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Abstract. Let p ≤ 23 be a prime and ap (n) count the number of partitions of n where parts that are multiple
of p come up with 2 colors. Using a result of Sussman, we derive the exact formula for ap (n) and obtain an
asymptotic formula for log ap (n). Our results partially extend the work of Mauth, who proved the asymptotic
formula for log a2(n) conjectured by Banerjee et al.

Résumé. Soit p ≤ 23 un nombre premier et ap (n) compte le nombre de partitions de n où les parties qui sont
multiples de p donnent 2 couleurs. En utilisant un résultat de Sussman, nous dérivons la formule exacte pour
ap (n) et obtenons une formule asymptotique pour log ap (n). Nos résultats étendent partiellement le travail
de Mauth, qui a prouvé la formule asymptotique pour log a2(n) conjecturée par Banerjee et al.
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1. Introduction

Throughout this paper, we denote (a; q)∞ = ∏
n≥0(1− aqn) for a ∈ C. Recall that a partition of

a positive integer n is a nonincreasing finite sequence of positive integers, known as its parts,
whose sum is n. We define p(n) as the number of partitions of n, which can be seen as the
coefficients of its generating function given by

1

(q ; q)∞
=

∞∑
n=0

p(n)qn .

Hardy and Ramanujan [9] proved the following asymptotic formula for p(n) given by

p(n) ∼ 1

4n
p

3
exp

(
π

√
2n

3

)
, n −→∞,
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using the celebrated Circle Method. Rademacher [14] refined the Hardy–Ramanujan Circle
Method and derived the exact formula

p(n) = 1

π
p

2

∞∑
k=1

Ak (n)
p

k
d

dn

sinh
(
π
k

√
2
3

(
n − 1

24

))
√

n − 1
24


where

Ak (n) := ∑
0≤h<k

gcd(h,k)=1

exp

[
πi

(
s(h,k)− 2nh

k

)]

and

s(h,k) :=
k−1∑
j=1

j

k

({
h j

k

}
− 1

2

)
is the Dedekind sum, where {t } denotes the fractional part of t . Recently, Banerjee et al. [3] proved
the following refined asymptotic formula for p(n) given by

log p(n) ∼π

√
2n

3
− logn − log4

p
3− 0.44 · · ·p

n
, n −→∞,

from a family of inequalities for p(n), which was used to prove a refinement of the inequality of
DeSalvo and Pak [8], and Chen, Wang and Xie [6] that reads(

1+ π

24n3/2
− 1

n2

)
p(n −1)p(n +1) < p(n)2 <

(
1+ π

24n3/2

)
p(n −1)p(n +1)

for n ≥ 120.
Let ak (n) be the number of partitions of n where parts that are multiple of k come up with

2 colors. For k = 1, we have a1(n) = p2(n) where p2(n) is the total number of partitions of n
where parts come up with 2 colors and for k = 2, a2(n) also counts the number of cubic partitions
(see [10]). The generating function for ak (n) is given by [1]

1

(q ; q)∞(qk ; qk )∞
=

∞∑
n=0

ak (n)qn .

Kotesovec [11] found the following asymptotic formula for a2(n) given by

a2(n) ∼ 1

8n5/4
exp(π

p
n), n −→∞.

Banerjee et al. [3] conjectured that a2(n) satisfies the following asymptotic formula

log a2(n) ∼π
p

n − 5

4
logn − log8− 0.79 · · ·p

n
, n −→∞. (1)

Recently, Mauth [12] proved (1) by finding the exact formula of Rademacher type for a2(n) using
a result of Zuckerman [16].

In this paper, we use a result of Sussman [15] to derive Rademacher-type formulas for ap (n)
when p ≤ 23 is a prime, and deduce their asymptotic formulas in the spirit of (1), which can be
considered as a partial extension of Mauth’s work. We give our main results as follows.

Theorem 1. Let p ≤ 23 be a prime. Then for n ≥ 1 we have

ap (n) = 2π
p

p

(
1+p−1

24n −p −1

)p−1∑
j=1

∞∑
m=1

m≡ j mod p

I2

(
π

6m

√
(1+p−1)(24n −p −1)

)
bm(n)

m

+2π

(
1+p

24n −p −1

) ∞∑
m=1
p|m

I2

( π

6m

√
(1+p)(24n −p −1)

) bm(n)

m
,
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where

bk (n) := ∑
0≤h<k

gcd(h,k)=1

exp

[
−2πnhi

k
+πs(h,k)i+πs

(
ph

gcd(p,k)
,

k

gcd(p,k)

)
i

]

and I2(s) is the second modified Bessel function of the first kind (see Section 2).

Corollary 2. For p ≤ 23 prime, we have

log ap (n) ∼π

√
2n(1+p−1)

3
− 5

4
logn + log

2
√

3p(1+p−1)3/4

245/4
− cp

24
p

6n
, n −→∞

where

cp := 135

π
√

1+p−1
+π

√
(1+p)3

p
.

Setting p = 2 in Corollary 2, we deduce the asymptotic formula due to Mauth [12] given by

log a2(n) ∼π
p

n − 5

4
logn − log8−

(
15

8π
+ π

16

)
1p
n

, n −→∞,

which immediately yields (1).
The paper is organized as follows. In Section 2, we state the Sussman’s result on the exact

formulas for the Fourier coefficients of a class of η-quotients. In Section 3, we apply this result
to prove Theorem 1, and using the asymptotic expansion of I2(s) due to Banerjee [2], we deduce
Corollary 2.

2. Fourier coefficients of a class of η-quotients

We consider in this section the exact formulas for the Fourier coefficients of the following class of
holomorphic functions on the open disk given by

G(q) :=
R∏

r=1
(qmr ; qmr )δr∞ =

∞∑
n=0

g (n)qn ,

where m = (m1, . . . ,mR ) is a sequence of R distinct positive integers and δ = (δ1, . . . ,δR ) is a
sequence of R nonzero integers. The functions G(q) can be seen as η-quotients since (q ; q)∞ =
q−1/24η(τ), where Dedekind’s eta function, denoted by η(τ), is defined by the infinite product
η(τ) := q1/24 ∏

n≥1(1−qn) with q = e2πiτand τ ∈H := {z ∈C : Im(z) > 0}. For useful properties of the
Dedekind’s eta function and the definition of η-quotients, we refer the interested reader to the
book [13]. Given a particular G(q) with

∑R
r=1δr < 0, Sussman [15] gave a Rademacher-type exact

formula for g (n), which is a special case of the work of Bringmann and Ono [4] on the coefficients
of harmonic Maass forms. Sussman’s proof follows the original approach of Rademacher [14]
on the Hardy–Ramanujan Circle Method. In the case where

∑R
r=1δr ≥ 0, Chern [7] obtained an

analogous formula with an error term using the method of O-Y. Chan [5].
Before we state Sussman’s result, we need some definitions. For (h,k) ∈N2 with gcd(h,k) = 1,

we set

∆1 =−1

2

R∑
r=1

δr , ∆2 =
R∑

r=1
mrδr ,

∆3(k) =−
R∑

r=1

gcd(mr ,k)2

mr
δr , ∆4(k) =

R∏
r=1

(
gcd(mr ,k)

mr

)δr /2

,
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and

Âk (n) = ∑
0≤h<k

gcd(h,k)=1

exp

(
−2πnhi

k
−πi

R∑
r=1

δr s

(
mr h

gcd(mr ,k)
,

k

gcd(mr ,k)

))
,

where s(h,k) is the Dedekind sum defined in Section 1. We also set L as the least common
multiple of m1, . . . ,mR , and partition the set {1, . . . ,L} into two disjoint subsets

L>0 := {1 ≤ l ≤ L :∆3(l ) > 0},

L≤0 := {1 ≤ l ≤ L :∆3(l ) ≤ 0}.

Theorem 3 ([15]). If ∆1 > 0 and the inequality

min
1≤r≤R

gcd(mr , l )2

mr
≥ ∆3(l )

24
(2)

holds for 1 ≤ l ≤ L, then for positive integers n >−∆2/24, we have

g (n) = 2π
∑

l∈L>0

∆4(l )

(
∆3(l )

24n +∆2

)(∆1+1)/2 ∞∑
k=1

k≡l mod L

I∆1+1

( π

6k

√
∆3(l )(24n +∆2)

) Âk (n)

k
,

where

Iν(s) :=
∞∑

m=0

( s
2 )ν+2m

m!Γ(ν+m +1)

is the νth modified Bessel function of the first kind, and Γ(s) = ∫ ∞
0 e−t t s−1 dt is the gamma

function.

3. Proofs of Theorem 1 and Corollary 2

In this section, we use Theorem 3 to prove Theorem 1. As a consequence, we obtain Corollary 2
using the asymptotic expansion of the modified Bessel function of the first kind due to Baner-
jee [2].

Proof of Theorem 1. Writing

1

(q ; q)∞(q p ; q p )∞
=

∞∑
n=0

ap (n)qn ,

we have m = (1, p),δ= (−1,−1) and L = p. We compute ∆1 = 1 and ∆2 =−p −1. Recalling that p
is a prime, we have that for l ∈ {1, . . . , p},

∆3(l ) =
{

1+ 1
p , l ̸= p

1+p, l = p
, ∆4(l ) =

{p
p, l ̸= p

1, l = p
,

so that L>0 = {1, . . . , p}. Since p ≤ 23, we see that condition (2) holds for l ∈ {1, . . . , p}. Applying
Theorem 3 with Âk (n) = bk (n), we obtain

ap (n) = 2π
∑

l∈L>0

∆4(l )

(
∆3(l )

24n −p −1

) ∞∑
m=1

m≡l mod p

I2

( π

6m

√
∆3(l )(24n −p −1)

) bm(n)

m

for n > (p +1)/24. Plugging in the values of ∆3(l ) and ∆4(l ) yields the desired result. □

We see that the series for ap (n) in Theorem 1 converges rapidly and that the term m = 1
contributes signficantly to the series. We thus obtain the asymptotic formula

ap (n) ∼ 2π
p

p

(
1+p−1

24n −p −1

)
I2

(
π

6

√
(1+p−1)(24n −p −1)

)
, n −→∞. (3)
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To prove Corollary 2, we use the following asymptotic formula [2, Equation (2.11)]

Iν(s) ∼ es

p
2πs

∞∑
m=0

(−1)mdm(ν)

xm , s −→∞, (4)

where

dm(ν) =
(ν−1/2

m

)
(ν+ 1

2 )m

2m

with (
a

m

)
=

{
a(a−1)···(a−m+1)

m! , m ∈N
1, m = 0

,

(a)m =
{

a(a +1) · · · (a +m −1), m ∈N
1, m = 0

for a ∈R.

Proof of Corollary 2. From (4) we get

I2(s) = es

p
2πs

(
1− 15

8s
+O

(
1

s2

))
.

In view of (3), we have

ap (n)∼2
√

3p · (1+p−1)3/4

(24n−p−1)5/4
·exp

(
π

6

√
(1+p−1)(24n−p−1)

)(
1− 45

8π
√

6n(1+p−1)
+O

(
1

n

))
. (5)

Since
1

(24n −p −1)5/4
= 1

(24n)5/4

(
1+O

(
1

n

))
,

exp

(
π

6

√
(1+p−1)(24n −p −1)

)
= exp

π
√

2n(1+p−1)

3

(
1− p−1/2(1+p)3/2π

24
p

6n
+O

(
1

n

))
,

we infer from (5) that

ap (n) ∼ 2
√

3p · (1+p−1)3/4

(24n)5/4

(
1+O

(
1

n

))
·exp

π
√

2n(1+p−1)

3


·
(
1− p−1/2(1+p)3/2π

24
p

6n
+O

(
1

n

))(
1− 45

8π
√

6n(1+p−1)
+O

(
1

n

))
,

and taking logarithms yields the desired conclusion. □

We remark that when p > 23 is a prime, condition (2) of Theorem 3 fails. Nonetheless, by
numerical experiments via Mathematica, we propose the following conjecture.

Conjecture 4. Corollary 2 also holds for primes p > 23.
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