h1))−1,

which has the form of a parabolic subgroup in A[Ãn]. Finally (see the complete argument
in [3, Corollary 16]), in any Artin group, any descending chain of inclusions of parabolic sub-
groups has to stabilize, and then the finite intersection of parabolic subgroups, being a parabolic
subgroup, implies that the same is true for an arbitrary intersection. □
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