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Abstract. Given a determinate (multivariate) probability measure µ, we characterize Gaussian mixtures νφ
which minimize the Wasserstein distance W2(µ,νφ) to µ when the mixing probability measure φ on the
parameters (m,Σ) of the Gaussians is supported on a compact set S. (i) We first show that such mixtures are
optimal solutions of a particular optimal transport (OT) problem where the marginal νφ of the OT problem is
also unknown via the mixing measure variableφ. Next (ii) by using a well-known specific property of Gaussian
measures, this optimal transport is then viewed as a Generalized Moment Problem (GMP) and if the set S of
mixture parameters (m,Σ) is a basic compact semi-algebraic set, we provide a “mesh-free” numerical scheme
to approximate as closely as desired the optimal distance by solving a hierarchy of semidefinite relaxations
of increasing size. In particular, we neither assume that the mixing measure is finitely supported nor that the
variance is the same for all components. If the original measure µ is not a Gaussian mixture with parameters
(m,Σ) ∈ S, then a strictly positive distance is detected at a finite step of the hierarchy. If the original measure
µ is a Gaussian mixture with parameters (m,Σ) ∈ S, then all semidefinite relaxations of the hierarchy have
same zero optimal value. Moreover if the mixing measure is atomic with finite support, its components can
sometimes be extracted from an optimal solution at some semidefinite relaxation of the hierarchy when Curto
& Fialkow’s flatness condition holds for some moment matrix.

Résumé. Étant donné une mesure de probabilité (multivariée) µ nous caractérisons les mélanges de Gaus-
siennes νφ qui minimisent la distance de Wasserstein W2(µ,νφ) quand la probabilité de mélange est sur
un compact S. (i) On montre d’abord que de telles probabilités de mélange sont solutions optimales d’un
problème de transport où la marginale (νφ) est elle-même une inconnue via la probabilité de mélange φ.
(ii) Ensuite en utilisant une propriété bien connue des Gaussiennes, ce problème de transport est lui-même
vu comme un problème de moments généralisé. Si l’ensemble S des paramètres admissibles est un semi-
algébrique de base compact, alors on fournit un schéma numérique sans grille de discrétisation (la hiérar-
chie « moments – sommes-de-carrés »), pour approximer arbitrairement près la distance minimum optimale.
Si la mesure µ n’est pas un mélange de Gaussiennes (avec paramètres dans S) alors une distance strictement
positive est détectée à une certaine relaxation de la hiérarchie. Siµ est un mélange (fini) de Gaussiennes, alors
une mesure de mélange atomique peut parfois être extraite de la solution optimale d’une relaxation quand la
condition de « flatness » de Curto& Fiakow est satisfaite pour une matrice de moments.

Keywords. Gaussian mixtures, Wasserstein distance, semidefinite relaxations, Moment-SOS hierarchy.
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1. Introduction

Comparing mixture distributions (e.g. their “distance” to each other) is becoming an important
topic with many real world applications, and particularly in data science. In addition, in the
latter context, for model interpretability the mixing measure of components can be as important
as the mixture distribution itself. Quoting [5], “standard distances (Hellinger, Total Variation,
Wasserstein) between mixture distributions do not capture the possibility that similar distributions
may arise from mixing completely different mixture components, and have therefore different
mixing measures”. The relations between mixture distributions and their mixing measures was
investigated in [21]. So for instance, in the context of topic models, in [5] the authors define what
they call the Sketched Wasserstein Distance (SWD) between two mixture distributions, both of
which consist of a finite mixing of distributions in some set of probability measures on a (Polish)
space. They show that the SWD distance equals the Wasserstein distance between the mixing
measures.

Among mixture distributions, Gaussian mixtures form an important subfamily because they
can approximate continuous probability densities quite well. In particular they are used in
statistics for clustering of data and to approximate a large family of distributions of interest in
applications; see e.g. [2, 3, 6, 17–19, 23, 25, 27]. Mixtures of Gaussians N (m,Σ) on Rd have the
well-known and nice property that every moment µα = ∫

xαdµ,α ∈Nd , is an explicit polynomial
of degree |α| in the parameters (m,Σ) of the mixture, and therefore determining whether a real
sequence (yα)α∈Nd has a representing measure µ which is some Gaussian mixture, has been
recently investigated in e.g. [2, 3] as a specific moment-problem in real analysis. In particular in
[3] the authors prove positive and negative results on rational identifiability1 of k-atomic mixing
measures of mixture distributions; for instance if d = 1 then for all k, a k-atomic mixing measure
can be identified from sufficiently many moments of the mixing distribution [3, Theorem 1]. The
same result for mixtures of bivariate Gaussians is a conjecture [3, Conjecture 2]; see also [16] on
the key role of moment matrices and determinants in the method of moments.

On the other hand, an important problem in robust statistics is to estimate parameters of
Gaussian mixtures from their samples (possibly with noisy data). In contributions [4, 11, 12]
from the theoretical computer science community, (theoretical) polynomial time algorithms (e.g.
sum-of-squares algorithms) have been proposed for efficient learning of mixtures with asymp-
totic guarantees. In the recent contribution [26], a practical algorithm for optimal estimation of
mixtures of finitely many univariate Gaussians with same (known or unknown) variance is pro-
posed via a (denoised) method of moments. It combines semidefinite programming and Gauss
quadratures to estimate a mixture of k univariate Gaussians with same variance. In [8] the au-
thors consider the estimator made of mixtures with k atoms (and same variance) which mini-
mizes the Kolmogorov distance of its distribution function to that of the input distribution, and
they provide optimal rates of estimation (the k-atomic mixing distributions are compared with
the Wasserstein distance) but no algorithm is provided. Again, the notion of k-idenfiability is of
central importance in [8].

In this paper we consider the following problem: Given a probability measure µ on Rd , and
a compact set S of parameters (m,Σ), find a mixture ν of Gaussian measures N (m,Σ) with with
parameters (m,Σ) ∈ S, which is the closest to µ. How close is ν to µ is measured e.g. by the 2-
Wasserstein (or Kantorovich) distance W2(µ,ν). That is:

ν(B) =
∫

S

(
1

(2π)d/2
p

det(Σ)

∫
B

exp(−(x−m)TΣ−1(x−m)/2)dx
)

dφ(m,Σ) , ∀B ∈ B(Rd ) ,

1Algebraic identifiability means that there are finitely many (complex) solutions to the moment equations for generic
values of the sample moments. On the other hand, rational identifiability is about generic uniqueness of real solutions,
up to the label-swapping action of the symmetric group Sk
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for some probability φ on S (the mixing measure of parameters (m,Σ) ∈ S), and

W2(µ,ν)2 = inf
λ

{∫
R2d

∥x−y∥2 dλ(x,y) : λx =µ ; λy = ν
}

,

where λ is a probability measure on R2d , and λx (resp. λy) denotes the marginal of λw.r.t. x (resp.
w.r.t. y). In fact, the results and proposed methodology are also valid if one uses the 1-Wasserstein
distance W1 instead of W2.

Statement of the problem and contribution

For sake of clarity and simplicity of exposition, we first restrict to the univariate case. Then
we briefly describe extension to the multivariate case. While this extension does not pose any
theoretical problem, on the other hand the associated numerical scheme is more demanding
(simply for question of scalability of the approach).

Statement of the problem. Let P(X ) denote the space of probability measures on a Borel set
X ⊂R2. With R+ := {x : x ≥ 0}, let S ⊂R×R+ be a set of parameters (m,σ) for univariate Gaussian
measures N (m,σ), and let µ= (µ j ) j∈N be the moment sequence of a given probability measure
µ on the real line. The goal is to find a Gaussian mixture ν with mixing parameters in S that is the
closest to µ with respect to the Wasserstein distance

W2(µ,ν)2 = min
λ∈P(R2)

{∫
R2

(x − y)2 dλ(x, y) : λx =µ ; λy = ν
}

, (1)

where λx (resp. λy ) is the marginal of λ w.r.t. x (resp. w.r.t. y) on R. Alternatively one may also
use the Wasserstein distance W1(µ,ν) = ∫ |x − y |dλ (see Appendix).

As ν is required to be a Gaussian mixture, it is associated with some (not necessarily unique)
mixing probability measure φ on the set S of Gaussian parameters (m,σ), and therefore ν is in
fact denoted by νφ, and reads

νφ(B) :=
∫

S

(
1p

2πσ

∫
B

exp

(−(x −m)2

2σ2

)
dx

)
dφ(m,σ) , ∀B ∈B(R) . (2)

Equivalently, νφ has the density

x 7−→
∫

S

1p
2πσ

exp

(−(x −m)2

2σ2

)
dφ(m,σ) ,

w.r.t. Lebesgue measure on R. Therefore one wishes to solve the optimization problem

τ= inf
φ∈P(S)

W2(µ,νφ)2 = inf
φ∈P(S),λ∈P(R2)

{∫
(x − y)2 dλ(x, y) : λx =µ ; λy = νφ

}
. (3)

Observe that (3) is an optimal transport problem of a particular type. Indeed the second marginal
λy = νφ of the unknown λ is also to be optimized via the (mixing measure) variable φ on S.

Contribution. We assume that the set of parameters S ⊂R×R+ is compact. In contrast to previous
works we do not assume that the mixing measure is k-atomic (and not even with same variance
for all components). Also our algorithm is potentially and directly applicable to mixtures of
multivariate Gaussians, although of course its efficiency strongly depends on the dimension. At
last, the input probability measure µ is not necessarily a Gaussian mixture and our primary goal
is to evaluate how far is µ from a mixture of Gaussians with parameters (m,σ) in a given set S.
If µ is indeed such a Gaussian mixture then the algorithm helps to detect an associated mixing
measure.
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(I) We first show that if µ satisfies∫
exp(c |x|)dµ(x) <∞ , (4)

for some scalar c > 0, then (3) has an optimal solution (λ∗,φ∗) ∈ P(R2) ×P(S) (i.e.,
τ = W2(µ,νφ∗ )2). Moreover, introducing the moment sequences λ∗ = (λ∗

(i , j ))(i , j ) and
φ∗ = (φ∗

(i , j ))(i , j ), with

λ∗
(i , j ) =

∫
xi y j dλ , φ∗

(i , j ) =
∫

miσ j dφ∗ , ∀(i , j ) ∈N2 ,

the couple (λ∗,φ∗) is also an optimal solution of:

inf
λ∈P(R2),φ∈P(S)

{∫
(x − y)2 dλ : λ( j ,0) =µ j ; λ(0, j ) =

∫
p j (m,σ)dφ , ∀ j ∈N

}
, (5)

which is an exact moment-relaxation of (3). To show that (5) is equivalent to (3), one
exploits that (i) S is compact, (ii) the well-known fact that every moment µ j of a Gaussian
measure µ = N (m,σ) is an explicit polynomial p j ∈ R[m,σ] of degree j , and (iii) that
µ is moment determinate (because of (4)). To the best of our knowledge, this is the
first characterization of best Wasserstein-approximations by Gaussian mixtures (with
parameters in a given set S) as optimal solutions of an optimal transport problem.

We also obtain that strong duality holds between (5) and its dual which reads

sup
q∈R[x],g∈R[y]

{∫
q dµ : q(x)+ g (y) ≤ (x − y)2 , ∀x, y ;

1p
2πσ

∫
g (x) exp

(−(x −m)2

2σ2

)
dx ≥ 0, ∀(m,σ) ∈ S

}
, (6)

and is very close in spirit to the classical dual of the Monge-Kantorovich optimal trans-
port (with cost ∥x−y∥2).

(II) Next, the exact moment formulation (5) of (3) is a particular instance of the “Generalized
Moment Problem” (GMP) (see e.g. [13]) whose description is trough algebraic data
only (because every moment of a Gaussian is a polynomial in the parameters (m,σ)).
Therefore one can apply the Moment-SOS hierarchy [9, 13] to solve (5). That is, the
optimal value τ of (5) (hence of (3) as well) can be approximated as closely as desired by
solving a sequence (a hierarchy) of semidefinite relaxations of increasing size (as more
and more moments are taken into account).

The degree-n semidefinite relaxation of (3) (and of (5)) is just (5) where φ ∈ P(S)
and λ ∈P(R2) are respectively replaced with degree-2n pseudo-moment sequencesφ=
φ(i , j ))(i , j )∈N2

2n
andλ= (λ(i , j ))(i , j )∈N2

2n
, that satisfy necessary semidefinite constraints to be

moments of a measure on S and R2 respectively, coming from Putinar’s Positivstellensatz
[13, 24].

If the input measure is not a mixture of Gaussians with parameters (m,σ) ∈ S, then the
optimal value becomes strictly positive at some step of the hierarchy, which provides a
certificate that µ cannot be a mixture of Gaussians with parameters (m,σ) ∈ S (i.e., of the
form (2)).

(III) On the other hand, if the input measureµ is a mixture of finitely many Gaussian measures
with parameters (m,σ) ∈ S, then τ = 0, λ∗ = µ⊗µ, and φ∗ is an atomic mixing measure
(not necessarily unique) with finite support. If a certain rank condition (Curto & Fialkow’s
flat extension in [13, Theorem 3.11]) is satisfied at an optimal solution (λ̂,φ̂) of some
degree-n relaxation in the hierarchy (with optimal value zero), then the support and
weights of some atomic measure φ̂ on S can be recovered from φ̂. To check whether
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φ̂ is optimal for (5) (and φ̂ = φ∗ and φ∗ is unique) can be done by checking whether all
moments of νφ̂ of degree higher than n +1 match those of µ, i.e., whether

µ j =
∫

p j (m,σ)dφ̂(m,σ) , ∀ j > n +1. (7)

Checking (7) for each fixed j > n +1 is easy and can be done exactly.
We recall that identifiability of the mixing measure from moments of the mixture

distribution is a delicate issue [3] as in general, several mixing measures can be solutions.
However in our setting we have the additional condition that the mixing mesure is
supported on S.

Again we emphasize our minimal assumptions: the input measure µ satisfies (4)
and the parameter set S of admissible mixtures of Gaussians is a compact basic semi-
algebraic set. In particular and in contrast to [26], the variance σ is not fixed and the
mixing measures are not assumed to be atomic with finite support.

The paper closest in spirit to ours is the practical algorithm [26] for mixtures µ of
k univariate Gaussian measures with same variance σ (both cases where σ is known
and unknown are considered in [26]). The author first estimates a vector of 2k − 1
moments of µ via Hermite polynomials, then denoises this vector by projection onto the
moment space (via semidefinite programming), and then obtains a resulting k-atomic
distribution via Gauss quadrature. Nice results in [26, Theorem 1; (8)] provide optimal
rates (with respect to Wasserstein distance W1) provided that k and σ are known, and
[26, Theorem 1; (9)-(10)] if k is known whereas σ is unknown. In [26] the semidefinite
program is used to “denoise” the input vector of moments by projection onto the moment
space. The Wasserstein distance is only used to quantify a posteriori the error and
justify convergence. In our approach, the semidefinite relaxation (i) models directly the
Wasserstein distance W2 (using W1 is also possible) between the input measure and any
Gaussian mixture νφ, and (ii) is parametrized by the number of moments considered.
Finally, notice that the approach in [26] is possible thanks to very specific features that
are proper to the univariate case only. Namely:

• (convex) semidefinite programming constraints (exploited in [26]) provide necessary
and sufficient conditions for a finite real sequence to have a representing measure
and so the output of the semidefinite program in [26] is a true moment sequence;
but similar conditions are only necessary in the multivariate setting.

• similarly, Gauss quadratures also exploited in [26] do not always exist in the multi-
variate setting (then called Gauss cubatures); see e.g. [7, 14, 20].

For ease and clarity of exposition, we concentrate in the univariate case but all results of
Section 3 are also extended to the multivariate case which is briefly addressed in Section 4.

2. Notation, definitions and preliminary results

2.1. Notation and definitions

Let R[x, y] denote the ring of real polynomials in the two variables (x, y) and R[x, y]n ⊂ R[x, y]
be its subset of polynomials of total degree at most n. Let N2

n := {(i , j ) ∈ N2 : i + j | ≤ n} with
cardinal s(n) = (n+2

2

)
. Let vn(x, y) = (xi y j )(i , j )∈N2

n
be the vector of monomials up to degree n,

and let Σ[x, y]n ⊂ R[x, y]2n be the convex cone of polynomials of total degree at most 2n which
are sum-of-squares (in short SOS). A polynomial p ∈ R[x, y]n can be identified with its vector of
coefficients p = (p(i , j )) ∈Rs(n) in the monomial basis, and reads

(x, y) 7−→ p(x, y) := 〈p,vn(x, y)〉 , ∀p ∈R[x, y] .
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With X ⊂R2, denote by M (X )+ (resp. C (X )), the space of positive measures (resp. continuous
functions) on X , and by P(X ), the space of probability measures on X .

For a real symmetric matrix A = AT , the notation A ⪰ 0 (resp. A ≻ 0) stands for A is positive
semidefinite (p.s.d.) (resp. positive definite (p.d.)). The support of a Borel measure µ on R2 is the
smallest closed set A such that µ(R2 \ A) = 0, and such a set A is unique. A Borel measure with
all moments finite is said to be (moment) determinate if there is no other measure with same
moments.

Riesz functional, moment and localizing matrix. With a real sequence φ = (φ(i , j ))(i , j )∈N2 (in
bold) is associated the Riesz linear functional φ ∈R[x, y]∗ (not in bold) defined by

p

(
= ∑

(i , j )
pi , j xi y j

)
7−→φ(p) = 〈φ,p〉 =∑

α
pi , j φ(i , j ) , ∀p ∈R[x, y] ,

and the moment matrix Mn(φ) with rows and columns indexed by N2
n (hence of size s(n)), and

with entries

Mn(φ)((i , j ), (i ′, j ′)) := φ(xi+i ′ y j+ j ′ ) =φ(i+i ′, j+ j ′) , (i , j ), (i ′, j ′) ∈N2
n .

Similarly, given g ∈R[x, y] ( (x, y) 7→∑
(i , j ) gi , j xi y j ), define the new sequence

g ·φ :=
( ∑

(k,ℓ)
gk,ℓφ(i , j )+(k,ℓ)

)
(i , j )∈N2

,

and the localizing matrix associated with φ and g ,

Mn(g ·φ)((i , j ), (i ′, j ′)) := ∑
(k,ℓ)

gk,ℓφ(i+i ′+k, j+ j ′+ℓ) , (i , j ), (i ′, j ′) ∈N2
n .

Equivalently, Mn(g ·φ) is the moment matrix associated with the new sequence g ·φ. The Riesz
linear functional g ·φ associated with the sequence g ·φ satisfies

g ·φ(p) =φ(g p) , ∀p ∈R[x, y] .

A real sequence φ = (φ(i , j ))(i , j )∈N2 has a representing mesure if its associated linear functional φ
is a Borel measure on R2. In this case Mn(φ) ⪰ 0 for all n; the converse is not true in general. In
addition, if φ is supported on the set {(x, y) ∈R2 : g (x, y) ≥ 0} then Mn(g ·φ) ⪰ 0 for all n.

Multivariate Carleman condition. The following condition due to Carleman in the univariate
case and later extended by Nussbaum to the multivariate case, is a very useful sufficient condition
to ensure that a moment sequence has a representing measure; see e.g. [13, Theorem 3.13]. We
here specialize to the 2-dimensional case.

Theorem 1 (Bivariate Carleman condition). Let φ = (φ(i , j ))(i , j )∈N2 be a real sequence such that
Mn(φ) ⪰ 0 for all n, and such that

∞∑
j=1

(φ(2 j ,0))
−1/2 j =+∞ ;

∞∑
j=1

(φ(0,2 j ))
−1/2 j =+∞ . (8)

Then φ has a representing measure φ on R2 and φ is moment determinate.

For instance, if φ is a finite Borel measure on R2 and sup[
∫

exp(c |x|)dφ ,
∫

exp(c ′ |y |)dφ] <
∞ for some scalars c, c ′ > 0, then the moment sequence φ satisfies (8), and φ is moment
determinate.
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2.2. An intermediate result

The following result is well-known and is reproduced for sake of clarity.

Proposition 2. If σ> 0 then for every j ∈N, the moment

(m,σ) 7−→ 1p
2πσ

∫
x j exp

−(x −m)2

2σ2 dx, (9)

is a polynomial p j ∈R[m,σ] of total degree at most j , and:

p2 j (m,σ) =
j∑

k=0
(2k −1)!!σ2k m2( j−k)

(
2 j

2k

)
, ∀ j ∈N . (10)

Moreover, if σ= 0 then

p2 j (m,0) = m2 j =
∫

x2 j δm(dx) , ∀ j ∈N . (11)

Proof. Recall that

1p
2πσ

∫
(x −m) j exp

−(x −m)2

2σ2 dx =
{

0 if j is odd,

σ j ( j −1)!! if j is even,
∀ j ∈N , (12)

with for j ≥ 2, j !! = j ( j −2)( j −4) · · · , 1!! = 1, and the convention −1!! = 1. For instance, p0 = 1,
p1(m,σ) = m, p2(m,σ) = m2 +σ2, etc. Next, doing the change of variable u = (x −m) in the
integrand of (10), expanding (u+m) j in the basis of monomials, and summing up, yields (10). □

Remarks 3.

(i) A Gaussian mixture is associated with a (non necessarily unique) mixing probability
φ ∈P(S) and in view of (11), φ may tolerate that φ({R× {0}) > 0, i.e., φ can mix Gaussian
densities with discrete measures. In other words and with a slight abuse of notation,
the Dirac measure δm at point m can be viewed a the degenerate “Gaussian measure”
N (m,0), with vector of moments (m j ) j∈N = (p j (m,0)) j∈N. For instance ifµ=∑s

k=1γk δxk

for some set {x1, . . . , xk } ⊂ R and scalars γk ≥ 0, i.e., a mixture of s Dirac measures with
weights (γk ), then

µ j =
∫

x j dµ=
s∑

k=1
γk x j

k =
s∑

k=1
γk p j (xk ,0) =:

∫
x j

(
s∑

k=1
γk dN (xk ,0)

)
, ∀ j ∈N .

(ii) So as a consequence, if S = [−M , M ]× [0,σ] then every measure µ on [−M , M ] can be
considered a Gaussian mixture where µ itself is the mixing measure. Indeed its moments
(µ j ) j∈N satisfy

µ j =
∫

m j dµ(m) =
∫

p j (m,0)dµ(m) =
∫ (∫

x j dN (m,0)

)
dµ(m) , j ∈N .

In particular, every discrete measure on [−M , M ] is also a Gaussian mixture with param-
eters (m,0) ∈ S. This is not what one usually has in mind when thinking of Gaussian mix-
tures, as one would expect a measure µ with a density w.r.t. Lebesgue measure on R. So
this is why one should assume that the compact set S satisfies σ≥ δ> 0 for all (m,σ) ∈ S,
for some positive scalar δ; for instance, S := [−M , M ]× [σ,σ] with σ> 0.

Corollary 4. Let φ be a probability measure on S. Then with p2 j ∈R[m,σ], j ∈N, as in (10)

∞∑
j=1

φ(p2 j )−1/2 j =+∞ . (13)
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Proof. Observe that as S is compact, there exists M > 0 such that |m|,σ< M for all (m,σ) ∈ S, and
so in particular,

p2 j (m,σ) < M 2 j
j∑

k=1

(2 j )!

(2( j −k))!

(2k)!!

(2k)!
< M 2 j

j∑
k=1

(2 j )(2 j −1) · · · (2 j − (2k −1))

(2k −1)!!

< M 2 j
j∑

k=1
(2 j )2k−1 < M 2 j

j∑
k=1

(2 j )2 j−1

< (2M j )2 j , (14)

and therefore ifφ is a probability measure on S, thenφ(p2 j ) < (2M j )2 j for all j ∈N, which in turn
implies the desired result

∞∑
j=1

φ(p2 j )−1/2 j > 1

2M

∞∑
j=1

j−1 =+∞ . (15)

□

3. Main result

3.1. The optimal transport problem (3) and its exact moment relaxation (5)

Consider the optimal transport problem (3).

Theorem 5. Let S ⊂R×R+ be compact, and assume that µ ∈P(R) satisfies (4).

(i) The optimal transport problem (3) has an optimal solution (φ∗,λ∗) ∈P(S)×P(R2) which
is also an optimal solution of (5). Moreover, both measures λ∗ ∈ P(R2) and νφ∗ ∈ P(R)
are moment determinate.

(ii) Moreover, τ= 0 if and only if λ∗ = µ⊗µ and µ= νφ∗ , i.e., µ is a Gaussian mixture with φ∗

a mixing measure of parameters (m,σ) ∈ S.

For clarity of exposition a proof is postponed to Section 6.

Remarks 6.

(i) Notice that the mixing probability measure φ∗ ∈ P(S) is not necessary unique. That is,
two different mixing measures φ1 and φ2 may produce the same mixture distribution
νφ1 = νφ2 . This uniqueness issue is related to rational identifiability issue already men-
tioned and explored in e.g. [2, 3]. However in our restricted setting, uniqueness is per-
haps easier to get as the support of the mixing measure is not the whole space R2 but a
compact set S ⊂R2.

(ii) In Theorem 5, νφ∗ is a mixture of Gaussian measures with parameters (m,σ) ∈ S. If
σ= 0 is tolerated in (m,σ) ∈ S, the mixture φ∗ can be made of “pure” Gaussian measures
N (m,σ) with σ > 0 and atomic measures δm“ = ”N (m,0). If one wishes to obtain
the closest mixture νφ∗ of “pure” Gaussian measures N (m,σ) with σ > 0, (i.e., with no
atomic part), then in Theorem 5 one should replace S ⊂ R×R+ with S ⊂ R×R++ (with
R++ := {x : x > 0}). As S is assumed to be compact this implies that for some δ> 0, σ≥ δ

for all (m,σ) ∈ S.
The interesting case is precisely whenσ= 0 is not tolerated. Indeed ifσ= 0 is tolerated

then any probability measureµ supported on the set {m : (m,0) ∈ S } (in particular atomic
measures) is the “Gaussian mixture” N (m,0)dµ(m) with mixing measure µ itself, which
is not really what one wants to detect. see Remark 3(i).
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A dual of (3). For any g ∈R[y] write y 7→ g (y) :=∑
k gk yk where (gk ) is the vector of coefficients of

g in the monomial basis (yk )k∈N. Consider the optimization problem:

τ∗ = sup
q∈R[x],g∈R[y]

{∫
q dµ : q(x)+ g (y) ≤ (x − y)2 ∀x, y ∈R ;

∑
k

gk pk (m,σ) ≥ 0, ∀(m,σ) ∈ S

}
. (16)

Observe that:∑
k

gk pk (m,σ) ≥ 0, ∀(m,σ) ∈ S ⇐⇒ 1p
2πσ

∫
g (x) exp

(−(x −m)2

2σ2

)
dx ≥ 0, ∀(m,σ) ∈ S .

Proposition 7. The optimization problem (16) is a dual of (3), i.e., weak duality τ≥ τ∗ holds.

Proof. Let (λ,φ) (resp. (q, g )) be a feasible solution of (3) (resp. (16)). Then as λx =µ andλy = νφ,∫
(x − y)2 dλ(x, y) ≥

∫
(q + g )dλ=

∫
q dµ+

∫
g dνφ

=
∫

q dµ+
∫

S

(∑
k

gk pk

)
︸ ︷︷ ︸
≥0 on S

dφ≥
∫

q dµ ,

and as (λ,φ) and (q, g ) are arbitrary feasible solutions, it follows that τ≥ τ∗. □

3.2. A hierarchy of semidefinite relaxations

We here consider the case where the set S ⊂ R2 of parameters (m,σ) is the compact basic semi-
algebraic set

S = { (m,σ) : u j (m,σ) ≥ 0, j = 1, . . . , s } , (17)

for some polynomials u j ⊂R[m,σ], j = 1, . . . , s, and we let u0 := 1 (the constant polynomial equal
to 1 for all (m,σ). Moreover as S is compact, we also assume that we know a scalar R such that
S ⊂ {(m,σ) : m2+σ2 < R2} and without changing S we include the redundant quadratic constraint
R2 −m2 −σ2 ≥ 0 in its definition (17), with for instance u1(m,σ) = R2 −m2 −σ2.

Next, let d j := ⌈deg(u j )/2⌉, n0 := max j d j and fix n ≥ n0. With p j ∈R[m,σ] as in (9), define:

τn = min
φ,λ

{
λ((x − y)2) : λ( j ,0) =µ j ; λ(0, j ) −φ(p j (m,σ)) = 0, ∀ j ≤ 2n ;

Mn(λ) ⪰ 0, Mn(φ) ⪰ 0, Mn−d j (u j ·φ) ⪰ 0, j = 0, . . . , s
}

, (18)

where λ = (λ(i , j ))(i , j )∈N2
2n

and φ = (φ(i , j ))(i , j )∈N2
2n

. Problem (18) is a semidefinite program2. Its
dual reads:

τ∗n = sup
q,g ,σ,θ j

{∫
q dµ : q(x)+ g (y)+σ(x, y) = (x − y)2 , ∀x , y ∈R ;

2n∑
k=0

gk pk (m,σ) =
s∑

j=0
θ j (m,σ)u j (m,σ) ;

q ∈R[x]2n , g ∈R[y]2n ; σ ∈Σ[x, y]n ; θ j ∈Σ[m,σ]n−d j , j = 0, . . . , s

}
, (19)

with τ∗n ≤ τn for all n ≥ n0.

2A semidefinite program is a convex conic program on the cone of positive semidefinite matrices. Up to arbitrary (but
fixed) precision, it can be solved efficiently; see e.g. [1, 22]



1464 Jean B. Lasserre

Lemma 8. For each fixed n ≥ n0, (18) is a semidefinite program and a convex relaxation of the
infinite-dimensional problem (3) and so τn ≤ τ for all n ≥ n0. Moreover, if S has nonempty
interior and supp(µ) contains an open set, then τn = τ∗n and (19) has an optimal solution
(q∗, g∗,θ∗0 , . . . ,θ∗s ).

Proof. Let (λ,φ) ∈ P(R2) ×P(S) be a feasible solution of (3), and let λ = (λ(i , j ))(i , j )∈N2
2n

and
φ= (φ(i , j ))(i , j )∈N2

2n
be the vectors of degree-2n moments of λ and φ respectively. Then the couple

(λ,φ) is a feasible solution of (18), and so τn ≤ τ for all n ≥ n0. Next, let φ be the probability
measure uniformly distributed on S, and let λ := µ⊗ νφ. Then as S has nonempty interior,
Mn(u j ·φ) ≻ 0 for all j = 0, . . . , s, and Mn(λ) ≻ 0. Indeed, suppose that for some h ∈ R[x, y]n with
coefficient vector h,

0 = 〈h,Mn(λ)h〉 =
∫

h(x, y)2 dλ(x, y)

=
∫
R

(∫
R

h(x, y)2 dνφ(y)

)
dµ(x)

=
∫
R

(∫
S

1p
2πσ

∫
R

h(x, y)2 exp(−(y −m)2/2σ2)dydφ(m,σ)

)
dµ(x) .

We next prove that then h = 0 and so Mn(λ) ≻ 0. Observe that with h ∈R[x, y]n , one may write

h(x, y)2 =
2n∑

k=0
θh

n−k (x) yk , with θh
n−k ∈R[x]2n−k for all k = 0, . . . ,2n,

and therefore

1p
2πσ

∫
R

h(x, y)2 exp(−(y −m)2/2σ2)dy =:
2n∑

k=0
θh

n−k (x) pk (m,σ) =: qh(x,m,σ) ,

is a polynomial in R[x,m,σ]2n . Moreover, for all x ∈R,

qh(x,m,σ) ≥
(

1p
2πσ

∫
R
|h(x, y)| exp(−(y −m)2/2σ2)dy

)2

≥ 0, ∀(m,σ) ∈ S .

Hence,

0 =
∫
R

∫
S

1p
2πσ

∫
R

h(x, y)2 exp(−(y −m)2/2σ2)dydφ(m,σ)dµ(x)

=
∫
R

∫
S

qh(x,m,σ)dφ(m,σ)dµ(x) ,

implies that qh(x,m,σ) = 0, for µ⊗φ-a.e. (x,m,σ) ∈ R×S. As S has nonempty interior, supp(µ)
contains an open set, and qh is a polynomial, this implies qh ≡ 0. But then this in turn implies
h(x, y) = 0 for all x, y , and therefore h ≡ 0. Hence the couple (λ,φ) is a strictly feasible solution
of (18), that is, Slater’s condition3 holds for (18). This in turn implies that there is not duality gap
between (18) and its dual (19), i.e., τn = τ∗n , and as τn ≥ 0, their value is finite. □

Theorem 9. Let S ⊂R×R+ as in (17) be compact, and let µ ∈P(R) be a probability measure such
that (4) holds for some scalar c > 0.

(i) For every fixed n, (18) is a semidefinite relaxation of (5) (hence of (3)) and has an optimal
solution (λ(n),φ(n)) with associated optimal value τn ≤ τ for all n ≥ n0.

(ii) For any accumulation point (λ∗,φ∗) of the sequence (λ(n),φ(n))n∈N of optimal moment-
sequences (λ(n),φ(n)) of (18), λ∗ (resp. φ∗) has a determinate representing measure λ∗ on
R2 (resp. φ∗ on S) and (φ∗,λ∗) is an optimal solution of (3) and (5). That is:

τn ↑ τ=W2(µ−νφ∗ )2 as n →∞ .

3Slater condition holds for the finite-dimensional conic program minx{cT x : Ax = b ; x ∈ K } for a linear mapping
A :Rp →Rq , vectors c ∈Rp , b ∈Rq , and a convex cone K ⊂Rp , if there exists an admissible solution x0 ∈ int(K ).
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For clarity of exposition a proof is postponed to Section 6.

Corollary 10. Let τn and τ∗n be as in (18) and (19), respectively. Under the assumption in
Theorem 9 and if S has nonempty interior and supp(µ) contains an open set, then τ= limn→∞τn =
limn→∞τ∗n , and therefore there is no duality gap between (5) and (16), that is,

inf
λ∈P(R2),
φ∈P(S)

{∫
(x − y)2 dλ : s.t. λ j 0 =µ j , ∀ j ∈N;λ0, j −

∫
p j (m,σ)dφ= 0, ∀ j ∈N

}

= sup
q∈R[x],
g∈R[y]

{∫
q dµ : s.t. q(x)+ g (y) ≤ (x − y)2 ∀x, y ∈R ;

∑
k

gk pk (m,σ) ≥ 0, ∀(m,σ)∈S

}
. (20)

Proof. By Lemma (8), τn = τ∗n for all n ≥ n0, and by Theorem 9, τ = limn→∞τn . Therefore τ∗ in
(16) is equal to τ, which yields (20). □

Observe that (20) resembles the usual duality in optimal transport when both marginals λx

and λy are fixed; here the marginal λy is also part of the optimization via the mixing measure φ.

Corollary 11. Let S ⊂R×R+ be compact with nonempty interior and let µ ∈P(R) be such that (4)
holds for some scalar c > 0 and its support contains an open set. Then µ is a mixture of Gaussians
with parameters (m,σ) ∈ S if and only if for every n ≥ n0, (q∗, g∗) = (0,0) and θ∗j = 0 for all
j = 0. . . , s, is an optimal solution of (19).

Proof. It µ is a Gaussian mixture with mixing measure φ∗ ∈ P(S), then τ = W2(µ,νφ∗ ) = 0. As
0 ≤ τn ≤ τ= 0 one obtains τn = τ∗n = 0 for all n ≥ n0 and (q, g ) = (0,0) with θ∗j = 0 for all j = 0, . . . , s,
is an obvious optimal solution of (19). □

3.3. Recognizing a Gaussian mixture

As a consequence of Corollary 11, if the input probability measure µ is not a mixture of Gaussian
measures with parameters (m,σ) ∈ S, then the optimal value of (18) becomes positive at some
step n∗ ≥ n0 and then remains positive for all n ≥ n∗ (as the sequence is monotone non
decreasing). So the sequence of optimal values (τn)n∈N of the hierarchy (18) permits to detect
in finitely many steps if µ is not a Gaussian mixture (with parameters (m,σ) ∈ S).

Recall that d j := ⌈deg(u j )/2⌉ and let v := max j d j .

Theorem 12. With S ⊂ R2 as in (17), let µ ∈ P(R) be a given probability measure with finite
moments µ= (µ(i , j ))(i ; j )∈N2 , and let τ and τn be as in (3) and (18) respectively.

(i) µ is a mixture of Gaussian measures, all with parameters (m,σ) ∈ S, if and only if
(µ⊗µ,φ∗) is an optimal solution of (3) for some φ∗ ∈ P(S). Moreover, τn = τ = 0 for
all n ≥ n0, i.e., the optimal value 0 is obtained at every step of the hierarchy of semidefinite
relaxations (18).

In addition, if µ is a mixture of finitely many (say r ) Gaussian measures, all with
parameters (m,σ) ∈ S, then for every n sufficiently large, the corresponding degree-2n
vector of moments (λ∗,φ∗) respectively associated with µ ⊗ µ and φ∗, is an optimal
solution of (18) and

rank(Mn(φ∗)) = rank(Mn−v (φ∗)) = r . (21)

(ii) Conversely, let (λ∗,φ∗) be an optimal solution of some degree-2n relaxation (18) with
τn = 0, and suppose that (21) holds. Then φ∗ is the degree-2n moment vector of some
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r -atomic probability measure φ∗ on S. Moreover, µ = νφ∗ (i.e. µ is a Gaussian mixture
with mixing measure φ∗) if and only if

µ j =
∫

p j (m,σ)dφ∗ , ∀ j > n +1. (22)

Proof.

(i) Only if part. By definition there exists φ∗ ∈P(S) such that

µ(B) =
∫

S

(
1p

2πσ

∫
B

exp

(−(x −m)2

2σ2

)
dx

)
dφ∗(m,σ) , ∀B ∈B(S) .

Then τ= W2(µ,νφ∗ ) = 0, and with λ∗ := µ⊗µ, the couple (λ∗,φ∗) is an obvious optimal solution
of (3). Moreover, τn = 0 for all n, follows from 0 ≤ τn ≤ τ and τ= 0.

If part. If (µ⊗µ,φ∗) is an optimal solution of (3) then µ= λy = νφ∗ , i.e., µ is a Gaussian mixture
with mixing measure φ∗ ∈ P(S), and τ = 0 = W2(µ,νφ∗ )2. Next, fix n ≥ n0 arbitrary. The finite
vector of degree-2n moments (λ∗,φ∗) of λ∗ = µ⊗µ and φ∗ respectively, is an obvious feasible
solution of (18). Moreover λ∗((x − y)2) = ∫

(x − y)2dµ(x)dµ(y) = 0, and as τn ≥ 0, (λ∗,φ∗) is an
optimal solution of (18) with τn = 0.

Next, as φ∗ is r -atomic, rank(Mn(φ∗)) = r for all sufficiently large n. As Mn−v (φ∗) is a
submatrix of Mn(φ∗), (21) follows.

(ii). Conversely, if (22) holds at an optimal solution of a degree-2n relaxation (18), then by Curto
& Fialkow’s flat extension theorem [15, Theorem 2.47], φ∗ is the degree-2n moment sequence of
some r -atomic φ∗ ∈ P(S). Next, τn = 0 implies λ∗((x − y)2) = 0 and so the vector p ∈ R

(2+n
2

)
of

coefficients of the polynomial (x, y) 7→ p(x, y) := (x − y) ∈R[x, y]n is in the kernel of Mn(λ∗) as

〈p,Mn(λ∗)p〉 =λ∗(p2) =λ∗((x − y)2) = 0.

That is, the second and third columns of Mn(λ∗) (respectively indexed by the monomials x and y)
are identical. In particular, this implies λ∗

( j ,0) =λ∗
(0, j ) for all j = 0, . . .n+1. Equivalently µ j = (νφ∗ ) j

for all j ≤ n + 1, and therefore as µ is determinate, µ = νφ∗ (and so W2(µ,νφ∗ ) = 0) if only if
µ j =λ∗

(0, j ) for all j , and so if and only if (22) holds. □

The sufficient Curto & Fialkow’s flatness condition (21) in Theorem 12 is very useful to detect
whether µ is a Gaussian mixture νφ∗ with an r -atomic mixing measure φ∗ on S, in solving finitely
many semidefinite relaxations. Indeed if (21) holds then it remains to check whether (22) holds
(with no optimization involved).

Example 13. Let S = [.07,1]× [.02,1] and µ= r ∗N (.1, .2)+ (1− r )∗N (.5, .5) with r ∈ (0,1). Then
with r = .2 or r = .3, the atomic measure φ∗ = r ∗δ(.1,.2) + (1− r )∗δ(.5, .5) is detected at step n = 6
of the semidefinite relaxation (18). Indeed, in its degree-12 optimal solution (λ∗,φ∗) obtained by
running the GloptiPoly software [10] that implements the Moment-SOS hierarchy,φ∗ satisfies the
flatness condition (21), and the atoms can be extracted by a linear algebra subroutine. However
we could notice that if we enlarge the set S, then one needs to go to higher degrees in the hierarchy
with potential numerical instabilities.

4. The multivariate case

The result in the univariate case extends to the multivariate case with µ on Rd , provided that the
set of parameters (m,Σ) ∈ S ⊂ Rd ×Rd(d+1)/2 is a compact basic semi-algebraic set. For instance
one may consider the case where (m,Σ) ∈ S with

S := { (m,Σ) : a I ⪯Σ ⪯ b I ; g j (m) ≥ 0, j = 1, . . . , s } ,
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for some polynomials g j ∈R[m1, . . . ,md ], j = 1, . . . , s, and some given scalars 0 < a < b. Then using
determinants of Σ= (σi j )i , j≤d , the constraints a I ⪯Σ ⪯ b I reduces to 2d polynomials inequality
constraints qk (σ) ≥ 0, k = 1, . . . ,2d , with two of them of degree d . Then the set

S = { (m,σ) : g j (m) ≥ 0, j = 1, . . . , s ; qk (σ) ≥ 0, k = 1, . . . ,2d } ⊂Rd ×Rd(d+1)/2 . (23)

As S is compact and assuming one knows a scalar R > 0 such that

R2 −∥m∥2 −∥σ∥2 ≥ 0, ∀(m,σ) ∈ S ,

we may add the redundant quadratic constraint R2 −∥m∥2 −∥σ∥2 ≥ 0 (relabelled as g1(m,σ) ≥ 0)
in the definition (23) of S without changing S. In doing so, the quadratic module

Q(g , q) =
{

s∑
j=0

θ j g j +
2d∑

k=1
θ′k qk : θ j ,θ′k ∈Σ[m,σ]

}
(24)

is Archimedean. Next, as in the univariate case one introduces the polynomials (pα ∈
R[m,σ]|α|)α∈Nd defined by:

(m,σ) 7−→ pα(m,σ) := 1

(2π)d/2
p

det(Σ)

∫
xα exp(−(x−m)TΣ−1(x−m)/2)dx , α ∈Nd , (25)

as indeed every moment
∫

xαdν of a Gaussian probability measure ν = N (m,Σ), is an explicit
polynomial of its parameters (m,σ), of total degree at most |α|. Moreover, the marginal of a
Gaussian measure µ=N (m,Σ) with respect to xi is the Gaussian measure N (mi ,Σi i ). Therefore∫

x2 j
i dµ= p2 j (mi ,Σi i ) , ∀ j ∈N ; i = 1, . . . ,d , (26)

where p2 j has been defined in (10). Next, if µ ∈P(Rd ), the multivariate analogue of (3) reads:

τ= inf
φ∈P(S)

W2(µ,νφ)2 = inf
φ∈P(S),λ∈P(R2d )

{∫
∥x−y∥2 dλ : λx =µ ; λy = νφ

}
. (27)

and the analogue of the moment formulation (5) reads:

infφ∈P(S),λ∈P(R2d ) {
∫ ∥x−y∥2 dλ : λα0 =µα ; λ0α−φ(pα(m,σ)) = 0, ∀α ∈Nd } . (28)

Assumption 14.

(i) The measure µ satisfies: supi

∫
exp(c |xi |)dµ<∞ for some c > 0.

(ii) The set S in (23) is compact with nonempty interior, and the quadratic module (24) is
Archimedean.

Theorem 15. Let Assumption 14 hold. Then:

(i) The optimal transport problem (27) has an optimal solution (φ∗,λ∗) ∈ P(S)×P(R2d )
which is also an optimal solution of (28). Moreover both measures λ∗ ∈ P(R2d ) and
νφ∗ ∈P(Rd ) are moment determinate.

(ii) Moreover, τ= 0 if and only if λ∗ = µ⊗µ and µ= νφ∗ , i.e., µ is a Gaussian mixture with φ∗

a mixing measure of parameters (m,Σ) ∈ S.

Sketch of the proof. As in the proof of Theorem 5 in the univariate case let (λ(n),φ(n))n∈N be
a minimizing sequence of (27). As S is compact there exists a subsequence (nk )k∈N and a
probability measure φ∗ ∈P(S) such that φ(nk ) ⇒φ∗ as k →∞.

Let d ′ = d+d(d+1)/2 and recall that S ⊂Rd ′
. Following exactly the same steps as in the proof of

Theorem 5, there exists a subsequence denoted (n′
ℓ

)ℓ∈N and an infinite sequenceλ∗ = (λ∗
α)α∈N2d ,

such that

lim
ℓ→∞

λ
(n′
ℓ

)
α =λ∗

α , ∀α ∈N2d ; lim
ℓ→∞

φ
(n′
ℓ

)

β
=φ∗

β , ∀β ∈Nd ′
.
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Moreover as S is compact and in view of (26), and (14)-(15), and by Corollary 4,
∞∑

j=1
φ∗(p2 j (mi ,Σi i ))−1/2 j =+∞ , ∀i = 1, . . . ,d .

and therefore ∞∑
j=1

λ∗(y2 j
i )−1/2 j =+∞ , ∀i = 1, . . . ,d .

Next, by Assumption 14(i) on µ, one also has
∞∑

j=1
λ∗(x2 j

i )−1/2 j =
∞∑

j=1
µ(x2 j

i )−1/2 j =+∞ , ∀i = 1, . . . ,d ,

and therefore the moment sequence λ∗ satisfies multivariate Carleman’s condition (see e.g.
[15, Proposition 2.37]), which in turn implies that it is the moment sequence of some measure
λ∗ ∈ M (R2d )+ which is moment determinate. Then again as in the proof of Theorem 5 we may
conclude that (λ∗,φ∗) is an optimal solution of (15). □

Next, let d j = ⌈deg(g j )/2⌉ and tk = ⌈deg(qk )/2⌉, for all j and k. Then for every n ≥ n0 =
max j ,k [d j , tk ], the multivariate analogue of the semidefinite relaxation (18) reads:

τn = inf
φ ,λ

{∫
∥x−y∥2 dλ :λα,0 =µα ; λ0,α−φ(pα(m,σ)) = 0, ∀α ∈Nd

2n ;

Mn(λ) , Mn(φ) , Mn−d j (g j ·φ) , Mn−tk (qk ·φ) ⪰ 0; j = 1, . . . , s ; k = 1, . . . ,2d

}
. (29)

Then an analogue of Theorem 9 holds and its proof is along the same lines. Also Curto & Fialkow’s
flatness condition [15, Theorem 2.47] is also valid in the multivariate setting. Similarly there is an
exact analogue of Theorem 12.

5. Conclusion

We have considered Gaussian mixtures (with parameters (m,σ) in a given compact set S) closest
in Wasserstein distance, to a given measure µ. Such Gaussian mixtures are optimal solutions of
an infinite-dimensional optimal-transport linear program (LP) in which one marginal constraint
contains the unknown mixing measure. Non-uniqueness is related to a classical identifiably
issue. This LP can be solved by the Moment-SOS hierarchy, i.e., a sequence of semidefinite
programs (convex relaxations) whose size increases with the number of moment constraints
considered. That µ cannot be a Gaussian mixture is guaranteed to be detected at some step
of the hierarchy. On the other hand if µ is a Gaussian mixture with mixing measure on S with
finite support, a latter can sometimes be extracted from an optimal solution at some step of the
hierarchy. In addition to the identifiability issue, an interesting research direction is concerned
with whether a similar approach can be implemented when the distance is now measured in total
variation instead of Wasserstein.

6. Appendix

In this paper we mainly use the W2(µ,ν)-optimal transport problem (1) for two probability
measures µ and ν, but we could also use the W1(µ,ν)-optimal transport problem. Its primal
formulation reads

W1(µ,ν) = inf
λ∈P(R2)

{∫
R2

|x − y |dλ(x, y) : λx =µ ; λy = ν
}

,
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while its dual formulation reads

W1(µ,ν) = sup
f ,g

{∫
R2

f (x)dµ(x)+
∫

g (y)dν(y) : f (x)+ g (y) ≤ |x − y | , ∀x, y ∈R
}

.

In order to proceed in a manner similar as for the W2-distance, we need to write R2 = X1 ∪X2

with X1 := {(x, y) : x < y} and X2 := {(x, y) : x > y}, and impose λ= λ1 +λ2 with supp(λ1) = X1 and
supp(λ2) = X2.

6.1. Proof of Theorem 5

Proof.

(i). Let (λ(n),φ(n))n∈N ⊂P(R2)×P(S) be a minimizing sequence of (3) with ρn :=W2(µ−νφ(n) ) ↓ τ
as n increases. As S is compact, the sequence (φ(n))n∈N is tight and by Prohorov’s theorem, there
exists a subsequence (nk )k∈N and a probability measure φ∗ ∈P(S) such that

lim
k→∞

∫
h dφ(nk ) =

∫
h dφ∗ , ∀h ∈C (S) [denoted φnk ⇒φ∗] .

In particular, φ(nk )
(i , j ) →φ∗

(i , j ) for all (i , j ) ∈N2. In addition, as p j ∈R[m,σ],

lim
k→∞

λ
(nk )
(0, j ) = lim

k→∞

∫
p j dφ(nk ) =

∫
p j dφ∗ , ∀ j ∈N , (30)

and by feasibility, we also have

lim
k→∞

λ
(nk )
( j ,0) =µ j , ∀ j ∈N .

We want to prove that

∀i , j ∈N : lim
k→∞

λ
(nk )
(i , j ) =

∫
xi y i dλ∗(x, y) ,

for some determinate measure λ∗ on R2. That is, the vector of moments λ(nk ) converges to the
vector of moments of λ∗, and in particular

λ∗
( j ,0) =µ j ∀ j ∈N ; λ∗

(0, j ) =
∫

S
p j dφ∗ =

∫
R

x j dνφ∗ , ∀ j ∈N .

Notice that then (λ∗,φ∗) is an optimal solution of (3).
As S is compact, |m| < M and σ< M for some M > 0 and therefore by (14),

λ(n)
(0,2 j ) = φ(n)(p2 j ) =⇒λ(n)

(0,2 j ) =
∫

S
p2 j dφ(n) < (2M j )2 j =: ρ j , ∀ j ∈N .

This combined with λ(n)
(2 j ,0) = µ2 j yields that the moment matrix Mk (λ(n)) of the moment se-

quence λ(n) of the measure λ(n) satisfies Mk (λ(n)) ⪰ 0 for every k, and

∀(k,ℓ) ∈N2 with k +ℓ≤ 2 j : |λ(n)
k,ℓ| ≤ max[1,µ2 j ,ρ j ] =: ρ′

j , ∀ j ∈ N .

See [13, Proposition 3.6, p. 60]. Then define the new infinite sequence λ̂(n) by

λ̂(n)
(i , j ) := λ(i , j )/ρ′

k , ∀(i , j ) with 2k < i + j ≤ 2k , k = 1, . . . , (31)

so that λ̂(n) is an element of the unit ball of ℓ∞, the Banach space of (uniformly) bounded
sequences. As the unit ball Bℓ∞ (0,1) of ℓ∞ is sequentially compact in the weak-star topology
σ(ℓ∞,ℓ1), there is a subsequence (n′

ℓ
)ℓ∈N ⊂ (nk )k∈N and an infinite vector λ̂∗ ∈ Bℓ∞ (0,1) such

that (in particular)

lim
ℓ→∞

λ̂
(n′
ℓ

)

(i , j ) = λ̂∗
(i , j ) , ∀(i , j ) ∈N2 .
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Then by the reverse scaling of (31) for λ̂∗

lim
ℓ→∞

λ
(n′
ℓ

)

(i , j ) =λ∗
(i , j ) ; ∀(i , j ) ∈N2 , (32)

for some infinite vector λ∗ = (λ∗
(i , j ))(i , j )∈N2 . In addition, by (32), Mn(λ∗) ⪰ 0 for all n ∈N, and

λ∗
( j ,0) =µ j ; λ∗

(0, j ) =φ∗(p j ) , ∀ j ∈N ,

and by Corollary 4,
∞∑

j=1
(λ∗

(0,2 j ))
−1/2 j =+∞ .

As λ∗
(2 j ,0) = µ2 j for all j ∈ N, and µ satisfies Carleman’s condition, then by Theorem 1, λ∗ has a

representing measure λ∗ on R2, which is moment determinate. This implies that (λ∗,φ∗) is a
feasible solution of (3). Finally, as (λ(n′

ℓ
),φ(n′

ℓ
)) is a minimizing sequence of (3), then by (32),

τ= lim
ℓ→∞

ρnℓ = lim
ℓ→∞

∫
(x − y)2 dλ(n′

ℓ
) =

∫
(x − y)2 dλ∗ [by (32)] ,

which shows that (λ∗,φ∗) an optimal solution of (3).
Finally, in what precedes we have only used the respective moments λ(n) and φ(n) of the

measures λ(n) and φ(n), and the constraints of (5). Hence by considering a minimizing sequence
(λ(n),φ(n)) of (5) instead of (3), one reaches the same conclusion.

(ii) If part. Straightforward. Indeed if µ is a Gaussian mixture with φ∗ a mixing measure of
parameters (m,σ) ∈ S then µ= νφ∗ and with λ∗ := µ⊗µ, the couple (λ∗,φ∗) is a feasible solution
of (3) with value τ= 0, hence an optimal solution of (3).

Only if part. By (i) let (λ∗,φ∗) be an optimal solution of (3). As 0 = τ = ∫
(x − y)2 dλ∗, it follows

that supp(λ∗) ⊂ {(x, x) : x ∈ R}, and therefore λ∗
x = λ∗

y , i.e., λ∗ = µ⊗µ, and therefore as λ∗
y = νφ∗ ,

one obtains µ= νφ∗ , the desired result. □

6.2. Proof of Theorem 9

Proof.

(i). Let (λ,φ) be a feasible solution of (18). As g1(m,σ) = R2 −m2 −σ2, the constraint Mn−1(g1 ·
φ) ⪰ 0, implies that

φ(σ2n) < R2n ; φ(m2n) < R2n .

By [13, Proposition 3.6, p. 60], this combined with Mn(φ) ⪰ 0, and φ(0,0) = 1, yields |φ(i , j )| <
max[1,R2n] for all i , j with i + j ≤ 2n. Moreover, λ2n,0 =µ2n , and by (14),

λ(0,2n) =φ(p2n) < (2nR)2n =: ρn .

Again by [13, Proposition 3.6, p. 60], for all (i , j ) with i + j ≤ 2n,

|λ(i , j ) | < max[1,λ(2n,0),λ(0,2n)] < max[1,µ2n ,ρn] =: ρ′
n ,

which implies that the feasible set of (18) in compact, and therefore (18) has an optimal solution
(λ(n),φ(n)) with value λ(n)((x − y)2) = τn , and as (18) is a relaxation of (5), 0 ≤ τn ≤ τ for all n.

(ii). Complete the finite vector λ(n) (resp. φ(n)) with zeros to make it an infinite sequence
λ(n) = (λ(n)

(i , j ))(i , j )∈N2 (resp. φ(n) = (φ(n)
(i , j ))(i , j )∈N2 ). Then define the new infinite sequences λ̂(n)

and φ̂(n) by
λ̂(n)

(i , j ) :=λ(i , j )/ρk , ∀(i , j ) with 2k < i + j ≤ 2k , k = 1, . . .

φ̂(n)
(i , j ) :=φ(i , j )/R2k , ∀(i , j ) with 2k < i + j ≤ 2k , k = 1, . . . ,

(33)
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so that λ̂(n) is an element of the unit ball of ℓ∞, the Banach space of (uniformly) bounded
sequences, and smililarly for φ̂(n). Again, as the unit ball of ℓ∞ is sequentially compact in the
weak-star topology σ(ℓ∞,ℓ1), there is a subsequence (nk )k∈N and infinite vectors λ̂∗ ∈ ℓ∞ and
φ̂∗ ∈ ℓ∞ such that

lim
k→∞

λ̂
(nk )
(i , j ) = λ̂∗

(i , j ) ; lim
k→∞

φ̂
(nk )
(i , j ) = φ̂∗

(i , j ) , ∀(i , j ) ∈N2 .

Then by the reverse scaling of (33) for λ̂∗ and φ̂∗,

lim
k→∞

λ
(nk )
(i , j ) =λ∗

(i , j ) ; lim
k→∞

φ
(nk )
(i , j ) =φ∗

(i , j ) , ∀(i , j ) ∈N2 , (34)

for some infinite vectors λ∗ and φ∗. Next, by (34), Mn(λ∗) ⪰ 0, Mn(φ∗) ⪰ 0, and Mn(g j ·φ∗) ⪰ 0
for all n, with

λ∗
( j ,0) =µ j and λ∗

(0, j ) =φ∗(p j ) , ∀ j ∈N .

As g1(m,σ) = R2 −m2 −σ2, the quadratic module

Q(g ) =
{

s∑
j=0

θ j (m,σ) g j (m,σ) : θ j ∈Σ[m,σ]

}
is Archimedean and therefore, by Putinar’s Positivstellensatz [24],φ∗ has a representing measure
on S. Moreover, as in the proof of Theorem 5, by Corollary 4,

∞∑
j=1

(λ∗
(0,2 j ))

−1/2 j =+∞ ,

and as λ∗
(2 j ,0) = µ2 j for all j ∈N, and µ satisfies Carleman’s condition, then by Theorem 1, λ∗ has

a representing measure λ∗ on R2, which is moment determinate. In particular its marginal λ∗
y

with moments (λ∗
(0, j )) j∈N is also moment determinate. Next, let νφ∗ be the measure on R with

Gaussian mixture φ∗. As

λ∗
(0, j ) =φ∗(p j ) =

∫
x j dνφ∗ (x) , ∀ j ∈N ,

and as λ∗
y is moment determinate, this show that λ∗

y = νφ∗ . Hence (φ∗,λ∗) is feasible for (3) with
value λ∗((x − y)2). In addition, as τn ≤ τ for all n,

τ≤λ∗(x − y)2 = lim
ℓ→∞

λ(n′
ℓ

)((x − y)2) ([by (34)]) = lim
ℓ→∞

τn′
ℓ
≤ τ ,

so that τ=λ∗((x− y)2), and therefore (λ∗,φ∗) is an optimal solution of (3) (and of (5) as well). □
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