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Abstract. We show how the bialgebra cohomologies of two Hopf algebras involved in an exact sequence are
related, when the third factor is finite-dimensional cosemisimple. As an application, we provide a short proof
of the computation of the bialgebra cohomology of the universal cosovereign Hopf algebras in the generic
(cosemisimple) case, done recently by Baraquin, Franz, Gerhold, Kula and Tobolski.

Résumé. Nous montrons comment les cohomologies de Gertstenhaber–Schack de deux algèbres de Hopf
imbriquées dans une suite exacte courte sont reliées, quand le troisième facteur est cosemisimple de
dimension finie. Nous en déduisons une preuve rapide du calcul de la cohomologie de bigèbre des algèbres
de Hopf cosouveraines universelles dans le cas générique, établi récemment par Baraquin, Franz, Gerhold,
Kula et Tobolski.
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1. introduction

Gerstenhaber–Schack cohomology, which includes bialgebra cohomology as a special instance,
is a cohomology theory adapted to Hopf algebras. It was introduced in [17, 18] by means
of an explicit bicomplex modeled on the Hochschild complex of the underlying algebra and
the Cartier complex of the underlying coalgebra, with deformation theory as a motivation.
See [24] for an exposition, with the original coefficients being Hopf bimodules, but in view of
the equivalence between Hopf bimodules and Yetter–Drinfeld modules [23], one can work in the
simpler framework of Yetter–Drinfeld modules.

Gerstenhaber–Schack cohomology has been useful in proving some fundamental results in
Hopf algebra theory [16, 25], but few concrete computations were known (see [22, 24]) until it
was shown by Taillefer [26] that Gerstenhaber–Schack cohomology can be identified with the Ext
functor on the category of Yetter–Drinfeld modules: if A is a Hopf algebra, V is a Yetter–Drinfeld
module over A and k is the trivial Yetter–Drinfeld module, one has

H∗
GS(A,V ) ≃ Ext∗

Y DA
A

(k,V ).

The bialgebra cohomology of A is then defined by H∗
b (A) = H∗

GS(A,k). We will use this Ext
description, which opens the way to use classical tools of homological algebra, as a definition.
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Note that the category Y DA
A has enough injective objects [12, 26], so the above Ext spaces can

be studied using injective resolutions of V , and when Y DA
A has enough projective objects (for

example if A is cosemisimple, or more generally if A is co-Frobenius), they can also be computed
by using projective resolutions of the trivial module.

This note is a contribution to the study of Gerstenhaber–Schack cohomology: we show
how the bialgebra (and Gerstenhaber–Schack) cohomologies of two Hopf algebras involved in
an exact sequence of Hopf algebras are related when the third factor is a finite-dimensional
cosemisimple Hopf algebra, see Theorem 6. When the third factor is the semisimple group
algebra of a finite abelian group, the result even takes a nicer form, see Corollary 8.

We apply our result to provide a computation of the bialgebra cohomology of the universal
cosovereign Hopf algebras [9] in the generic (cosemisimple) case, a class of Hopf algebras that we
believe to be of particular interest in view of their universal property, see [5]. Such a computation
has just been done by Baraquin, Franz, Gerhold, Kula and Tobolski [3], but the present proof is
shorter.

2. Preliminaries

We work over an algebraically closed field k, and use standard notation from Hopf algebra theory,
for which a standard reference is [21].

2.1. Exact sequences of Hopf algebras

Recall that a sequence of Hopf algebra maps

k −→ B
i−→ A

p−→ L −→ k

is said to be exact [1] if the following conditions hold:

(1) i is injective and p is surjective,
(2) Ker(p) = Ai (B)+ = i (B)+A, where i (B)+ = i (B)∩Ker(ε),
(3) i (B) = AcoL = {a ∈ A : (id⊗p)∆(a) = a ⊗1} = coL A = {a ∈ A : (p ⊗ id)∆(a) = 1⊗a}.

Note that condition (2) implies pi = ε1.
In an exact sequence as above, we can assume, without loss of generality, that B is Hopf

subalgebra and i is the inclusion map.

A Hopf algebra exact sequence k → B
i→ A

p→ L → k is said to be cocentral if the Hopf algebra
map p is cocentral, that is for any a ∈ A, we have p(a(1))⊗a(2) = p(a(2))⊗a(1).

2.2. Yetter–Drinfeld modules

Recall that a (right-right) Yetter–Drinfeld module over a Hopf algebra A is a right A-comodule and
right A-module V satisfying the condition, ∀v ∈V , ∀a ∈ A,

(v ·a)(0) ⊗ (v ·a)(1) = v(0) ·a(2) ⊗S(a(1))v(1)a(3).

The category of Yetter–Drinfeld modules over A is denoted Y DA
A : the morphisms are the A-linear

and A-colinear maps. The category Y DA
A is obviously abelian, and, endowed with the usual

tensor product of modules and comodules, is a monoidal category, with unit the trivial Yetter–
Drinfeld module, denoted k. If A has bijective antipode, for a finite-dimensional Yetter–Drinfeld
module V over A, the dual vector space V ∗ has a Yetter–Drinfeld module structure given by, for
f ∈V ∗ and v ∈V

f ·a(v) = f (v ·S−1(a)), f(0)(v) f(1) = f (v(0))S(v(1)).
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See for example [19, Lemma 4.2.2] in the left-left case. In this way the usual evaluation and
coevaluation maps V ∗⊗V → k and k → V ⊗V ∗ are morphisms of Yetter–Drinfeld modules, and
the Yetter–Drinfeld module V ∗ becomes a left dual of V in the monoidal category sense, and in
particular the functors −⊗V and −⊗V ∗ form a pair of adjoint functors: we have for all Yetter–
Drinfeld modules X ,Y over A, natural isomorphisms

HomY DA
A

(X ⊗V ,Y ) ≃ HomY DA
A

(X ,Y ⊗V ∗).

Since the functors −⊗V and −⊗V ∗ are exact, the above isomorphisms extend to isomorphisms

Ext∗
Y DA

A
(X ⊗V ,Y ) ≃ Ext∗

Y DA
A

(X ,Y ⊗V ∗).

This is similar to [20, IV.12], using injective resolutions (as said in the introduction, the category
of Yetter–Drinfeld modules has enough injective objects).

Example 1. Let B ⊂ A be a Hopf subalgebra, and consider the quotient coalgebra L = A/B+A.
Endow L with the right A-module structure induced by the quotient map p : A → L, i.e p(a) ·b =
p(ab) and with the coadjoint A-comodule structure given p(a) 7→ p(a(2))⊗S(a(1))a(3) (this is well-
defined since for b ∈ B and a ∈ A, one has p(ba) = ε(b)a). Then L, endowed with these two

structures, is a Yetter–Drinfeld module over A. In particular if k → B
i→ A

p→ L → k is an exact
sequence of Hopf algebras, then L inherits a Yetter–Drinfeld module structure over A.

Example 2. Let ψ : A → k be an algebra map satisfying ψ(a(1))a(2) = ψ(a(2))a(1) for any a ∈ A.
Endow k with the trivial A-comodule structure and with the A-module structure induced by
ψ. Then k, endowed with these two structures, is a Yetter–Drinfeld module over A, that we
denote kψ.

Examples 1 and 2 are related by the following lemma.

Lemma 3. Let p : A → kΓ be a surjective cocentral Hopf algebra map, where Γ is a group. For
ψ ∈ Γ̂= Hom(Γ,k∗), we still denote by ψ : A → k the composition of the linear extension of ψ to kΓ
with p. If Γ is finite abelian and |Γ| ̸= 0 in k, the Fourier transform is an isomorphism

kΓ≃ ⊕
ψ∈Γ̂

kψ

in the category Y DA
A , where kΓ has the coadjoint Yetter–Drinfeld structure given in Example 1, and

the right-handed term has the Yetter–Drinfeld structure from Example 2.

Proof. The Fourier transform is defined by

F : kΓ−→ ⊕
ψ∈Γ̂

kψ, Γ ∋ g 7−→ ∑
ψ∈Γ̂

ψ(g )eψ

where eψ denotes the basis element in kψ, and since k is algebraically closed, the assumption
|Γ| ̸= 0 in k ensures that F is a linear isomorphism. The cocentrality assumption on p ensures
that the A-comodule structure on kΓ from Example 1 is trivial, so F is a comodule map as well.
To prove the A-linearity of F , recall first that p : A → kΓ induces a kΓ-comodule algebra structure
(id⊗p)◦∆ : A → A⊗kΓ on A and hence an algebra grading

A = ⊕
g∈Γ

Ag
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where Ag = {a ∈ A | a(1) ⊗p(a(2)) = a ⊗ g }, with a ∈ Ag ⇒ p(a) = ε(a)g . For g ∈ Γ, pick a ∈ Ag such
that ε(a) = 1. For h ∈ Γ and a′ ∈ Ah , we have aa′ ∈ Ag h and hence

F (g ·a′) =F (p(aa′)) =F (ε(aa′)g h) = ε(a′)
∑
ψ∈Γ̂

ψ(g h)eψ = ε(a′)
∑
ψ∈Γ̂

ψ(g )ψ(h)eψ

= ∑
ψ∈Γ̂

ψ(g )ε(a′)ψ(h)eψ = ∑
ψ∈Γ̂

ψ(g )ψ(p(a′))eψ = ∑
ψ∈Γ̂

ψ(g )eψ ·a′ =F (g ) ·a′

and this concludes the proof. □

3. Main results

The main tool to prove our main results will be induction and restriction of Yetter–Drinfeld
modules, that we first recall.

Let B ⊂ A be a Hopf subalgebra. Recall [9, 13] that we have a pair of adjoint functors

Y DA
A −→Y DB

B Y DB
B −→Y DA

A

X 7−→ X (B) V 7−→V ⊗B A

constructed as follows:

(1) For an object X in Y DA
A , X (B) = {x ∈ X | x(0) ⊗ x(1) ∈ X ⊗B} is equipped with the obvious

B-comodule structure, and is a B-submodule of X . We have X (B) ≃ X□AB , where the
right term is the cotensor product, and we say that B ⊂ A is (left) coflat when the above
functor X 7→ X□AB , M A →M B is exact.

(2) For an object V ∈ Y DB
B , the induced A-module V ⊗B A has the A-comodule structure

given by the map

v ⊗B a 7−→ v(0) ⊗B a(2) ⊗S(a(1))v(1)a(3).

We then have the following result [9, Proposition 3.3], which follows from the general machin-
ery of pairs of adjoint functors.

Proposition 4. Let B ⊂ A be a Hopf subalgebra. If B ⊂ A is coflat and A is flat as a left B-module,
we have, for any object X in Y DA

A and any object V in Y DB
B , natural isomorphisms

Ext∗
Y DA

A
(V ⊗B A, X ) ≃ Ext∗

Y DB
B

(V , X (B)).

Remark 5. Let B ⊂ A be a Hopf subalgebra, and consider the quotient coalgebra L = A/B+A.
Recall from Example 1 that L has a natural Yetter–Drinfeld module structure over A. The induced
Yetter–Drinfeld module k ⊗B A is isomorphic to L in Y DA

A .

Theorem 6. Let k → B → A → L → k be an exact sequence of Hopf algebras, with L finite-
dimensional and cosemisimple, and A having bijective antipode. We have, for any X ∈Y DA

A ,

H∗
GS(B , X (B)) ≃ H∗

GS(A, X ⊗L∗)

and hence in particular
H∗

b (B) ≃ H∗
GS(A,L∗)

where L∗ is the dual Yetter–Drinfeld module of L.

Proof. Since L = A/B+A is cosemisimple, B ⊂ A is coflat [9, Proposition 3.4]. Moreover, still
because L is cosemisimple, the quotient map A → L is faithfully coflat, and hence A is (faithfully)
flat as a B-module by the left version of [27, Theorem 2]. Hence we can use Proposition 4 applied
to V = k to get

Ext∗
Y DA

A
(k ⊗B A, X ) ≃ Ext∗

Y DB
B

(k, X (B))
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and hence, by Remark 5,
Ext∗

Y DA
A

(L, X ) ≃ Ext∗
Y DB

B
(k, X (B)).

Since L is assumed to be finite-dimensional, the adjunction between the exact functors −⊗L and
−⊗L∗ provides the announced isomorphism, see Subsection 2.2. □

Remark 7. Let k → B → A → L → k be an exact sequence of Hopf algebras, with A cosemisimple.
Then by L is cosemisimple by the discussion before Theorem 2.5 in [14]. Hence if L is finite-
dimensional, the conclusion of Theorem 6 holds.

Corollary 8. Let k → B → A → kΓ → k be a cocentral exact sequence of Hopf algebras, with A
having bijective antipode and Γ a finite abelian group with |Γ| ̸= 0 in k. We have, for any X ∈Y DA

A ,

H∗
GS(B , X (B)) ≃ ⊕

ψ∈Γ̂
H∗

GS(A, X ⊗kψ)

and hence in particular
H∗

b (B) ≃ ⊕
ψ∈Γ̂

H∗
GS(A,kψ).

Proof. We are in the situation of Theorem 6, hence

H∗
GS(B , X (B)) ≃ H∗

GS(A, X ⊗L∗)

for L = kΓ. The assumption on Γ, ensures, by Lemma 3, that L ≃ ⊕ψ∈Γ̂kψ as Yetter–Drinfeld
modules over A, and hence in particular L ≃ L∗. The statement follows. □

Remark 9. Recall that the Gerstenhaber–Schack cohomological dimension of a Hopf algebra A
is defined by

cdGS(A) = sup
{
n : H n

GS(A,V ) ̸= 0 for some V ∈Y DA
A

} ∈N∪ {∞}.

Let k → B → A → kΓ → k be a cocentral exact sequence with Γ a finite abelian group such
|Γ| ̸= 0. Then it follows from Corollary 8 that cdGS(B) ≥ cdGS(A). If A is cosemisimple, then
cdGS(B) = cdGS(A) by [9, Theorem 4.8]. We expect that equality holds in general.

4. Application to the bialgebra cohomology of universal cosovereign Hopf algebras

4.1. Universal cosovereign Hopf algebras

Recall that for n ≥ 2 and F ∈ GLn(k), the universal cosovereign Hopf algebra H(F ) is the algebra
presented by generators (ui j )1≤i , j≤n and (vi j )1≤i , j≤n , and relations:

uv t = v t u = In ; vF ut F−1 = F ut F−1v = In ,

where u = (ui j ), v = (vi j ) and In is the identity n×n matrix. The algebra H(F ) has a Hopf algebra
structure defined by

∆(ui j ) =∑
k

ui k ⊗uk j , ∆(vi j ) =∑
k

vi k ⊗ vk j ,

ε(ui j ) = ε(vi j ) = δi j , S(u) = v t , S(v) = F ut F−1.

When k = C and F is a positive matrix, so that F = K ∗K for some K ∈ GLn(C), then H(F ) carries
a Hopf ∗-algebra structure so that it is the coordinate algebra of the universal unitary compact
quantum group U+

K of Van Daele and Wang [29]. We refer the reader to [5, 9] for more information
and background on the Hopf algebras H(F ). Recall from [5] that a matrix F ∈ GLn(k) is said to be

• normalizable if tr(F ) ̸= 0 and tr(F−1) ̸= 0 or tr(F ) = 0 = tr(F−1);
• generic if it is normalizable and the solutions of the equation q2−

√
tr(F ) tr(F−1)q +1 = 0 are

generic, i.e. are not roots of unity of order ≥ 3 (this property does not depend on the choice of the
above square root);

• an asymmetry if there exists E ∈ GLn(k) such that F = E t E−1.
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4.2. Hopf algebras of bilinear forms

Let E ∈ GLn(k). The Hopf algebra B(E) defined by Dubois–Violette and Launer [15] is presented
by generators ai j , 1 ≤ i , j ≤ n, and relations E−1at E a = In = aE−1at E , where a is the matrix (ai j ).
The Hopf algebra structure is given by

∆(ai j ) =∑
k

ai k ⊗ak j , ε(ai j ) = δi j , S(a) = E−1at E .

For an appropriate matrix Eq , one has B(Eq ) = Oq (SL2(k)), the coordinate algebra on quan-
tum SL2. The Hopf algebra B(E) is cosemisimple if and only if F = E t E−1 is generic in the sense
of the previous subsection: this follows from [4] and the classical result for Oq (SL2(k)).

When k = C and EE = r In for r ∈ R∗, then B(E) has a Hopf ∗-algebra structure making it the
coordinate algebra of the universal orthogonal compact quantum group O+

E of Van Daele and
Wang [29].

Denote by B+(E) the subalgebra of B(E) generated by the products ai j akl , 1 ≤ i , j ,k, l ≤ n.
This is a Hopf subalgebra of B(E), that fits into a cocentral exact sequence

k −→B+(E) −→B(E) −→ kZ2 −→ k

where the projection on the right is given by p(ai j ) = δi j g , with g being the generator of the
cyclic groupZ2. By Example 1, kZ2 inherits a Yetter–Drinfeld module structure over B(E), whose
module structure is induced by p, and comodule structure is trivial.

The bialgebra cohomology of B(E) was computed in the cosemisimple case in [6, Theo-
rem 6.5] with C as a base field. We record and supplement the result here, taking care of the
characteristic of the base field, together with another computation of Gerstenhaber–Schack co-
homology, with coefficients in kZ2.

Theorem 10. Let E ∈ GLn(k), n ≥ 2, and assume that E t E−1 is generic.

(1) We have

H p
GS(B(E),kZ2) ≃

{
k if p = 0,3

{0} otherwise.

(2) If char(k) ̸= 2, then

H p
b (B(E)) ≃

{
k if p = 0,3

{0} otherwise.

(3) If char(k) = 2, then

H p
b (B(E)) ≃

{
k if p = 0,1,2,3

{0} otherwise.

Proof. The resolution given in [6, Theorem 5.1] is valid over any field, and can be used to
compute the above cohomologies, since the involved Yetter–Drinfeld modules are free, and hence
projective by the cosemisimplicity assumption on B(E). The result is then obtained by direct
computations, which depend on whether k has, or not, characteristic 2. □

As a first application of the results of Section 3, we recover in a shorter way the bialgebra co-
homology computation of B+(E) in the cosemisimple case [8, Theorem 6.4], that we supplement
in the characteristic 2 case.

Corollary 11. Let E ∈ GLn(k), n ≥ 2, and assume that E t E−1 is generic. We have

H p
b (B+(E)) ≃

{
k if p = 0,3

{0} otherwise.

Proof. The Yetter–Drinfeld module kZ2 is self dual, hence the result is the combination of the
first part of Theorem 10 and of Theorem 6. □
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4.3. Relation between H(F ) and B(E)

The first relation between H(F ) and B(E) was observed by Banica in [2], when F = E t E−1 ∈
GLn(C) is positive matrix, and a key result from [2] in that case is the existence of a Hopf algebra
embedding

H(F ) ,→B(E)∗CZ (4.1)

which, according to [28, Proposition 6.20], can be refined to an embedding

H(F ) ,→B(E)∗CZ2. (4.2)

This is strengthened in [3, Theorem 4.11], where it is shown that the embedding is still valid for
any generic asymmetry F .

In fact, there is a simple proof of this result, valid over any field k and any asymmetry
F = E t E−1.

Proposition 12. Let E ∈ GLn(k) and let F = E t E−1. There exists a Z2-action on H(F ) such one gets
a Hopf algebra isomorphism

H(F )⋊kZ2 ≃B(E)∗kZ2.

Proof. The announced Z2-action, from [11, Example 2.18], is provided by the order 2 Hopf
algebra automorphism of H(F ) given in matrix form as follows

τ(u) = (E t )−1vE t , τ(v) = E t u(E t )−1.

We therefore form the usual crossed product Hopf algebra H(F ) ⋊ kZ2. Denoting by g the
generator of Z2, it is a straightforward verification to check the existence of a Hopf algebra map,
written in matrix form

H(F )⋊kZ2 −→B(E)∗kZ2

u, v, g 7−→ ag , E t g a(E t )−1, g .

Similarly, it is straightforward to construct an inverse isomorphism

B(E)∗kZ2 −→ H(F )⋊kZ2

a, g 7−→ ug , g .

We leave the detailed verification to the reader. □

4.4. Bialgebra cohomology of H(F ) in the generic case

Theorem 13. Let F ∈ GLn(k), n ≥ 2, with F generic. The bialgebra cohomology of H(F ) is

H p
b (H(F )) ≃

{
k if p = 0,1,3

{0} otherwise.

Proof. First notice that one always has H 0
b (A) = k for any Hopf algebra, while the computation of

H 1
b (H(F )) is extremely easy (see the complex in [8, Proposition 5.3]), so we concentrate on degree

p ≥ 2. First consider the asymmetry case: F = E t E−1. Consider the Z2-action of Proposition 12
and the Hopf algebra map

ε⊗ id: H(F )⋊kZ2 −→ kZ2.

This is cocentral, and the associated Hopf subalgebra B is clearly the image of the natural
embedding H(F ) ,→ H(F )⋊kZ2. Theorem 6 gives an isomorphism

H∗
b (H(F )) ≃ H∗

GS(H(F )⋊kZ2,kZ2).
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Considering now the isomorphism of Proposition 12, we obtain the isomorphism

H∗
b (H(F )) ≃ H p

GS(B(E)∗kZ2,kZ2).

Since B(E) is cosemisimple as well, [9, Theorem 5.9] yields, for p ≥ 2,

H p
b (H(F )) ≃ H p

GS(B(E),kZ2)⊕H p
GS (kZ2,kZ2).

Since kZ2 is cosemisimple and cocommutative, we have H p
GS(kZ2,kZ2) ≃ Extp

kZ2
(k,kZ2), and the

latter Ext-space is easily seen to vanish if p ≥ 1. We conclude by the first part of Theorem 10.
For a general matrix F , by [5, Theorem 1.1] there always exists an asymmetry F (q) ∈ GL2(k)

such that the tensor categories of comodules H(F ) and H(q) are equivalent, hence the monoidal
invariance of bialgebra cohomology (see e.g. [7, Theorem 7.10]) gives the result. □

Remark 14. One can also compute the usual Hochschild cohomology for H(F ) in the asymmetry
case, for particular choices of coefficients, by combining Proposition 12 and the usual adjunction
relation for Ext (see e.g. [20, IV.12]). The computation is done in greater generality in [3,
Theorem B], and is valid for any normalizable F over any field, since Proposition 12 is. Notice
also that it follows from [3] that cd(H(F )) = 3 for any normalizable F , which was only known
for F an asymmetry [9] or F generic [10]. Here cd is the cohomological dimension, i.e. the
global dimension, which, for Hopf algebras, coincides as well with the Hochschild cohomological
dimension.
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