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Abstract. In this paper, we consider the nonconvex extended trust-region subproblem with two intersecting
linear inequality constraints, (ETR2), and use a sequence of semi-definite programming (SDP) problems with
second-order-cone(SOC) constraints to eliminate the duality gap of the SOC reformulation for (ETR2). We
first narrow the duality gap of the SOC reformulation by adding a new appropriate SOC constraint, and a
sufficient condition is presented to characterize when the new SOC constraint is valid. Then we establish
an iterative algorithm and the results of numerical experiments show that the iterative algorithm works
efficiently in eliminating the SDPR-SOCR gap of (ETR2).

Résumé. Dans cet article, nous considérons le sous-problème non convexe de la région de confiance étendue
avec deux contraintes d’inégalité linéaires qui se croisent, (ETR2), et nous utilisons une suite de problèmes de
programmation semi-définie (SDP) avec des contraintes de cône de second ordre (SOC) pour éliminer l’écart
de dualité de la reformulation SOC pour (ETR2). Nous réduisons d’abord l’écart de dualité de la reformulation
SOC en ajoutant une nouvelle contrainte SOC appropriée, et une condition suffisante est présentée pour
caractériser quand la nouvelle contrainte SOC est valide. Ensuite, nous établissons un algorithme itératif et
les résultats des expériences numériques montrent que l’algorithme itératif fonctionne efficacement pour
éliminer l’écart SDPR-SOCR de (ETR2).
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1. Introduction

In this paper, we consider the nonconvex extended trust-region subproblem with m linear cuts
as follows:

(ETRm) min d T Q0d +2bT
0 d

s.t. ∥d∥2 ≤ 1,
bT

1 d + c1 ≥ 0,
bT

2 d + c2 ≥ 0,
· · ·

bT
md + cm ≥ 0.

(1)

Q0 is an n ×n symmetric matrix, d ,bi (i = 0,1,2, . . . ,m) ∈Rn , and ci (i = 1,2, . . . ,m) are constants.
This model arises from the trust-region method to solve constrained optimization problems and
can be traced back to two papers presented by Yuan [18, 19] in 1994. Many papers have involved
studying the implicit convexity under some conditions when the problem is nonconvex [8, 13].
It is well known that even for m = 1, the problem (1) may have a positive duality gap with its
Lagrangian dual problem; moreover, it keeps the same gap with its SDP relaxation [1, 9, 16].

The second-order-cone (SOC) reformulation technique has played an important role in nar-
rowing or even eliminating the duality gaps of (ETRm) [3, 4, 14, 16] and other quadratically con-
strained quadratic optimization problems, e.g., the Celis–Dennis–Tapia (CDT) problem [3, 17].
For the SOC reformulation of (ETRm), the linear constraints bT

i d + ci ≥ 0 (i = 1,2, . . . ,m) are re-
placed with SOC constraints ∥(bT

i d+ci )d∥ ≤ bT
i d+ci (i = 1,2, . . . ,m) and redundant quadratic in-

equalities (bT
i d +ci )(bT

j d +c j ) ≥ 0 (1 ≤ i < j ≤ m) are added which are valid in the SDP relaxation
model. Naturally, the SOC reformation is equivalent to (ETRm). The SDP relaxation model of the
SOC reformulation is called the SDP relaxation with second-order-cone reformulation (SDPR-
SOCR).

To our knowledge, Sturm and Zhang in 2003 first used one SOC constraint to reformulate
(ETR1) and proved that SDPR-SOCR is an exact relaxation of (ETR1), that is, the SOC reformu-
lation is an implicit convex optimization problem [14] . It was the first time when the duality
gap was thoroughly eliminated by the SOC reformulation technique. In 2003, Ye and Zhang
first reformulated (ETR2) using SOC and proved that if at least one of both linear cuts is active
then its SDPR-SOCR is a tight relaxation [15]. In 2013, Burer and Anstreincher [3] further proved
that the SDPR-SOCR is a tight relaxation if the two linear cuts are parallel. In 2015, Burer and
Yang [4] showed that the tightness of the SDPR-SOCR still holds in the nonintersecting case for
any positive integer m, where the nonintersecting case means that any two linear cuts are non-
intersecting in the trust-region ball. Dai et al. [6] provided a recovery algorithm that constructs
an optimal solution of nonintersecting (ETR3) from its SDPR-SOCR solution based on Burer
and Yang’s work [4]. Karbasy et al. [10] proposed an algorithm to solve nonintersecting (ETRm)
by finding global and local non-global minimizers of trust-region subproblem. Yuan et al. [16]
have presented a sufficient and necessary condition under which the SDPR-SOCR is not tight
for (ETR2), which totally answered the question: when is the SOC reformulation of (ETR2) an
implicit convex optimization problem.

When (ETR2) admits a positive duality gap with its SDPR-SOCR, some algorithms have been
proposed to solve (ETR2) via the traditional trust region subproblem [7, 11]. Some kinds of
branch and bound algorithms have been presented for solving (ETRm) [2, 5, 12]. In each iteration
of the branch and bound algorithm in [2], Beck and Pan generate a trust region subproblem and
find its global and local non-global minimizers. In [12], Karbasy and Salahi apply the branch and
bound algorithm in [2] to solve intersecting (ETRm). In [5], Dai proposes two branch and bound
algorithms based on the SDP relaxation problems with SOC constraints for solving (ETRm), i.e.,
r-BW algorithm and r-ED algorithm. In each iteration of r-BW algorithm of [5], one needs to solve
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a SDP problem with m SOC constraints and n +1 linear constraints. In each iteration of r-ED al-
gorithm of [5], one needs to solve a SDP problem with m SOC constraints and at most n+1 linear
constraints. The numerical results of [5] show that the average iteration numbers of r-BW algo-
rithm and r-ED algorithm both exceed 8.4 for solving (ETR2). In other words, one always needs
at least 9 SDP problems with SOC constraints to obtain the global optimal solution of (ETR2).

In this paper, we focus on the nonconvex (ETR2) which admits a positive duality gap with
its SDPR-SOCR, that is, we only consider the nonconvex and intersecting (ETR2) satisfying the
sufficient and necessary condition presented by [16]. We call this gap the SDPR-SOCR gap of
(ETR2). To dig deeper the implicit convexity of (ETR2), we try to narrow and even eliminate its
SDPR-SOCR gap by SDP problems with SOC constraints. Inspired by the results on narrowing the
duality gap of the extended CDT problem by adding an appropriate new SOC constraint by [16],
we try to narrow and even eliminate the duality gap of the SOC reformulation for (ETR2) by
adding an appropriate SOC constraint, which may lead to dividing the problem into two separate
subproblems. In theory, a sufficient condition is presented to narrow the SDPR-SOCR gap of
(ETR2) by adding an appropriate SOC constraint. Then an iterative algorithm is presented to
eliminate the SDPR-SOCR gap by a sequence of SDP problems with SOC constraints. In each
iteration of our iterative algorithm, one needs only to solve a SDP problem with 4 SOC constraints
and 3 linear constraints, which is much simpler than the SDP problems in [5]. Finally, numerical
experiments are conducted to show the effectiveness of our iterative algorithm.

Throughout this paper, S n×n and S n×n+ denote the set of all real n×n symmetric matrices and
the set of all real n×n positive semi-definite matrices, respectively. For A,B ∈S n×n , the notation
A •B := trAB denotes the matrix inner-product between A and B. SOC denotes Second-Order

Cone, that is, an n-dimensional vector x = (x1, . . . , xn)T ∈ SOC iff
√

x2
2 +·· ·+x2

n ≤ x1; moreover,

x = (x1, . . . , xn)T ∈ ∂(SOC) iff
√

x2
2 +·· ·+x2

n = x1. The notations v(∗) andΩ(∗) denotes the optimal
objective value and the feasible region of a problem (∗), respectively. Sometimes we may use (x)1

to denote the first component of a vector x.

2. Main theoretical results

2.1. Some preliminary knowledge

In this paper, we consider the nonconvex extended trust-region subproblem with two intersect-
ing linear cuts as follows:

(ETR2) min d T Q0d +2bT
0 d

s.t. ∥d∥2 ≤ 1,
bT

1 d + c1 ≥ 0,
bT

2 d + c2 ≤ 0,

(2)

where both planes bT
1 d + c1 = 0 and bT

2 d + c2 = 0 intersect in the open unit ball {d | ∥d∥2 < 1}.
Here, we always say such (ETR2) is intersecting. In the model (2), the second linear inequality
constraint is rewritten for expediently adding an appropriate SOC constraint to narrow and even
eliminate the duality gap of the SOC reformulation for (ETR2).

The classical second-order-cone reformulation of the problem (ETR2) is as follows:

(QP ) min d T Q0d +2bT
0 d

s.t. ∥d∥2 ≤ 1,
(bT

1 d + c1)(bT
2 d + c2) ≤ 0,

∥(bT
1 d + c1)d∥ ≤ bT

1 d + c1,
∥(−bT

2 d − c2)d∥ ≤−bT
2 d − c2.

(3)
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The model (QP ) is just a variant equivalent to the model (ETR2). Its semidefinite programming
relaxation is

(SP ) min M0 •X
s.t. M1 •X ≤ 0,

M2 •X = aT
1 X a2 ≤ 0,

X a1 ∈ SOC,
−X a2 ∈ SOC,
E00 •X = 1,
X ⪰ 0,

(4)

M0 :=
[

0 bT
0

b0 Q0

]
, M1 :=

[−1 0T

0 I

]
, M2 := 1

2

(
a1aT

2 +a2aT
1

)
, a1 :=

[
c1

b1

]
, a2 :=

[
c2

b2

]
, E00 :=

[
1 0T

0 O

]
. (5)

The model (SP ) is also called the SDPR-SOCR of (ETR2). The dual problem of (SP ) is

(SD) max y0

s.t. Z = M0 − y0E00 + y1M1 + y2M2 − 1

2

(
u1aT

1 +a1uT
1

)+ 1

2

(
u2aT

2 +a2uT
2

)⪰ 0,

y1 ≥ 0, y2 ≥ 0, u1 ∈ SOC, u2 ∈ SOC.

(6)

The following proposition is easily verified and presented in [16].

Proposition 1 ([16, Proposition 2.1]). If (ETR2) satisfies the Slater condition, then both (SP ) and
(SD) have interior feasible points.

For the intersecting (ETR2), a sufficient and necessary condition of the tightness of (SP ) has
been proposed in [16]. Here we recall the conclusion and it will be used in this paper.

Theorem 2 ([16, Theorem 2.7]). Suppose that (ETR2) satisfies the Slater condition. Let X̂ and
(ŷ0, ŷ1, ŷ2, û1, û2) be an optimal pair for (SP ) and (SD). Let Ẑ := M0 − ŷ0E00 + ŷ1M1 + ŷ2M2 −
1
2 (û1aT

1 + a1ûT
1 ) + 1

2 (û2aT
2 + a2ûT

2 ). Then v(SP ) ̸= v(QP ) (= v(ETR2)) ⇐⇒ (SP ) and (SD) have
Property I as follows:

(1) rank(X̂ ) = 3 and rank(Ẑ ) = n −2;
(2) ŷ1 > 0;
(3) aT

1 X̂ a2 < 0;
(4) û1 ̸= 0, û2 ̸= 0 and X̂ a1 Ô X̂ a2.

Based on Proposition 1 and Theorem 2, Lemma 2.5 of [16] can be restated below, which will be
used in later discussions.

Lemma 3 ([16, Lemma 2.5]). Suppose that (ETR2) satisfies the Slater condition and v(ETR2) >
v(SP ). Let X̂ and (ŷ0, ŷ1, ŷ2, û1, û2) be an optimal pair for (SP ) and (SD), respectively. Then

0 ̸= û1 ∈ ∂(SOC), 0 ̸= X̂ a1 ∈ ∂(SOC),

0 ̸= û2 ∈ ∂(SOC), 0 ̸= −X̂ a2 ∈ ∂(SOC).
(7)

X̂ has a rank-one decomposition X̂ = x̂1x̂T
1 + x̂2x̂T

2 + x̂3x̂T
3 satisfying

x̂1 = X̂ a1√
aT

1 X̂ a1

∈ ∂(SOC), M1 • x̂2x̂T
2 = M1 • x̂3x̂T

3 = M1 • X̂

2
= 0,

x̂T
2 a1 = x̂T

3 a1 = 0, (x̂2)1x̂T
2 a2 < 0, (x̂3)1x̂T

3 a2 > 0;

(8)

similarly, X̂ has another rank-one decomposition X̂ = x̃1x̃T
1 + x̃2x̃T

2 + x̃3x̃T
3 satisfying

x̃1 = −X̂ a2√
aT

2 X̂ a2

∈ ∂(SOC), M1 • x̃2x̃T
2 = M1 • x̃3x̃T

3 = M1 • X̂

2
= 0,

x̃T
2 a2 = x̃T

3 a2 = 0, (x̃2)1x̃T
2 a1 > 0, (x̃3)1x̃T

3 a1 < 0.

(9)
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2.2. Narrowing the SDPR-SOCR gap of (ETR2)

In this paper, we focus on the case when (ETR2) admits a positive SDPR-SOCR gap (i.e., Property
I holds), and try to narrow the gap. Let

a3(β) := (1−β)a1 +βa2 (10)

be a vector with the parameter β ∈ [0,1]. Denote a3(β) = [c3(β), (b3(β))T ]T , then c3(β) =
(1−β)c1 +βc2 and b3(β) = (1−β)b1 +βb2. Let

Ω := {
d ∈Rn |∥d∥2 ≤ 1, bT

1 d + c1 ≥ 0, bT
2 d + c2 ≤ 0

}
be the feasible region of (ETR2). The hyperplane,

[1, d T ]a3(β) = b3(β)T d + c3(β) = (1−β)(bT
1 d + c1)+β(bT

2 d + c2) = 0, (11)

dividesΩ into two following parts:

Ω1 := {
d ∈Rn ∣∣ ∥d∥2 ≤ 1, bT

1 d + c1 ≥ 0, bT
2 d + c2 ≤ 0, b3(β)T d + c3(β) ≥ 0

}
,

Ω2 := {
d ∈Rn ∣∣ ∥d∥2 ≤ 1, bT

1 d + c1 ≥ 0, bT
2 d + c2 ≤ 0, b3(β)T d + c3(β) ≤ 0

}
.

For any β ∈ [0,1], we obtainΩ=Ω1 ∪Ω2. Note that when β= 0,

Ω1 =Ω, Ω2 = {d ∈Rn | ∥d∥2 ≤ 1, bT
1 d + c1 = 0, bT

2 d + c2 ≤ 0} ⊆Ω; (12)

when β= 1,

Ω1 = {d ∈Rn | ∥d∥2 ≤ 1, bT
1 d + c1 ≤ 0, bT

2 d + c2 = 0} ⊆Ω, Ω2 =Ω; (13)

when 0 <β< 1,Ω1 andΩ2 are two different sets, and both are different fromΩ.
Two new problems derived fromΩ1 andΩ2 are presented as follows:

(QP1(β)) min d T Q0d +2bT
0 d

s.t. ∥d∥2 ≤ 1,
bT

1 d + c1 ≥ 0,
bT

2 d + c2 ≤ 0,
b3(β)T d + c3(β) ≥ 0,

(14)

and
(QP2(β)) min d T Q0d +2bT

0 d
s.t. ∥d∥2 ≤ 1,

bT
1 d + c1 ≥ 0,

bT
2 d + c2 ≤ 0,

b3(β)T d + c3(β) ≤ 0.

(15)

Apparently we have

v(ETR2) = v(QP ) = min{v(QP1(β)), v(QP2(β))},

for any β ∈ [0,1]. Both problems can be equivalently reformulated, by the SOC reformulation
technique, into the following forms:

(QP1(β)) min d T Q0d +2bT
0 d

s.t. ∥d∥2 ≤ 1,(
bT

2 d + c2
)(

b3(β)T d + c3(β)
)≤ 0,

∥(bT
1 d + c1)d∥ ≤ bT

1 d + c1,
∥(−bT

2 d − c2)d∥ ≤−bT
2 d − c2,

∥(
b3(β)T d + c3(β)

)
d∥ ≤ b3(β)T d + c3(β),

(16)
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and
(QP2(β)) min d T Q0d +2bT

0 d
s.t. ∥d∥2 ≤ 1,(

bT
1 d + c1

)(
b3(β)T d + c3(β)

)≤ 0,
∥(bT

1 d + c1)d∥ ≤ bT
1 d + c1,

∥(−bT
2 d − c2)d∥ ≤−bT

2 d − c2,
∥(−b3(β)T d − c3(β)

)
d∥ ≤−b3(β)T d − c3(β).

(17)

The SDP relaxation models of (QP1(β)) and (QP2(β)) are

(SOCP1(β)) min M0 •X
s.t. M1 •X ≤ 0,

aT
2 X a3(β) ≤ 0,

X a1 ∈ SOC,
−X a2 ∈ SOC,
X a3(β) ∈ SOC,
E00 •X = 1,
X ⪰ 0,

(18)

and
(SOCP2(β)) min M0 •X

s.t. M1 •X ≤ 0,
aT

1 X a3(β) ≤ 0,
X a1 ∈ SOC,
−X a2 ∈ SOC,
−X a3(β) ∈ SOC,
E00 •X = 1,
X ⪰ 0,

(19)

respectively.
For simplification, we denote v1(β) := v(SOCP1(β)), v2(β) := v(SOCP2(β)), Ω1(β) :=

Ω(SOCP1(β)) and Ω2(β) := Ω(SOCP2(β)). It is easily verified that v1(β) and v2(β) are func-
tions of β, where β ∈ [0,1].

Remark 4. For any β ∈ (0,1), the constraint bT
1 d + c1 ≥ 0 is redundant for (QP1(β)), and the

constraint bT
2 d + c2 ≤ 0 is redundant for (QP2(β)). For any β ∈ (0,1), the constraints −X a2 ∈ SOC

and X a3(β) ∈ SOC deduce that

X a1 = β

1−β (−X a2)+ 1

1−βX a3(β) ∈ SOC,

thus the constraint X a1 ∈ SOC is redundant for (SOCP1(β)); and simultaneously the constraints
X a1 ∈ SOC and −X a3(β) ∈ SOC deduce that

−X a2 = 1−β
β

X a1 + 1

β

(−X a3(β)
) ∈ SOC,

thus the constraint −X a2 ∈ SOC is redundant for (SOCP2(β)).

The following lemma reveals that there always are interior feasible points to (SOCP1(β)) and
(SOCP2(β)) for any β ∈ [0,1], if (ETR2) satisfies the Slater condition.

Lemma 5. Suppose that (ETR2) satisfies the Slater condition. If 0 ≤ β ≤ 1, then (SOCP1(β)) and
(SOCP2(β)) have interior feasible points,Ω1(β)∪Ω2(β) ⊆Ω(SP ) and min{v1(β), v2(β)} ≥ v(SP ).

Proof. As (ETR2) is intersecting and satisfies the Slater condition, for any β ∈ (0,1), (QP1(β))
and (QP2(β)) also satisfy the Slater condition. When 0 < β < 1, by Remark 4 and Proposition 1,
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both (SOCP1(β)) and (SOCP2(β)) have interior feasible points when ignoring their redundant
constraints. Furthermore, for the model (SOCP1(β)), we obtain

aT
2 X a3(β) = (1−β)aT

1 X a2 +βaT
2 X a2 =⇒ aT

1 X a2 = 1

1−βaT
2 X a3(β)+ β

1−β (−aT
2 X a2),

and the inequality aT
2 X a3(β) ≤ 0 implies aT

1 X a2 ≤ 0. Hence, Ω1(β) ⊆ Ω(SP ) and one obtains
v1(β) ≥ v(SP ). For the model (SOCP2(β)), we obtain

aT
1 X a3(β) = (1−β)aT

1 X a1 +βaT
1 X a2 =⇒ aT

1 X a2 = 1

β
aT

1 X a3(β)+ β−1

β
aT

1 X a1,

and the inequality aT
1 X a3(β) ≤ 0 implies aT

1 X a2 ≤ 0. Hence, Ω2(β) ⊆ Ω(SP ) and one obtains
v2(β) ≥ v(SP ).

Moreover, when β= 0 or β= 1, we have

Ω1(0)=
{

X ∈S (n+1)×(n+1)
+

∣∣∣ M1•X ≤0, E00•X =1, aT
1 X a2≤0, X a1∈SOC, −X a2∈SOC

}
=Ω(SP ),

Ω2(0)=
{

X ∈S (n+1)×(n+1)
+

∣∣∣ M1•X ≤0, E00•X =1, X a1=0, −X a2∈SOC
}
⊆Ω(SP ),

Ω1(1)=
{

X ∈S (n+1)×(n+1)
+

∣∣∣ M1•X ≤0, E00•X = 1, X a1∈SOC, X a2=0
}
⊆Ω(SP ),

Ω2(1)=
{

X ∈S (n+1)×(n+1)
+

∣∣∣ M1•X ≤0, E00•X =1, aT
1 X a2≤0, X a1∈SOC, −X a2∈SOC

}
=Ω(SP ),

(20)

It is easily verified that (SOCP1(0)), (SOCP2(0)), (SOCP1(1)), (SOCP2(1)) have interior feasible
points, and

v2(0) ≥ v1(0) = v(SP ),

min{v1(0), v2(0)} ≥ v(SP ),

v1(1) ≥ v2(1) = v(SP ),

min{v1(1), v2(1)} ≥ v(SP ).
(21)

Therefore, for any β ∈ [0,1], (SOCP1(β)) and (SOCP2(β)) have interior feasible points, Ω1(β)∪
Ω2(β) ⊆Ω(SP ) and min{v1(β), v2(β)} ≥ v(SP ). □

From Remark 4, the constraint X a1 ∈ SOC is redundant for (SOCP1(β)) and the constraint
−X a2 ∈ SOC is redundant for (SOCP2(β)), for any β ∈ (0,1). However, from the formula (20), we
come to a conclusion that the constraint X a1 ∈ SOC is indispensable for (SOCP1(1)), and the
constraint −X a2 ∈ SOC is indispensable for (SOCP2(0)). The following example is a case of the
point.

Example 6. One instance of (ETR2) is defined as follows:

n = 2, Q0 =
[−35 5

5 −88

]
, b0 =

[
8

21

]
, b1 =

[
0.42
0.29

]
, b2 =

[
0

−0.67

]
, c1 = 0.33, c2 =−0.23.

One can check that
v(ETR2) ≈−51.0957, v(SP ) ≈−57.9590,

v1(0) ≈−57.9590, v2(0) ≈−45.6193,

v1(1) ≈−43.8601, v2(1) ≈−57.9590,

and it coincides with

v2(0) ≥ v1(0) = v(SP ),

min{v1(0), v2(0)} ≥ v(SP ),

v1(1) ≥ v2(1) = v(SP ),

min{v1(1), v2(1)} ≥ v(SP ).
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We refer to the model (N SOCP1(β)) as the model (SOCP1(β)) without the constraint X a1 ∈
SOC, and the model (NSOCP2(β)) as the model (SOCP2(β)) without the constraint −X a2 ∈ SOC.
For Example 6, one obtains that

v(NSOCP1(0)) ≈−57.9590, v(NSOCP2(0)) ≈−129.8765,

min{v(NSOCP1(0)), v(NSOCP2(0))} ≈−129.8765 < v(SP ),

v(NSOCP1(1)) ≈−67.4671, v(NSOCP2(1)) ≈−57.9590,

min{v(NSOCP1(1)), v(NSOCP2(1))} ≈−67.4671 < v(SP ),

and it violates the formula (21).
Then we obtain the main result of this paper: for a SDPR-SOCR-gap-existing (ETR2), if

0 <β< 1, then a3(β) defined in (10) is effective in narrowing the gap.

Theorem 7. Suppose that (ETR2) satisfies the Slater condition and v(ETR2) > v(SP ). If 0 < β< 1,
then

min
{

v1(β), v2(β)
}> v(SP ).

Proof. From Lemma 5, both (SOCP1(β)) and (SOCP2(β)) have interior feasible points, and
min{v1(β), v2(β)} ≥ v(SP ). Suppose that v1(β) = v(SP ). Let X̃ be the optimal solution to
(SOCP1(β)). Then X̃ is also an optimal solution to (SP ), and X̃ satisfies Property I by Theorem 2.
By Lemma 3, we have

0 ̸= X̃ a1 ∈ ∂(SOC), 0 ̸= −X̃ a2 ∈ ∂(SOC).

As X̃ a3(β) = (1−β)X̃ a1 +βX̃ a2, we have

X̃ a1 = 1

1−β X̃ a3(β)+ β

1−β (−X̃ a2) ∈ ∂(SOC).

Then X̃ a3(β) ∈ SOC and −X̃ a2 ∈ ∂(SOC) imply that X̃ a1 ∥ X̃ a2 ∥ X̃ a3(β), which contradicts the
condition X̃ a1 Ô X̃ a2 of Property I . Similarly, one can prove v2(β) > v(SP ). Therefore we come
to a conclusion that min{v1(β), v2(β)} > v(SP ). □

By Theorem 7, the vector a3(β) defined in (10) or the hyperplane defined in (11) is effective
in narrowing the SDPR-SOCR gap of (ETR2) for any β ∈ (0,1). A natural question is: among these
valid hyperplanes, which one is the best, in other words, which one can minimize the SDPR-SOCR
gap? Can the SDPR-SOCR gap be eliminated?

To answer this question, some facts of v1(β) and v2(β) are presented. The following lemma
reveals the monotonicity of v1(β) and v2(β) on the interval [0,1].

Lemma 8. Suppose that (ETR2) satisfies the Slater condition and v(ETR2) > v(SP ). Then v1(β) is
nondecreasing from β= 0 to β= 1, and v2(β) is nonincreasing from β= 0 to β= 1.

Proof. For an arbitrary pair of points β, β̂ ∈ [0,1] such that β< β̂, we have

Ω1(β) =
{

X ∈S (n+1)×(n+1)
+

∣∣∣∣∣ M1 •X ≤ 0, E00 •X = 1, (1−β)aT
1 X a2 +βaT

2 X a2 ≤ 0,

X a1 ∈ SOC, −X a2 ∈ SOC, (1−β)X a1 +βX a2 ∈ SOC

}
,

Ω1(β̂) =
{

X ∈S (n+1)×(n+1)
+

∣∣∣∣∣ M1 •X ≤ 0, E00 •X = 1, (1− β̂)aT
1 X a2 + β̂aT

2 X a2 ≤ 0,

X a1 ∈ SOC, −X a2 ∈ SOC, (1− β̂)X a1 + β̂X a2 ∈ SOC

}
,

=

X ∈S (n+1)×(n+1)
+

∣∣∣∣∣∣∣∣
M1 •X ≤ 0, E00 •X = 1, X a1 ∈ SOC, −X a2 ∈ SOC,

(1−β)aT
1 X a2 +βaT

2 X a2 ≤ (β̂−β)(aT
1 X a2 −aT

2 X a2)

(1−β)X a1 +βX a2 − (β̂−β)(X a1 −X a2) ∈ SOC

 .

It is easily verified that Ω1(β̂) ⊆ Ω1(β). Then v1(β) is a nondecreasing function from β = 0 to
β = 1. Similarly, one can prove Ω2(β) ⊆Ω2(β̂), and v2(β) is a nonincreasing function from β = 0
to β= 1. □
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Based on Lemma 8, the following lemma is presented to reveal the continuity of v1(β) and
v2(β) on the interval [0,1].

Lemma 9. Suppose that (ETR2) satisfies the Slater condition and v(ETR2) > v(SP ). Then the
functions v1(β) and v2(β) are continuous on the interval [0,1].

Proof. For any β∞ ∈ (0,1] and any non-decreasing sequence {βn} converging to β∞, where
0 <βn ≤ 1 for any n ⊆ N+, we have

0 <β1 ≤β2 ≤β3 ≤ ·· · ≤βn ≤βn+1 ≤ ·· · ≤β∞ ≤ 1.

From Lemma 5, both (SOCP1(βn)) and (SOCP1(β∞)) always have interior feasible points. Let
Xn be the optimal solution to (SOCP1(βn)). The compactness of the feasible sets of the SDP
implies that the sequence {Xn} has a convergent subsequence, i.e. {Xnk }, k ⊆ N+. Assume that

lim
k→+∞

Xnk = X∞, then X∞ is feasible for (SOCP1(β∞)). It is easily verified (see Lemma 8) that

v1(β∞) ≤ M0 •X∞ = lim
k→+∞

M0 •Xnk = lim
k→+∞

v1(βnk ) = lim
n→+∞v1(βn).

∵ v1(βn) ≤ v1(β∞)(n ⊆ N+), ∴ lim
n→+∞v1(βn) ≤ v1(β∞).

Then lim
n→+∞v1(βn) = v1(β∞). Thus, v1(β) is left-continuous on the interval (0,1].

For any β ∈ [0,1), by Lemma 5, (SOCP1(β)) always has interior feasible points. Let X be an
interior feasible point of (SOCP1(β)). For any ϵ > 0, one can find another interior feasible point
X̂ such that M0 • X̂ < v1(β)+ ϵ. For any β̂ (β̂ > β) sufficiently close to β, X̂ is also feasible for
(SOCP1(β̂)). Then

v1(β̂) ≤ M0 • X̂ < v1(β)+ϵ.

As v1(β) is nondecreasing from β= 0 to β= 1, v1(β̂) ≥ v1(β). Thus

|v1(β̂)− v1(β)| < ϵ.

It means that v1(β) is right-continuous on the interval [0,1).
Therefore, v1(β) is continuous on the interval [0,1]. Similarly, one can prove that v2(β) is also

continuous on the interval [0,1]. □

From the formula (21), v1(0) ≤ v2(0) and v1(1) ≥ v2(1). By Lemma 9 and the Zero-Point Theo-
rem for continuous functions on closed intervals, one gets immediately the following conclusion.

Theorem 10. Suppose that (ETR2) satisfies the Slater condition and v(ETR2) > v(SP ). Then there
exists some β0 ∈ (0,1) satisfying v1(β0) = v2(β0). Moreover, v1(β0) = v2(β0) > v(SP ).

From Lemma 8 and Theorem 10, as v1(β) is nondecreasing and v2(β) is nonincreasing,
min{v1(β0), v2(β0)} is the maximum of all the min{v1(β), v2(β)} (β ∈ [0,1]) and it is the closest
to v(ETR2). That is to say, a3(β0) defined in Theorem 10 is the best choice when narrowing
the SDPR-SOCR gap of (ETR2) by Theorem 7. Moreover, if at least one of (SOCP1(β0)) and
(SOCP2(β0)) is a tight relaxation of its original problem, then one can easily verify that

v(ETR2) = min
{

v(QP1(β0)), v(QP2(β0))
}= min

{
v1(β0), v2(β0)

}= v1(β0) = v2(β0),

i.e. the SDPR-SOCR gap is eliminated. For the great majority of SDPR-SOCR-gap-existing
instances, at least one of (SOCP1(β0)) and (SOCP2(β0)) is a tight relaxation of its original problem,
i.e., the SDPR-SOCR model violates Property I . However, there exists instances for which both
(SOCP1(β0)) and (SOCP2(β0)) satisfy Property I and we cannot eliminate their SDPR-SOCR gaps
only by (SOCP1(β0)) and (SOCP2(β0)). The following example is a case of the point.

Example 11. One instance of (ETR2) is defined as follows:

n = 2, Q0 =
[−69 −4
−4 −62

]
, b0 =

[
7

14

]
, b1 =

[
0.2

0.99

]
, b2 =

[−0.7
−0.6

]
, c1 = 0.94, c2 =−0.75.
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One can check that v(ETR2) ≈ −86.8220 with the optimal solution d∗ ≈ (−0.3115, −0.8866)T ,
and v(SP ) ≈−92.4781 with the optimal solution

X ∗ ≈
 1 −0.2914 −0.8342
−0.2914 0.2033 0.2022
−0.8342 0.2022 0.7967

 .

Then we obtain β0 ≈ 0.5069 and

v(QP1(β0)) ≈−86.8220, v1(β0) ≈−87.8057,

v(QP2(β0)) ≈−86.8220, v2(β0) ≈−87.8057.

In Example 11, all the three SDPR-SOCR models admit positive duality gaps with their original
problems, i.e.,

v(ETR2)− v(SP ) ≈ 5.6561,

v(QP1(β0))− v1(β0) ≈ 0.9837,

v(QP2(β0))− v2(β0) ≈ 0.9837.

Although the SDPR-SOCR gap v(ETR2)−v(SP ) ≈ 5.6561 is not eliminated thoroughly, it is greatly
decreased into v(ETR2)−min{v1(β0), v2(β0)} ≈ 0.9837.

From Example 11, we know that the SDPR-SOCR gap of (ETR2) cannot always be eliminated by
(SOCP1(β0)) and (SOCP2(β0)). That is to say, we can only make sure that the SDPR-SOCR gap of
(ETR2) can be narrowed by adding an appropriate SOC constraint. As for eliminating the SDPR-
SOCR gap thoroughly, we should add several appropriate SOC constraints and use a sequence of
SDP problems with SOC constraints to obtain the optimal solution of (ETR2). In the next section,
an iterative algorithm will be presented to eliminate the SDPR-SOCR gap by a sequence of SDP
problems with SOC constraints.

3. An algorithm and numerical results

In this section, an algorithm is proposed to eliminate the SDPR-SOCR gap of (ETR2), and some
nonconvex and intersecting examples are presented to illustrate how the algorithm works in
eliminating the SDPR-SOCR gap.

3.1. An algorithm for eliminating the SDPR-SOCR gap of (ETR2)

We propose an algorithm to eliminate the SDPR-SOCR gap of (ETR2) and use a sequence of SDP
problems with SOC constraints to obtain the optimal solution of (ETR2). The framework of the
algorithm is depicted in Algorithm 1.

In Algorithm 1, we solve some following subproblems:

(SOCP(k)
j ) min M0 •X

s.t. M1 •X ≤ 0,

a(k)
j

T
X a(k)

j+1 ≤ 0,

X a(k)
j ∈ SOC,

−X a(k)
j+1 ∈ SOC,

X a1 ∈ SOC,
−X a2 ∈ SOC,
E00 •X = 1,
X ⪰ 0,

(22)

where a(k)
j and a(k)

j+1 derive from S(k)
a . Compared with (18) and (19), (SOCP(k)

j ) adds a redundant
SOC constraint X a1 ∈ SOC or−X a2 ∈ SOC in a convenient way for later iteration. In each iteration
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Algorithm 1 An iterative algorithm to solve n-dimensional (ETR2) with a positive SDPR-SOCR
gap.

Input: Matrices M0, M1, E00 and vectors a1, a2 defined in (5); positive tolerances η1, η2, ∆.
Output: The optimal value ṽ , the optimal solution d̃ and the error ξ̃.

Step 1: Set a(1)
1 := a1

∥a1∥
, a(1)

2 := a2

∥a2∥
. Denote S(1)

a :=
{

a(1)
1 , a(1)

2

}
. Based on S(1)

a , we solve the

model (SOCP(1)
1 ) defined in (22) and obtain its optimal value v (1)

1 and optimal solution

X (1)
1 . Calculate P (1)

1 in Definition 13. Denote S(1)
v :=

{
v (1)

1

}
, S(1)

X :=
{

X (1)
1

}
, S(1)

P :=
{

P (1)
1

}
. Set

j := 1 and k := 1.
Step 2: Pick up the j -th elements of the sets S(k)

v , S(k)
X , S(k)

P , and obtain v (k)
j , X (k)

j , P (k)
j . Pick up the

j -th and j +1-th elements of S(k)
a , and obtain a(k)

j , a(k)
j+1. Put M0, M1, X (k)

j , a(k)
j , a(k)

j+1 and

∆ into Algorithm 2 and obtain va and xa . Compute ξ := |v (k)
j −va |. Let b(k)

j := a(k)
j (2 : n+1)

and b(k)
j+1 := a(k)

j+1(2 : n +1).

Step 3: If any one of the three conditions, P (k)
j = 0, ξ ≤ η1, b(k)

j

T
b(k)

j+1 ≥ 1−η2, is satisfied, then

output ṽ = va , d̃ = xa(2 : n +1), ξ̃= ξ and stop; Otherwise, go to Step 4.

Step 4: Compute a(k)
s := 1∥∥∥a(k)

j +a(k)
j+1

∥∥∥
(
a(k)

j +a(k)
j+1

)
. Add as between a(k)

j and a(k)
j+1 and obtain

S(k+1)
a :=

{
a(k)

1 , . . . , a(k)
j , a(k)

s , a(k)
j+1, . . . , a(k)

k+1

}
.

Relabel its elements sequentially and rewrite it as

S(k+1)
a =

{
a(k+1)

i , i = 1,2, . . . ,k +2
}

.

Step 5: Based on S(k+1)
a , we solve the new problems (SOCP(k+1)

j ) and (SOCP(k+1)
j+1 ) defined in (22),

and obtain their optimal values v (k+1)
j , v (k+1)

j+1 , and optimal solutions X (k+1)
j , X (k+1)

j+1 .

Calculate P (k+1)
j and P (k+1)

j+1 in Definition 13. Replacing the j -th elements of S(k)
v , S(k)

X ,

S(k)
P with them, we obtain

S(k+1)
v : =

{
v (k)

1 , . . . , v (k)
j−1, v (k+1)

j , v (k+1)
j+1 , v (k)

j+1, . . . , v (k)
k

}
,

S(k+1)
X : =

{
X (k)

1 , . . . , X (k)
j−1, X (k+1)

j , X (k+1)
j+1 , X (k)

j+1, . . . , X (k)
k

}
,

S(k+1)
P : =

{
P (k)

1 , . . . ,P (k)
j−1, P (k+1)

j , P (k+1)
j+1 ,P (k)

j+1, . . . , P (k)
k

}
.

Relabel the elements of these sets sequentially. Then we rewrite them as

S(k+1)
v =

{
v (k+1)

i , i = 1,2, . . . ,k +1
}

,

S(k+1)
X =

{
X (k+1)

i , i = 1,2, . . . ,k +1
}

,

S(k+1)
P =

{
P (k+1)

i , i = 1,2, . . . ,k +1
}

.

Step 6: Let j∗ := argmin
{

v (k+1)
i , v (k+1)

i ∈ S(k+1)
v

}
. Set j = j∗, k = k +1 and go to Step 2.

of Algorithm 1, one needs only to solve (SOCP(k)
j ), which is a SDP problem with 4 SOC constraints

and 3 linear constraints. From Remark 4, as a(k)
j and a(k)

j+1 are the linear combinations of a1

and a2, two of the four SOC constraints are redundant. (SOCP(k)
j ) is much simpler than the SDP

problems in each iteration of both algorithms in [5].
As shown in Step 2 of Algorithm 1, b(k)

j = a(k)
j (2 : n + 1) and b(k)

j+1 = a(k)
j+1(2 : n + 1). Denote
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Algorithm 2 Finding an approximate optimal solution and the corresponding objective function
value for (QP (k)

j ), which is defined in (23).

Input: Matrices M0, M1, X (k)
j and vectors a(k)

j , a(k)
j+1; positive tolerance ∆.

Output: An approximate optimal solution xa , the corresponding objective function value va .
Step 1: Calculate the eigenvector xλ, which corresponds to the maximal eigenvalue of X (k)

j .

Step 2: Let x1 = X (k)
j (:,1), x2 =

X (k)
j a(k)

j(
X (k)

j a(k)
j

)
1

, and x3 =
−X (k)

j a(k)
j+1(

−X (k)
j a(k)

j+1

)
1

. SetΦ= {1,2,3}.

Step 3: If |(xλ)1| >∆ ,then set x4 = xλ
(xλ)1

and go to Step 4; Otherwise, go to Step 5.

Step 4: If xT
4 M1x4 ≤∆, xT

4 a(k)
j ≥−∆ and xT

4 a(k)
j+1 ≤∆, then we add the index 4 into the setΦ.

Step 5: Find h := argmin{M0 •xi xT
i , i ∈Φ} and output xa = xh , va = M0 •xh xT

h .

c(k)
j := a(k)

j (1) and c(k)
j+1 := a(k)

j+1(1). We obtain the following problem:

(QP (k)
j ) min d T Q0d +2bT

0 d

s.t. ∥d∥2 ≤ 1,
bT

1 d + c1 ≥ 0,
bT

2 d + c2 ≤ 0,

b(k)
j

T
d + c(k)

j ≥ 0,

b(k)
j+1

T
d + c(k)

j+1 ≤ 0.

(23)

(QP (k)
j ) is the original problem of (SOCP(k)

j ), and (SOCP(k)
j ) is the SDP relaxation of the SOC

reformulation of (QP (k)
j ). Similar with (SOCP(k)

j ), as a(k)
j and a(k)

j+1 are the linear combinations

of a1 and a2, two of the four linear constraints are redundant for (QP (k)
j ).

Remark 12. (QP (k)
j ) is essentially the extended trust-region subproblem with two linear con-

straints, i.e., it belongs to the type of (ETR2). Similarly, (SOCP(k)
j ) belongs to the type of (SP ).

Thus, we can use Property I in Theorem 2 to determine whether (SOCP(k)
j ) is an exact relaxation

of (QP (k)
j ).

Definition 13. We use P (k)
j to determine whether Property I in Theorem 2 is satisfied for

(SOCP(k)
j ). If P (k)

j = 0, it means that (SOCP(k)
j )) violates Property I , i.e., (SOCP(k)

j )) is an exact

relaxation of (QP (k)
j ); If P (k)

j = 1, it means that (SOCP(k)
j ) satisfies Property I , i.e., (QP (k)

j ) admits a

positive duality gap with (SOCP(k)
j )). Note that, when calculating P (k)

j , we ignore redundant SOC
constraints.

Remark 14. When determining whether Property I in Theorem 2 is satisfied, there is so much
attention to pay as the optimal solutions are with tiny errors when using the CVX package. For the
first condition of Property I , one needs to calculate the ranks of matrices. For a matrix X ∈S n×n+ ,
we first calculate its eigenvalues, without loss of generality, we arrange them in descending order,
i.e., λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. Suppose that ε1, ε2, ε3, ε4, ε5 are sufficiently small positive numbers.
If the maximum eigenvalue λ1 ≤ ε1, then we set the rank of X to a value of zero. Otherwise,
for i = 2,3, . . . ,n, if λi

λ1
< ε2 then we set λi = 0 and then calculate the rank of X . Note that one

should normalize a1 and a2 before evaluating the conditions (3) and (4). For the conditions (2)
and (3), we set the tolerance to be ε3. In the last condition, one should first judge whether û1 ̸= 0,
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û2 ̸= 0, X̂ a1 ̸= 0 and X̂ a2 ̸= 0. For a vector x ∈ Rn , if ∥x∥ > ε4, then we determine x ̸= 0. As
for evaluating X̂ a1 Ô X̂ a2, one needs to calculate the cosine coefficient of the two vectors, i.e., if

1− (X̂ a1)T X̂ a2

∥X̂ a1∥∥X̂ a2∥ > ε5, then the condition X̂ a1 Ô X̂ a2 holds.

In each iteration of Algorithm 1, we aim to find one particular subproblem (SOCP(k)
j∗ ) corre-

sponding to the minimum objective value among all these subproblems (SOCP(k)
i ) (i = 1,2, . . . ,k).

If (SOCP(k)
j∗ ) is an exact relaxation, then the SDPR-SOCR gap is eliminated, i.e., v(ETR2) =

v(SOCP(k)
j∗ ). Otherwise, we add a new hyperplane and solve new subproblems as soon as it fits to

the stopping criterion. Note that the stopping criterion of Algorithm 1 has three cases: P (k)
j∗ = 0, or

ξ= |v (k)
j∗ − va | ≤ η1, or b(k)

j∗
T

b(k)
j∗+1 ≥ 1−η2. When P (k)

j∗ = 0, the SDPR-SOCR gap is eliminated, i.e.,

v(ETR2) = v(SOCP(k)
j∗ ). In each iteration, we apply Algorithm 2 to find an approximate optimal so-

lution xa and the corresponding objective function value va for (QP (k)
j∗ ). Suppose that η1, η2 are

sufficiently small positive numbers. The second stopping criterion ξ= |v (k)
j∗ − va | ≤ η1 represents

that the gap between (QP (k)
j∗ ) and (SOCP(k)

j∗ ) is too small to neglect, in other words, (SOCP(k)
j∗ ) can

be regarded as an exact relaxation. The third stopping criterion b(k)
j∗

T
b(k)

j∗+1 ≥ 1−η2 means that

a(k)
j∗ and a(k)

j∗+1 are too close to insert a new hyperplane between them, in other words, (QP (k)
j∗ )

reduces to the extended trust-region subproblem with only one linear constraints and (SOCP(k)
j∗ )

can be regarded as an exact relaxation.
The convergence of the sequence generated by Algorithm 1 is summarized as follows.

Theorem 15. The sequence generated by Algorithm 1,
{

min{S(k)
v }, k ∈ N+

}
, is convergent.

Proof. In the k-th (k ∈ N+) iteration of Algorithm 1, S(k)
a denotes the set of k + 1 hyperplanes.

Every two adjacent hyperplanes of S(k)
a are associated to a SDP problem with SOC constraints.

Based on S(k)
a , we obtain k problems, i.e., SOCP(k)

1 , SOCP(k)
2 , . . . ,SOCP(k)

k . The new hyperplane

a(k)
s , which is defined in Step 4, will be added between a(k)

j and a(k)
j+1. Then we obtain the new

set S(k+1)
a as shown in Step 4. Based on S(k+1)

a , (SOCP(k)
j ) is replaced with two new problems

(SOCP(k+1)
j ) and (SOCP(k+1)

j+1 ). From Remark 12 and Theorem 7, the SDPR-SOCR gap of (QP (k)
j )

can be narrowed, i.e.,

v(QP (k)
j ) = min

{
v(QP (k+1)

j ), v(QP (k+1)
j+1 )

}
≥

{
v(SOCP(k+1)

j ), v(SOCP(k+1)
j+1 )

}
> v(SOCP(k)

j ).

It is easily verified that min
{

S(k+1)
v

}
> min

{
S(k)

v

}
. Then the sequence

{
min{S(k)

v }, k ∈ N+
}

is
monotonically increasing. Moreover, for any k ∈ N+,

v(ETR2) = min
{

v(QP (k)
1 ), v(QP (k)

2 ), . . . , v(QP (k)
k )

}
≥ min

{
S(k)

v

}
> v(SP ).

By the Monotone Sequence Theorem, the sequence
{

min{S(k)
v }, k ∈ N+

}
converges. □

In the following part, we manage to illustrate numerically how our Algorithm 1 works in
eliminating the SDPR-SOCR gap of the noncovex original problem (ETR2). In our numerical
experiments, we set tolerances ε1 = 10−3, ε2 = ε3 = ε4 = ε5 = 10−5, η1 = η2 =∆= 10−4.

3.2. Numerical examples in the literature

In this subsection, we consider the following two nonconvex and intersecting examples proposed
in [16] and [3] to illustrate how our Algorithm 1 works in eliminating the SDPR-SOCR gap.
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Example 16 ([16, Example 3.1]). Consider the following example of (ETR2) from [16], which is
defined as follows:

n = 2, Q0 =
[−100 10

10 −61

]
, b0 =

[
45
−14

]
, b1 =

[
0

−0.4

]
, b2 =

[−0.9
−0.6

]
, c1 = 0.1, c2 = 0.2.

One can check that v(ETR2) ≈ −12.5791 with the optimal solution d∗ ≈ (0.9682, 0.25)T ,
v(SP ) ≈ −13.1898 and the SDPR-SOCR gap is v(ETR2)− v(SP ) ≈ 0.6106. We adopt Algorithm 1
to solve this example. The algorithm stops at only one iteration and outputs ṽ ≈ −12.5791 and
d̃ ≈ (0.9682, 0.2500)T .

Example 17 ([3, Section 4]). Consider the following example of (ETR2) from [3], which is defined
as follows:

n = 3, Q0 =
 2 3 12

3 −19 6
12 6 0

 , b0 =
 7

7
4.5

 , b1 =
 1

1.2
0

 , b2 =
1

0
0

 , c1 = 0.5, c2 = 0.

One can check that
v(ETR2) ≈−12.9419

with the optimal solution d∗ ≈ (−0.8536, 0.2947, 0.4294)T , v(SP ) ≈ −13.8410 and the SDPR-
SOCR gap is v(ETR2) − v(SP ) ≈ 0.8991. Based on the Karush–Kuhn–Tucker complementary
conditions, one can verify that the optimal value is −12.9420 and the optimal solution is
(−0.8534, 0.2945, 0.4301)T . We adopt Algorithm 1 to solve this example. The algorithm stops
at only one iteration and outputs ṽ ≈−12.9420 and d̃ ≈ (−0.8534, 0.2945, 0.4302)T . The result of
our algorithm is the same as the result obtained by the global optimization software SCIP and the
result in [7].

The results of Example 16 and Example 17 show that Algorithm 1 performs very well in
eliminating the SDPR-SOCR gap (ETR2) and it terminates within only one iteration.

3.3. Randomly generated instances

In this subsection, we test randomly generated nonconvex and intersecting instances to illustrate
numerically how our Algorithm 1 works in eliminating the SDPR-SOCR gap of (ETR2).

For the n × n matrix Q0, all the upper triangular entries (including the principal-diagonal
entries) are generated uniform-randomly on the interval [−50, 50] (the lower part takes the
values by symmetry) and then, to ensure the “nonconvexity”, we subtract 60 from each of the
principal-diagonal entries. The entries of the vector b0 are generated uniform-randomly on
the interval [−50, 50]. For the two n-dimensional vectors b1 and b2, all entries are generated
uniform-randomly on the interval [−1, 1]. Then we set c1 =−bT

1 d0 and c2 =−bT
2 d0, where the n-

dimensional vector d0 is generated uniform-randomly in the open unit ball {d | ∥d∥2 < 1}. Finally,
we should normalize b1 and c1 with dividing them by ∥b1∥, and normalize b2 and c2 with dividing
them by ∥b2∥ (thus it is guaranteed that a1 and a2 are normalized). Any instance generated by
the above method is always “nonconvex” and “intersecting” (the intersection point is exactly d0).

We test 10000 nonconvex and intersecting instances of (ETR2) randomly generated for each of
n = 2,3, . . . ,10, where n denotes the dimension of (ETR2). For each instance, we use Property I in
Theorem 2 to check whether it has a positive SDPR-SOCR gap, as shown in Remark 14. We should
draw attention to the phenomenon that when n is greater than 10, there are no SDPR-SOCR-gap-
existing instances left in our experiments. For the SDPR-SOCR-gap-existing instances, we adopt
Algorithm 1 to solve them and obtain the error ξ̃ for each instance. Throughout the paper, all the
numerical instances are computed in MATLAB R2017b on a PC with Intel Core i7-7700HQ CPU
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of 2.8 GHz and 8G memory, using the CVX package (version 1.21) based solver SDPT3 for solving
SDP problems.

The numerical results are shown in Table 1. For the table, the second column “SDP-gap”
denotes the number of the 10000 instances that admit positive duality gaps with their classical
SDP relaxation. If v(SDP ) < v(SP ) or if v(SDP ) = v(SP ) but Property I holds, then we say
the instance has a positive SDP gap, where v(SDP ) denotes the optimal value of the classical
SDP relaxation of (ETR2). The third column “SDPR-SOCR-gap” denotes the number of the
10000 instances that have positive gaps with their SDPR-SOCR models (SP ). The fourth column
“Average error” denotes the average error of Algorithm 1 for all the SDPR-SOCR-gap-existing
instances. The fifth column “Max error” denotes the maximum error of Algorithm 1 for all the
SDPR-SOCR-gap-existing instances. Note that the error of the “Average error” and “Max error”
refers to “the error ξ̃” in Algorithm 1. The sixth column “Average iteration” denotes the average
iteration number of Algorithm 1 for all the SDPR-SOCR-gap-existing instances. The last column
“Worst case” denotes the maximum iteration number of Algorithm 1 for all the SDPR-SOCR-gap-
existing instances.

Table 1. Calculating errors for SDPR-SOCR-gap-existing instances.

n SDP-gap SDPR-SOCR-gap Average error Max error Average iteration Worst case

2 5103 109 1.5189×10−5 9.7966×10−5 1.7064 6

3 3735 21 3.1324×10−5 9.3417×10−5 1.8571 4

4 3075 2 3.1731×10−9 5.8866×10−9 1 1

5 2557 5 2.3720×10−5 9.9777×10−5 2 3

6 2155 1 8.6787×10−9 8.6787×10−9 1 1

7 2003 0

8 1789 2 2.3411×10−8 4.5879×10−8 1 1

9 1618 0

10 1420 1 3.7420×10−9 3.7420×10−9 1 1

As is shown in Table 1, the maximum error of all the SDPR-SOCR-gap-existing instances is less
than 1×10−4, it indicates that the stopping criterion of Algorithm 1 is effective. When Algorithm 1
terminates, the SDPR-SOCR gap is already eliminated. The SDPR-SOCR-gap-existing instances
appear much less frequent than the SDP-gap-existing instances, and very rare for the larger n.
For SDPR-SOCR-gap-existing instances, Algorithm 1 performs very well in eliminating the SDPR-
SOCR gap and the average iteration numbers do not exceed 2. In other words, one always needs
at most 5 SDP problems with SOC constraints to obtain the global optimal solution of (ETR2).
For the “Worst case”, Algorithm 1 terminates after six iterations. That is to say, our Algorithm 1
terminates within six iterations and it is better than r-BW algorithm and r-ED algorithm of [5], as
the average iteration numbers of both algorithm exceed 8.4.

4. Conclusion

In this paper, we consider the nonconvex extended trust-region subproblem with two intersect-
ing cuts. By adding a new appropriate SOC constraint, we narrow the SDPR-SOCR gap and a
sufficient condition is presented to characterize when a new SOC constraint is valid to narrow
the SDPR-SOCR gap. There exists the best SOC constraint which minimizes the SDPR-SOCR gap
under this condition. However, the SDPR-SOCR gap can not always be eliminated. By using a
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sequence of SDP problems with SOC constraints, we establish an iterative algorithm to eliminate
the SDPR-SOCR gap. In theory, it has been proved that the sequence generated by our algorithm
is convergent. The numerical results show that our algorithm works efficiently in eliminating the
SDPR-SOCR gap and the average iteration numbers do not exceed 2. For the “Worst case”, one
only needs six iterations to obtain the global optimal solution of (ETR2).
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