Comptes Rendus

Mathématique

Thibaut Le Gouic

A note on flatness of non separable tangent cone at a barycenter
Volume 358, issue 4 (2020), p. 489-495
Published online: 28 July 2020
https://doi.org/10.5802/crmath. 66
(c) BY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

A note on flatness of non separable tangent cone at a barycenter

Une note sur la platitude du cône tangeant à un
 barycentre

Thibaut Le Gouic ${ }^{\circledR} a$

${ }^{a}$ Massachusetts Institute of Technology, Department of Mathematics and Centrale Marseille, I2M, UMR 7373, CNRS, Aix-Marseille univ., Marseille, 13453, France.
E-mail: thibaut.le_gouic@math.cnrs.fr.

Abstract

Given a probability measure \mathbf{P} on an Alexandrov space S with curvature bounded below, we prove that the support of the pushforward of \mathbf{P} on the tangent cone $T_{b^{\star}} S$ at its (exponential) barycenter b^{\star} is a subset of a Hilbert space, without separability of the tangent cone. Résumé. Étant donné une mesure de probabilité \mathbf{P} sur un espace d'Alexandrov S avec courbure minorée, nous prouvons que le support de la mesure poussée de \mathbf{P} sur le cône tangent $T_{b^{\star}} S$ à son barycentre (exponentiel) b^{\star} est un sous-ensemble d'un espace de Hilbert, sans condition de séparabilité du cône tangent.

Funding. Supported by ONR grant N00014-17-1-2147.
Manuscript received 16th September 2019, revised 31st December 2019 and 20th April 2020, accepted 29th April 2020.

1. Introduction

Barycenter of a probability measure \mathbf{P} (a.k.a. Fréchet means) provides an extension of expectation on Euclidean space to arbitrary metric spaces. We present here a useful tool for the study of barycenters on Alexandrov spaces with curvature bounded below: the support of $\log _{b^{\star}} \# \mathbf{P}$ in the tangent cone at the barycenter is included in a Hilbert space. This rigidity result has been stated in [9] as Theorem 45, however the proof is not written. Moreover, there is an extra assumption of support of $\log _{b^{\star}} \# \mathbf{P}$ being separable, which does not even seem to be a consequence of the support of \mathbf{P} being separable. As pointed out by [7], it is not clear if even S being proper ensures that the tangent cone is separable. This paper presents a proof of this rigidity result, without this extra separable assumption on the tangent cone. For measurability purposes (see Lemma 6), we suppose however that S is separable. The proof is essentially the one of Theorem 45 of [9], with needed approximations dealt with a bit differently.

2. Setting and main result

We use a classical notion of curvature bounded below for geodesic spaces, referred to as Alexandrov curvature. We recall several notions whose formal definitions can be found for instance in [3] or in the work in progress [2].

For a metric space (S, d), we denote by $\mathscr{P}_{1}(S)$ the set of probability measures on S with finite moment of order 1 (i.e. such that there exists $x \in S$ such that $\left.\int d(x, y) \mathrm{d} \mathbf{P}(y)<\infty\right)$. The support of a measure \mathbf{P} will be denoted by supp \mathbf{P}. We use both notation $\int f \mathrm{~d} \mathbf{P}$ and $\mathbf{P} f$ for the integral of f w.r.t. P.

A geodesic space is a metric space (S, d) such that every two points $x, y \in S$ at distance is connected by a curve of length $d(x, y)$. Such shortest curves are called geodesics. For $\kappa \in \mathbf{R}$, the model space $\left(\mathbf{M}_{\kappa}, d_{\kappa}\right)$ denotes the 2-dimensional simply connected complete surface of constant Gauss curvature κ. A geodesic space (S, d) is an Alexandrov space with curvature bounded below by $\kappa \in \mathbf{R}$ if for every triangle (3-uple) $\left(x_{0}, x_{1}, y\right) \in S$, and a constant speed geodesic $\left(x_{t}\right)_{t \in[0 ; 1]}$ there exists an isometric triangle $\left(\widetilde{x}_{0}, \widetilde{x}_{1}, \widetilde{y}\right) \in \mathbf{M}_{\kappa}$, such that the geodesic $\left(\widetilde{x}_{t}\right)_{t \in[0 ; 1]}$ satisfies for all $t \in[0 ; 1]$,

$$
d\left(y, x_{t}\right) \geq d_{\kappa}\left(\widetilde{y}, \tilde{x}_{t}\right)
$$

For such spaces, angles between two unit-speed geodesics γ_{1}, γ_{2} starting at the same point $p \in S$ can be defined as follows:

$$
\cos \angle_{p}\left(\gamma_{1}, \gamma_{2}\right)=\lim _{t \rightarrow 0} \frac{d^{2}\left(\gamma_{1}(t), p\right)+d^{2}\left(\gamma_{2}(t), p\right)-d^{2}\left(\gamma_{1}(t), \gamma_{2}(t)\right)}{2 d\left(p, \gamma_{1}(t)\right) d\left(p, \gamma_{2}(t)\right)}
$$

where angle $\angle_{p}\left(\gamma_{1}, \gamma_{2}\right) \in[0 ; \pi]$. Denote by Γ_{p} the set of all unit-speed geodesics emanating from p. Using angles, we can define the tangent cone $T_{p} S$ at $p \in S$ as follows. First define $T_{p}^{\prime} S$ as the (quotient) set $\Gamma_{p} \times \mathbf{R}^{+}$, equipped with the (pseudo-)metric defined by

$$
\left\|\left(\gamma_{1}, t\right)-\left(\gamma_{2}, s\right)\right\|_{p}^{2}:=s^{2}+t^{2}-2 s . t \cos \angle_{p}\left(\gamma_{1}, \gamma_{2}\right)
$$

Then, the tangent cone $T_{p} S$ is defined as the completion of $T_{p}^{\prime} S$ equipped with the metric $\|\cdot\|_{p}$. We will use the notation for $u, v \in T_{p} S$,

$$
\langle u, v\rangle_{p}:=\frac{1}{2}\left(\|u\|_{p}^{2}+\|v\|_{p}^{2}-\|u-v\|_{p}^{2}\right)
$$

We will often identify a point $\gamma(t) \in S$ with $(\gamma, t) \in T_{p} S$. Although such γ might not be unique, we will assume a choice of a map $\log _{p}: S \rightarrow T_{p} S$, called logarithmic map, such that for all $x \in S$, there exists a unit-speed geodesic γ emanating from p such that, for some $t>0, \gamma(t)=x$ and

$$
\log _{p}(x)=(\gamma, t)
$$

This map can be chosen to be \mathfrak{S}_{B}-measurable, where \mathfrak{S}_{B} denotes the σ-algebra generated by open balls on the tangent cone $T_{p} S$ (see Lemma 6) and this weak measurability is enough for our results to hold and will be assumed for the rest of the paper. Then the pushforward of \mathbf{P} by $\log _{p}$ will be denoted by $\log _{p} \# \mathbf{P}$.

The tangent cone is not necessarily a geodesic space (see [4]), however, it is included in a geodesic space, namely the ultratangent space (see for instance Theorem 14.4.2 and 14.4.1 in [2]) that is an Alexandrov space with curvature bounded below by 0 .

The tangent cone $T_{p} S$ contains the subspace Lin_{p} of all points with an opposite, formally defined as follows. A point u belongs to $\operatorname{Lin}_{p} \subset T_{p} S$ if and only if there exists $v \in T_{p} S$ such that $\|u\|_{p}=\|v\|_{p}$ and

$$
\langle u, v\rangle_{p}=-\|u\|_{p}^{2}
$$

Our main result is based on the following Theorem.
Theorem (Theorem 14.5.4 in [2]). The set Lin_{p} equipped with the induced metric of $T_{p} S$ is a Hilbert space.

A point $b^{\star} \in S$ is a barycenter of the probability measure $\mathbf{P} \in \mathscr{P}_{1}(S)$ if for all $b \in S$

$$
0 \leq \int d^{2}(x, b)-d^{2}\left(x, b^{\star}\right) \mathrm{d} \mathbf{P}(x)
$$

Such barycenter might not be unique, neither exists. However, when they exist, they satisfy

$$
\begin{equation*}
\int\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P} \otimes \mathbf{P}(x, y)=0 \tag{1}
\end{equation*}
$$

A point $b^{\star} \in S$ satisfying (1) is called an exponential barycenter of \mathbf{P}.
We can now state our main result.
Theorem 1. Let (S, d) be an Alexandrov space with curvature bounded below by some $\kappa \in \mathbf{R}$ and $\mathbf{P} \in \mathscr{P}_{1}(S)$. If $b^{\star} \in S$ is an exponential barycenter of \mathbf{P}, then supp $\log _{b^{\star}} \# \mathbf{P} \subset \operatorname{Lin}_{b^{\star}} S$. In particular, supp $\log _{b^{\star}} \# \mathbf{P}$ is included in a Hilbert space.

This result allows to prove the following Corollary, that has been implicitly used in [1].
Corollary 2 (Linearity). Let $b \in T_{b^{\star}} S$. Then, the $\operatorname{map}\langle\cdot, b\rangle_{b^{\star}}: \operatorname{Lin}_{b^{\star}} \rightarrow \mathbf{R}$ is continuous and linear. In particular, if b^{\star} is an exponential barycenter of \mathbf{P}, then

$$
\int\langle x, b\rangle_{b^{\star}} \mathrm{d} \mathbf{P}(x)=0
$$

3. Proofs

Recall that we always identify a point in S and its image in the tangent cone $T_{p} S$ by the $\log _{p}$ map.
Proof of Corollary 2. Linearity is obvious from the definition of $\langle\cdot, b\rangle_{b^{\star}}$. We check that $x \mapsto$ $\langle x, b\rangle_{b^{\star}}$ is a convex and concave function in $\operatorname{Lin}_{b^{\star}} S$. Let $t \in(0,1), x_{0}, x_{1}$ in $\operatorname{Lin}_{b^{\star}} S$, and set $x_{t}=(1-t) x_{0}+t x_{1}$. Since the tangent cone is included in an Alexandrov space with curvature bounded below by 0 on one hand, and $\operatorname{Lin}_{b^{\star}}$ is a Hilbert space on the other hand,

$$
\begin{aligned}
\left\langle x_{t}, b\right\rangle_{b^{\star}} & =\frac{1}{2}\left(\left\|x_{t}\right\|_{b^{\star}}^{2}+\|b\|_{b^{\star}}^{2}-\left\|x_{t}-b\right\|^{2}\right) \\
& \leq \frac{1}{2}\left((1-t)\left(\left\|x_{0}\right\|_{b^{\star}}^{2}-\left\|x_{0}-b\right\|_{b^{\star}}^{2}\right)+t\left(\left\|x_{1}\right\|_{b^{\star}}^{2}-\left\|x_{1}-b\right\|^{2}\right)+\|b\|_{b^{\star}}^{2}\right) \\
& =(1-t)\left\langle x_{0}, b\right\rangle_{b^{\star}}+t\left\langle x_{1}, b\right\rangle_{b^{\star}} .
\end{aligned}
$$

The same lines applied to $-x_{0}$ and $-x_{1}$ gives the converse inequality

$$
\left\langle-x_{t}, b\right\rangle_{b^{\star}} \leq(1-t)\left\langle-x_{0}, b\right\rangle_{b^{\star}}+t\left\langle-x_{1}, b\right\rangle_{b^{\star}}
$$

The second statement follows from the fact that b^{\star} is a Pettis integral of the pushforward of \mathbf{P} onto $\operatorname{Lin}_{b^{\star}} \subset T_{b^{\star}} S$, as a direct consequence of Theorem 1 .

Proof of Theorem 1. Let $L \subset\left\{x \in S \mid \int\langle x, \cdot\rangle_{b^{\star}} \mathrm{d} \mathbf{P}=0\right\}$ be a measurable set such that $\mathbf{P}(L)=1$ given by Lemma 3. Let $x \in L$. For $U=\{x\}$, use Lemma 5 with $\mathbf{Q}=\mathbf{P}$ and B_{δ} a ball of radius δ around x in $T_{b^{\star}} S$, to get a sequence $\left(y_{\delta}^{n}\right)_{n} \subset T_{b^{\star}} S$ such that,

$$
\begin{aligned}
\limsup _{n} \cos \angle\left(\uparrow_{b^{\star}}^{x}, \uparrow_{b^{\star}}^{y_{\delta}^{n}}\right) & =\limsup _{n} \frac{\left\langle x, y_{\delta}^{n}\right\rangle_{b^{\star}}}{d\left(b^{\star}, x\right) d\left(b^{\star}, y_{\delta}^{n}\right)} \\
& =\frac{1}{d\left(b^{\star}, x\right)}{\limsup \left\langle x, y_{\delta}^{n}\right\rangle_{b^{\star}} \frac{1}{\lim _{n} d\left(b^{\star}, y_{\delta}^{n}\right)}} \\
& \leq \frac{1}{d\left(b^{\star}, x\right)} \frac{\int_{B_{\delta}^{c}}\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P}(x)}{\mathbf{P}\left(B_{\delta}\right)} \frac{\mathbf{P}\left(B_{\delta}\right)}{\left(\int_{B_{\delta}} \int_{B_{\delta}}\langle x, y\rangle_{b^{\star}} \mathrm{dP} \otimes \mathbf{P}(x, y)\right)^{1 / 2}} .
\end{aligned}
$$

Then, since $\int\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P}(y)=0$, letting $\delta \rightarrow 0$, one gets

$$
\frac{1}{\mathbf{P}\left(B_{\delta}\right)} \int_{B_{\delta}^{c}}\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P}(y)=-\frac{1}{\mathbf{P}\left(B_{\delta}\right)} \int_{B_{\delta}}\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P}(y) \rightarrow-d^{2}\left(b^{\star}, x\right)
$$

and

$$
\frac{\left(\int_{B_{\delta}} \int_{B_{\delta}}\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P} \otimes \mathbf{P}(x, y)\right)^{1 / 2}}{\mathbf{P}\left(B_{\delta}\right)} \rightarrow d\left(b^{\star}, x\right)
$$

Thus,

$$
\lim _{\delta \rightarrow 0^{+}} \limsup _{n} \cos \angle\left(\uparrow_{b^{\star}}^{x}, \uparrow_{b^{\star}}^{y_{\delta}^{n}}\right)=-1
$$

One can thus choose $\left(\bar{y}^{n}\right)_{n}$ a sequence in $\left(y_{\delta}^{n}\right)_{n, \delta}$ such that $\cos \angle\left(\uparrow_{b^{\star}}^{x}, \uparrow_{b^{\star}}^{\bar{y}^{n}}\right) \rightarrow-1$. Since $T_{b^{\star}} S$ is a subspace of an Alexandrov space of curvature bounded below by 0 , we also have

$$
\begin{aligned}
\angle\left(\uparrow_{b^{\star}}^{\bar{y}^{n}}, \uparrow_{b^{\star}}^{\bar{y}^{k}}\right) & \leq 2 \pi-\angle\left(\uparrow_{b^{\star}}^{\bar{y}^{n}}, \uparrow_{b^{\star}}^{x}\right)-\angle\left(\uparrow_{b^{\star}}^{x}, \uparrow_{b^{\star}}^{\bar{y}^{k}}\right) \\
& \rightarrow 0,
\end{aligned}
$$

as $n, k \rightarrow \infty$. Thus $\left(\bar{y}^{n}\right)_{n}$ corresponds to a Cauchy sequence in the space of direction, and thus admits a limit in $T_{b^{\star}} S$, since its "norm" also admits a limit $d\left(b^{\star}, x\right)$. Its limit \bar{y} satisfies $\cos \angle\left(\uparrow_{b^{\star}}^{x}, \uparrow_{b^{\star}}^{\bar{y}}\right)=-1$, and therefore, it is the opposite $\bar{y}=-x$.

Finally, by definition of the support, for $x \in \operatorname{supp}\left(\log _{b^{\star}} \mathbf{P}\right)$, every ball centered at x have a positive probability, and thus there exists a sequence $\left(x_{n}\right)_{n \geq 1} \subset L$ such that $x_{n} \rightarrow x$. We conclude with the completeness of $\operatorname{Lin}_{b^{\star}}$.

Lemma 3 (Proposition 1.7 of [8] for non separable metric space). Suppose (S, d) is an Alexandrov space with curvature bounded below. Then, for any probability measure $\mathbf{Q} \in \mathscr{P}_{1}(S)$, and any $b^{\star} \in S$,

$$
\int\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{Q} \otimes \mathbf{Q}(x, y) \geq 0
$$

Moreover, if b^{\star} is an exponential barycenter of \mathbf{Q}, then for \mathbf{Q}-almost all $x \in S$,

$$
\int\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{Q}(y)=0
$$

Proof. For brevity, we will adopt the notation $\mathbf{Q} g$ for $\int g d \mathbf{Q}$.
The result for \mathbf{Q} finitely supported is the Lang-Schroeder inequality (Proposition 3.2 in [5]). Thus, we just need to approximate $\mathbf{Q} \otimes \mathbf{Q}\langle\cdot, \cdot\rangle_{b^{\star}}$ by some $\mathbf{Q}_{n} \otimes \mathbf{Q}_{n}\langle\cdot, \cdot\rangle_{b^{\star}}$ for some finitely supported \mathbf{Q}_{n}.

To approximate $\mathbf{Q} \otimes \mathbf{Q}\langle\cdot, \cdot\rangle_{b^{\star}}$, draw two independent sequences of i.i.d. random variables $\left(X_{i}^{1}\right)_{i}$ and $\left(X_{i}^{2}\right)_{i}$ of common law \mathbf{Q}, and denote \mathbf{Q}_{n}^{1} and \mathbf{Q}_{n}^{2} the corresponding empirical measures. In particular, $\mathbf{Q}_{n}^{1} \otimes \mathbf{Q}_{n}^{2}$ and $\mathbf{Q}_{n}^{2} \otimes \mathbf{Q}_{n}^{1}$ are both empirical measures of $\mathbf{Q} \otimes \mathbf{Q}$. Since S is not separable, we can not apply the fundamental theorem of statistics that ensures almost sure weak convergence of $\mathbf{Q}_{n}^{1} \otimes \mathbf{Q}_{n}^{1}$ to $\mathbf{Q} \otimes \mathbf{Q}$. However, for a measurable function $f: S \times S \rightarrow \mathbf{R}$, such that $\mathbf{Q} \otimes \mathbf{Q} f<\infty$, the law of large number ensures that almost surely

$$
\mathbf{Q}_{n}^{1} \otimes \mathbf{Q}_{n}^{2} f \rightarrow \mathbf{Q} \otimes \mathbf{Q} f
$$

and

$$
\mathbf{Q}_{n}^{2} \otimes \mathbf{Q}_{n}^{1} f \rightarrow \mathbf{Q} \otimes \mathbf{Q} f
$$

Since the sequence ($X_{1}^{1}, X_{1}^{2}, X_{2}^{1}, X_{2}^{2}, X_{3}^{1}, X_{3}^{2}, \ldots$) is also an i.i.d. sequence of random variables of common law \mathbf{Q}, the subsequence of the associated empirical measures $\left(\mathbf{Q}_{n}^{3}\right)_{n}$ defined by

$$
\mathbf{Q}_{n}^{3}:=\frac{1}{2}\left(\mathbf{Q}_{n}^{1}+\mathbf{Q}_{n}^{2}\right)
$$

also satisfies the almost sure convergence

$$
\mathbf{Q}_{n}^{3} \otimes \mathbf{Q}_{n}^{3} f \rightarrow \mathbf{Q} \otimes \mathbf{Q} f
$$

Now, since

$$
\mathbf{Q}_{n}^{3} \otimes \mathbf{Q}_{n}^{3}=\frac{1}{4}\left(\mathbf{Q}_{n}^{1} \otimes \mathbf{Q}_{n}^{2}+\mathbf{Q}_{n}^{1} \otimes \mathbf{Q}_{n}^{1}+\mathbf{Q}_{n}^{2} \otimes \mathbf{Q}_{n}^{1}+\mathbf{Q}_{n}^{2} \otimes \mathbf{Q}_{n}^{2}\right),
$$

we proved that almost surely

$$
\mathbf{Q}_{n}^{1} \otimes \mathbf{Q}_{n}^{1} f+\mathbf{Q}_{n}^{2} \otimes \mathbf{Q}_{n}^{2} f \rightarrow 2 \mathbf{Q} \otimes \mathbf{Q} f .
$$

And since $\left(\mathbf{Q}_{n}^{1}\right)_{n}$ and $\left(\mathbf{Q}_{n}^{2}\right)_{n}$ are independent and with same law, it implies that both $\mathbf{Q}_{n}^{1} \otimes \mathbf{Q}_{n}^{1} f$ and $\mathbf{Q}_{n}^{2} \otimes \mathbf{Q}_{n}^{2} f$ converge to $\mathbf{Q} \otimes \mathbf{Q} f$ almost surely. In particular, since \mathbf{Q}_{n}^{1} is supported on n points, there exists a sequence of finitely supported measures (that we rename $\left.\left(\mathbf{Q}_{n}\right)_{n}\right)$ such that $\mathbf{Q}_{n} \otimes \mathbf{Q}_{n} f \rightarrow \mathbf{Q} \otimes \mathbf{Q} f$. We thus proved the first result applying $f=\langle\cdot, \cdot\rangle_{b^{\star}}$.

Now, for any $x \in S$, applying this first result to the measure $\mathbf{Q}_{\varepsilon}:=\frac{1}{1+\varepsilon} \mathbf{Q}+\frac{\varepsilon}{1+\varepsilon} \delta_{x}$, we get

$$
\begin{aligned}
0 & \leq(1+\varepsilon) \mathbf{Q}_{\varepsilon} \otimes \mathbf{Q}_{\varepsilon}\langle\cdot, \cdot\rangle_{b^{\star}} \\
& =\mathbf{Q} \otimes \mathbf{Q}\langle\cdot \cdot \cdot \cdot\rangle_{b^{\star}}+2 \varepsilon \mathbf{Q}\langle x, .\rangle_{b^{\star}}+\varepsilon^{2}\|x\|_{b^{\star}}^{2} .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0^{+}$, we get

$$
\mathbf{Q}\langle x, \cdot\rangle_{b^{\star}} \geq 0 .
$$

Then equality follows from the hypothesis $\mathbf{Q} \otimes \mathbf{Q}\langle\cdot, \cdot\rangle_{b^{\star}}=0$ meaning that b^{\star} is an exponential barycenter.

Lemma 4 (Subadditivity, Lemma A. 6 of [5]). Let (S, d) be an Alexandrov space with curvature bounded below. Take $b^{\star} \in S$. Let $x_{1}, \ldots, x_{n} \in T_{b^{\star}}^{\prime} S$ and $U \subset T_{b^{\star}} S$ finite. Then, for all $\varepsilon>0$, there exists $y \in T_{b^{\star}} S$ such that for all $u \in U$,

$$
\langle y, u\rangle_{b^{\star}} \leq \sum_{i=1}^{n}\left\langle x_{i}, u\right\rangle_{b^{\star}}+\varepsilon,
$$

and

$$
\|y\|^{2} \leq \sum_{i, j=1}^{n}\left\langle x_{i}, x_{j}\right\rangle_{b^{\star}}+\varepsilon .
$$

Lemma 5 (Approximation). Let $U \subset T_{b^{\star}} S$ finite. Take $B \subset S$ measurable and a probability measure $\mathbf{P} \in \mathscr{P}_{1}(S)$ such that $\mathbf{P} \otimes \mathbf{P}\langle\cdot, \cdot\rangle_{b^{\star}}=0$ and $\mathbf{P}(B)>0$. Then, there exists a sequence $\left(y^{n}\right)_{n}$ such that for all $u \in U$

$$
\begin{equation*}
\frac{1}{\mathbf{P}(B)} \int_{B^{c}}\langle u, x\rangle_{b^{\star}} \mathrm{d} \mathbf{P}(x) \geq \limsup _{n}^{\log }\left\langle u, y^{n}\right\rangle_{b^{\star}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\mathbf{P}(B)^{2}} \int_{B} \int_{B}\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P} \otimes \mathbf{P}(x, y)=\lim _{n} d^{2}\left(b^{\star}, y^{n}\right) . \tag{3}
\end{equation*}
$$

Proof. Using the same arguments as in Lemma 3, we see that the empirical measures $\left(\mathbf{P}_{n}\right)_{n}$ satisfy

$$
\mathbf{P}_{n} \otimes \mathbf{P}_{n} f \rightarrow \mathbf{P} \otimes \mathbf{P} f
$$

almost surely, for any $f: S \times S \rightarrow \mathbf{R} \in L^{1}(S \times S, \mathbf{P} \otimes \mathbf{P})$. In particular, taking $f(x, y)=$ $\langle x, y\rangle_{b^{\star}} \mathbf{1}_{B \times B}(x, y)$, the following convergence holds in $L^{2}\left(\mathbf{P}^{8 \infty}\right)$,

$$
\begin{equation*}
\int_{B} \int_{B}\langle\cdot, \cdot\rangle_{b^{\star}} \mathrm{d} \mathbf{P}_{n} \otimes \mathbf{P}_{n} \rightarrow \int_{B} \int_{B}\langle\cdot \cdot \cdot\rangle_{b^{\star}} \mathrm{d} \mathbf{P} \otimes \mathbf{P} \tag{4}
\end{equation*}
$$

and similarly for B^{c}. Also, the law of large number ensures that almost surely, for all $u \in U$,

$$
\begin{equation*}
\int_{B}\langle\cdot, u\rangle_{b^{\star}} \mathrm{d} \mathbf{P}_{n} \rightarrow \int_{B}\langle\cdot, u\rangle_{b^{\star}} \mathrm{d} \mathbf{P}, \tag{5}
\end{equation*}
$$

and again, the same for B^{c}. Thus, there exists a subsequence (of a deterministic realization of) \mathbf{P}_{n} (that we rename \mathbf{P}_{n}) such that (4) and (5) both hold for all $u \in U$.

Then, applying Lemma 4 to finite sum

$$
\frac{1}{\mathbf{P}(B)} \int_{B^{c}}\langle\cdot, u\rangle_{b^{\star}} \mathrm{d} \mathbf{P}_{n}
$$

shows that there exists a sequence $\left(y^{n}\right)_{n} \in T_{b^{\star}}^{\prime} S$ such that (2) holds and for a sequence $\left(\varepsilon_{n}\right)_{n}$ s.t. $\varepsilon_{n} \rightarrow 0$,

$$
\left\|y^{n}\right\|_{b^{\star}}^{2} \leq \frac{1}{\mathbf{P}(B)^{2}} \int_{B^{c}} \int_{B^{c}}\langle\cdot, \cdot\rangle_{b^{\star}} \mathrm{d} \mathbf{P}_{n} \otimes \mathbf{P}_{n}+\varepsilon_{n}
$$

Then, applying the same Lemma 4 again shows that there exists a sequence $\left(z^{n}\right)_{n} \subset T_{b^{\star}}^{\prime} S$, such that

$$
\begin{align*}
0 & \leftarrow \frac{1}{\mathbf{P}(B)^{2}} \iint\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P}_{n} \otimes \mathbf{P}_{n}(x, y) \\
& =\frac{1}{\mathbf{P}(B)^{2}}\left(\int_{B} \int_{B}+\int_{B^{c}} \int_{B^{c}}+2 \int_{B} \int_{B^{c}}\right)\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P}_{n} \otimes \mathbf{P}_{n}(x, y) \\
& \geq\left\|z^{n}\right\|_{b^{\star}}^{2}+\left\|y^{n}\right\|_{b^{\star}}^{2}+2\left\langle y^{n}, z^{n}\right\rangle_{b^{\star}}-\varepsilon_{n} . \tag{6}
\end{align*}
$$

Letting $n \rightarrow \infty$, one obtains

$$
\begin{aligned}
0 & \geq \lim _{n}\left\|z^{n}\right\|_{b^{\star}}^{2}+2\left\langle y^{n}, z^{n}\right\rangle_{b^{\star}}+\left\|y^{n}\right\|_{b^{\star}}^{2} \\
& \geq \lim _{n}\left\|z^{n}\right\|_{b^{\star}}^{2}-2\left\|y^{n}\right\|_{b^{\star}}\left\|z^{n}\right\|_{b^{\star}}+\left\|y^{n}\right\|_{b^{\star}}^{2} \\
& =\lim _{n}\left(\left\|z^{n}\right\|_{b^{\star}}-\left\|y^{n}\right\|_{b^{\star}}\right)^{2} \geq 0 .
\end{aligned}
$$

and which shows $\lim _{n}\left\|y^{n}\right\|=\lim _{n}\left\|z^{n}\right\|$ and also that (6) becomes an equality at the limit and therefore

$$
\lim _{n}\left\|z^{n}\right\|_{b^{\star}}^{2}=\frac{1}{\mathbf{P}(B)^{2}} \int_{B} \int_{B}\langle x, y\rangle_{b^{\star}} \mathrm{d} \mathbf{P} \otimes \mathbf{P}(x, y)
$$

This Lemma appears in a remark of [6].
Lemma 6 (Measurability of the log map). Let (S, d) be a separable Alexandrov space. Let $p \in S$. Then $\log _{p}: S \rightarrow T_{p} S$ can be chosen to be \mathfrak{S}_{B}-measurable.
Proof. Denote G_{p} the space of all constant speed geodesics emanating from p equipped with the sup distance $\|\cdot\|_{\infty}$. Then $\left(G_{p},\|\cdot\|_{\infty}\right)$ is separable and complete too. Using Kuratowski and Ryll-Nardzewski measurable selection theorem, one can choose a Borel map $g: S \rightarrow G_{p}$ such that g maps x to a geodesic from p to x. Then, using the (proof of) Lemma 4.2 of [7], the map $l: G_{p} \rightarrow T_{p} S$ is measurable $T_{p} S$ is equipped with the σ-algebra \mathfrak{S} generated by open balls. Therefore, $\log _{p}:=l \circ g$ is \mathfrak{S}_{B}-measurable.

Acknowledgements

This note originated from technical issues emanating from the problem considered in [1] and [6]. I would like to thank Quentin Paris and Philippe Rigollet for fruitful discussions that lead to this article. I am also indebted to the anonymous referee for their careful review and comments.

References

[1] A. Ahidar-Coutrix, T. Le Gouic, Q. Paris, "On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics", https://arxiv.org/abs/1806.02740v1, 2018.
[2] S. Alexander, V. Kapovitch, A. Petrunin, "Alexandrov geometry", http://arxiv.org/abs/1903.08539, 2019.
[3] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, 2001.
[4] S. Halbeisen, "On tangent cones of Alexandrov spaces with curvature bounded below", Manuscr. Math. 103 (2000), no. 2, p. 169-182.
[5] U. Lang, V. Schroeder, "Kirszbraun's theorem and metric spaces of bounded curvature", Geom. Funct. Anal. 7 (1997), no. 3, p. 535-560.
[6] T. Le Gouic, Q. Paris, P. Rigollet, A. J. Stromme, "Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space", https://arxiv.org/abs/1908.00828, 2019.
[7] S.-I. Ohta, "Barycenters in Alexandrov spaces of curvature bounded below", Adv. Geom. 12 (2012), no. 4, p. 571-587.
[8] K.-T. Sturm, "Metric spaces of lower bounded curvature", Expo. Math. 17 (1999), no. 1, p. 35-47.
[9] T. Yokota, "A rigidity theorem in Alexandrov spaces with lower curvature bound", Math. Ann. 353 (2012), no. 2, p. 305331.

