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Abstract. We derive various classification results for polyharmonic helices, which are polyharmonic curves
whose geodesic curvatures are all constant, in space forms. We obtain a complete classification of trihar-
monic helices in spheres of arbitrary dimension. Moreover, we show that polyharmonic helices of arbitrary
order with non-zero geodesic curvatures to space forms of negative curvature must be geodesics.

Résumé. Nous obtenons divers résultats de classification des hélices polyharmoniques, c’est à dire des
courbes polyharmoniques dont les courbures géodésiques sont toutes constantes, dans les espaces formes.
Nous obtenons une classification complète des hélices triharmoniques sur les sphères de dimension arbi-
traire. De plus, nous montrons que les hélices polyharmoniques d’ordre arbitraire à courbure géodésique
non nulle dans des espaces formes de courbure négative sont des géodésiques.
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1. Introduction and Results

One of the most important objects on a given Riemannian manifold are geodesics as they are the
curves with minimal distance between two given points. The most practical way to deal with
geodesics is to employ a variational approach. Hence, we consider a curve γ : I → M , where I ⊂R
represents an interval, (M , g ) a Riemannian manifold and by s we represent the parameter of the
curve γ. Moreover, we use the notation γ′ = dγ

ds . Then, we define the energy of the curve γ by

E1(γ) = E(γ) := 1

2

∫
I
|γ′|2ds. (1.1)

The critical points of (1.1) are precisely geodesics and are characterized by the equation

τ(γ) :=∇γ′γ′ = 0,
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which is a second order non-linear ordinary differential equation for the curve γ. The existence
of geodesics on a Riemannian manifold is guaranteed due to the celebrated Theorem of Hopf–
Rinow.

Another interesting class of curves can be obtained by extremizing the bienergy of a curve γ
which is given by

E2(γ) := 1

2

∫
I
|τ(γ)|2ds. (1.2)

The critical points of this energy are called biharmonic curves and are characterized by a non-
linear ordinary differential equation of fourth order. An important aspect of biharmonic curves
is the fact that they always have constant geodesic curvature, we refer to [2] for references and
the current status of research on biharmonic curves.

A higher order generalization of both (1.1) and (1.2) is provided by the r -energy of a curve

Er (γ) := 1

2

∫
I
|∇r−1

T T |2ds, (1.3)

where T = γ′ is the tangent vector of γ.
The critical points of (1.3) were calculated in [8, 14] and are characterized by the equation

0 = τr (γ) =∇2r−1
T T +

r−2∑
l=0

(−1)l RM (∇2r−3−l
T T,∇l

T T )T (1.4)

with RM being the curvature tensor of the manifold M .
Solutions of (1.4) are called polyharmonic curves of order r or shortly r-harmonic curves. In the

case of r = 1 the energy (1.3) reduces to the usual energy of a curve (1.1) whose critical points are
geodesics. Clearly, every geodesic is a solution of the equation for r -harmonic curves (1.4), hence
we are interested in finding non-geodesic solutions of (1.4) which we will call proper r -harmonic
curves.

For the current status of research on higher order variational problems we refer to [3], a
collection of recent results on r -harmonic curves can be found in [1]. We want to point out that
r -harmonic curves have important applications in template matching and in the modelling of
robot motions, see for example [7].

Throughout this article we will use the following notation. By s we will denote the parameter
of the curve γ, the first, second and third derivative of γ will be written as T := γ′,γ′′ and γ′′′,
respectively. The l -th derivative of γ with respect to s will be denoted by γ(l ) where l = 4, . . . ,2r .

Moreover, we use the terminology helix to represent a curve whose geodesic curvatures ki , i =
1, . . . are all constant.

Our first result is the explicit form of the Euler–Lagrange equation for 4-harmonic curves on
the Euclidean sphere with the round metric.

Theorem 1. Let γ : I → Sn ⊂ Rn+1 be a curve which is parametrized by arclength. Then γ is a
proper 4-harmonic curve if it is a non-geodesic solution of

0 = γ(8) +2γ(6) +3γ(4) −γ(4)|γ′′|2 −6γ′′|γ′′|2 +4γ′′−2γ′′〈γ(4),γ′′〉

+5
d 2

d s2

(
γ′〈γ(4),γ′〉)− d4

ds4

(|γ′′|2γ)−6γ′
d

ds
|γ′′|2 −2γ′

d

ds
〈γ(4),γ′′〉−5

d

ds

(
γ′′〈γ(4),γ′〉)

−γ(〈γ(8),γ〉+2〈γ(6),γ〉+3|γ′′|2 −|γ′′|4 +6|γ′′|2 −4+2〈γ(4),γ′′〉)
−γ

(
5

〈
γ,

d2

ds2

(
γ′〈γ(4),γ′〉)〉−

〈
γ,

d4

ds4

(|γ′′|2γ)

〉
−5

〈
γ, d d

ds

(
γ′′〈γ(4),γ′〉)〉)

. (1.5)

Remark 2. One explicit solution of (1.5) can be obtained as follows: The curve γ : I →Sn given by

γ(s) = cos(
p

4s)e1 + sin(
p

4s)e2 +e3,
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where ei , i = 1,2,3 are mutually perpendicular and satisfy |e1|2 = |e2|2 = 1
4 , |e3|2 = 3

4 , is a proper 4-
harmonic curve which is parametrized by arclength. The existence of this particular 4-harmonic
curve was already established in [1, Theorem 1.5] without using the Euler–Lagrange equa-
tion (1.5).

Our next result provides a characterization of triharmonic helices in the sphere extending the
analysis presented in [1].

Theorem 3. Consider a curve γ : I →Sn ⊂Rn+1 of the form

γ(s) = cos(as)e1 + sin(as)e2 +cos(bs)e3 + sin(bs)e4

with |e1|2 = |e2|2, |e3|2 = |e4|2 and |e1|2 + |e3|2 = 1. Then, γ is a proper triharmonic curve
parametrized by arclength if the following algebraic relations hold

a4 +b4 −4(a2 +b2)+3a2b2 +3 = 0,

|e1|2a2 +|e3|2b2 = 1.
(1.6)

Remarks 4.

(1) The condition (1.6) has already been derived in [1, Equation 2.3] using a different ap-
proach as utilized in this manuscript.

(2) Setting a2 = x and b2 = y the equation (1.6) describes a particular conic section which
turns out to be a hyperbola. Hence, it is obvious that there is a whole family of trihar-
monic helices in the sphere.

It is well-known that a polyharmonic curve of order r has 2r −2 non-zero geodesic curvatures
and effectively lies on a target of dimension 2r − 1. Exploiting this fact the next Theorem gives
some further characterizations of r -harmonic helices in the cases r = 3,4. From a computational
point of view it turns out to be more effective to work with the geodesic curvatures of a curve
instead of trying to explicitly solve the Euler–Lagrange equation.

Theorem 5. Let γ : I → M be a proper r -harmonic curve parametrized by arclength where M
is a space form of constant curvature K . Moreover, assume that the geodesic curvatures ki , i =
1, . . . ,2r −2 are all constant.

(1) If r = 3 the geodesic curvatures k j , j = 1, . . .4 satisfy

(k2
1 +k2

2)2 +k2
2k2

3 = K (2k2
1 +k2

2),

k2k3
(
k2

1 +k2
2 +k2

3 +k2
4

)= k2k3K .
(1.7)

(2) If r = 4 the geodesic curvatures k j , j = 1, . . .6 satisfy

(k2
1 +k2

2)3 +k2
2k2

3(2k2
1 +2k2

2 +k2
3 +k2

4)

= K
(
(k2

1 +k2
2)2 +k2

2k2
3

)+2K k2
1(k2

1 +k2
2),

k2k3
(
(k2

1 +k2
2)2 + (k2

3 +k2
4)2 +k2

1k2
3 +2k2

2k2
3 +k2

4(k2
1 +k2

2 +k2
5)

)
= k2k3K (2k2

1 +k2
2 +k2

3 +k2
4),

k2k3k4k5
(
k2

1 +k2
2 +k2

3 +k2
4 +k2

5 +k2
6

)
= k2k3k4k5K .

(1.8)
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Remarks 6.

(1) Note that in (1.7) and (1.8) there does not appear a factor of k1. As we are considering
proper tri- and 4-harmonic curves we have that k1 ̸= 0 such that this factor can be split off.

(2) In the case of k1,k2 ̸= 0 and k j = 0, j ≥ 3 the first equation of (1.7) and the first equation
of (1.8) reduce to the formula obtained in [1, Theorem 1.1].

(3) An immediate consequence of Theorem 5 is that triharmonic and 4-harmonic helices
whose geodesic curvatures are all non-zero need to be geodesics if the target is a space
form of non-positive curvature. More precisely, for triharmonic helices the first equality
of (1.7) leads to a contradiction if K is non-positive, while for 4-harmonic helices (1.8)
gives a contradiction whenenver K is non-positive.

Employing Theorem 5 we can deduce the following classification result:

Theorem 7. A proper triharmonic helix γ : I →Sn ⊂Rn+1 parametrized by arclength must be one
of the following:

(1) A circle of the form (n ≥ 2)

γ(s) = cos(
p

3s)e1 + sin(
p

3s)e2 +e3,

where ei , i = 1,2,3 are mutually perpendicular and satisfy |e1|2 = |e2|2 = 1
3 , |e3|2 = 2

3 .
(2) A non-planar curve of the form (n ≥ 3)

γ(s) = cos(as)e1 + sin(as)e2 +cos(bs)e3 + sin(bs)e4

with |e1|2 = |e2|2, |e3|2 = |e4|2, |e1|2 + |e3|2 = 1 and ei , i = 1, . . . ,4 mutually perpendicular
satisfying

a4 +b4 −4(a2 +b2)+3a2b2 +3 = 0, |e1|2a2 +|e3|2b2 = 1.

Remark 8. It is quite remarkable that triharmonic helices on the sphere have the same structure
as biharmonic curves on the sphere. In both cases there exist two families of the form detailed
in the previous theorem, which consist of a planar family and a non-planar generalization,
see Theorem 17 for the precise details on biharmonic curves. However, biharmonic curves
necessarily have constant curvature while there may be triharmonic curves on the sphere of non-
constant geodesic curvature. In order to obtain a complete classification of triharmonic curves
on the sphere one would need to obtain a full understanding of the non-constant curvature case
as well.

The last result of this manuscript provides a characterization of polyharmonic helices of
arbitrary order whose geodesic curvatures are all different from zero.

Theorem 9. Let γ : I → M be an r -harmonic curve parametrized by arclength whose geodesic
curvatures ki , i = 1, . . . ,2r −2 are all constant and non-zero. Moreover, suppose that M is a space
form of constant curvature K . Then, the following equation holds

2r−2∑
j=1

k2
j = K .

Remark 10. The previous Theorem gives further insights into the structure of higher order vari-
ational problems. In particular, it gives further evidence to support the claim that polyharmonic
maps to space forms of negative curvature must be harmonic, by showing that there do not exist
proper r -harmonic helices when K is non-positive, while there may be additional solutions in the
case of a spherical target. So far, this observations was mostly made in the case of codimension
one, that is for polyharmonic hypersurfaces, see for example [11]. The analysis above suggests
that this fact stays true in higher codimension.
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Furthermore, we will collect a number of results giving rise to the following conjecture:

Conjecture 11. The equation for r -harmonic curves (1.4) admits solutions with non-constant
geodesic curvature

k1(s) = α

sr−2 , α ∈R,α ̸= 0, (1.9)

where s represents the parameter of the curve γ which we assume to be parametrized by arclength.

This conjecture is based on

(1) the well-known fact that biharmonic curves (r = 2) necessarily have constant geodesic
curvature,

(2) the results of the recent article on triharmonic curves [12],
(3) and the observations presented in Subsection 3.1.

This article is organized as follows: In Section 2 we provide some background material on the
Euler–Lagrange method and use it to reprove a number of well-known results on biharmonic
curves on the Euclidean sphere. Finally, in Section 3 we give the proofs of the main results of the
article.

2. Some preliminary results

Throughout this article we consider a space form of constant curvature K in which case the
Riemann curvature tensor acquires the simple form

R(X ,Y )Z = K (〈Y , Z 〉X −〈X , Z 〉Y ),

where X ,Y , Z are vector fields and K represents the constant curvature of the space form.
In this case the equation for polyharmonic curves (1.4) simplifies to

τr (γ) =∇2r−1
T T +K

r−2∑
l=0

(−1)l (〈T,∇l
T T 〉∇2r−3−l

T T −〈T,∇2r−3−l
T T 〉∇l

T T
)
. (2.1)

2.1. The Euler–Lagrange method for polyharmonic curves

Let us briefly recall the so-called Euler–Lagrange method which is a powerful tool in the analysis
of one-dimensional variational problems. This method is the cornerstone of the Lagrangian for-
mulation of classical mechanics in theoretical physics, see for example [9, Chapter 7]. Moreover,
this method can also successfully be applied in order to study biharmonic curves [6], biharmonic
maps [10, 13] and also higher order variational problems [3, Theorem 4.5].

The following theorem may be well-known in the mathematics community. However, for the
sake of completeness we also provide a complete proof below.

Theorem 12. Let γ : I →Rq be a curve. Suppose we have an energy functional

Er (γ) =
∫

I
Lr ds,

where the Lagrangian
Lr =Lr (γ,γ′, . . . ,γ(r−1),γ(r ))

may depend on the derivatives of the curve γ up to order r .
Then, γ is a critical point of Er (γ) if the following ordinary differential equation holds

r∑
l=1

(−1)l dl

dsl

∂Lr

∂γ(l )
+ ∂Lr

∂γ
= 0. (2.2)
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Proof. We choose β ∈C∞
c (I ,Rq ) and compute the first variation of Er (γ) as follows

d

dt

∣∣
t=0Er (γ+ tβ) = d

dt

∫
I
Lr (γ+ tβ,γ′+ tβ′,γ′′+ tβ′′, . . . ,γ(r−1) + tβ(r−1),γ(r ) + tβ(r ))ds

∣∣
t=0

=
∫

I

d

dt

(
Lr (γ+ tβ,γ′+ tβ′,γ′′+ tβ′′, . . . ,γ(r−1) + tβ(r−1),γ(r ) + tβ(r ))

)
ds

∣∣
t=0

=
∫

I

(
∂Lr

∂γ
β+ ∂Lr

∂γ′
β′+ ∂Lr

∂γ′′
β′′+ . . .+ ∂Lr

∂γ(r−1)
β(r−1) + ∂Lr

∂γ(r )
β(r )

)
ds.

Now, we use integration by parts∫
I

∂Lr

∂γ(p)
β(p) ds =

∫
I
(−1)p dp

dsp

(
∂Lr

∂γ(p)

)
βds, 1 ≤ p ≤ r,

where we used that β is compactly supported. By combining both equations the proof is
complete. □

In the following we will often make use of the following lemma which follows from a direct
calculation.

Lemma 13. Let γ : I → Sn ⊂ Rn+1 be a curve which is parametrized by arclength. Then the
following identities hold

〈γ,γ′〉 = 0, 〈γ′′,γ〉 =−1, 〈γ′′′,γ〉 = 0, 〈γ′,γ′′〉 = 0, 〈γ(4),γ〉+〈γ′′′,γ′〉 = 0, 〈γ(4),γ〉 = |γ′′|2.

Throughout this section we will frequently make use of the inclusion map ι : Sn → Rn+1 and
also exploit the special structure of the Levi–Civita connection on the sphere

dι(∇T X ) = X ′+〈X ,γ′〉γ,

where X is a vector field on Sn ⊂Rn+1.

2.2. Biharmonic curves on the sphere

In order to highlight the power of the Euler–Lagrange method we will first investigate biharmonic
curves on the Euclidean sphere and give a new-proof of some well-known results which serves as
an inspiration for the classification results on triharmonic helices presented in this manuscript.

The intrinsic form of the equation for biharmonic curves on the sphere is given by

τ2(γ) =∇3
T T +|T |2∇T T −〈T,∇T T 〉T.

Assuming that Sn ⊂ Rn+1 and considering a curve γ : I → Sn ⊂ Rn+1 we obtain the following
Lagrangian for biharmonic curves on the sphere

L Sn

2 (γ′′,γ′,γ) = |γ′′|2 −|γ′|4 +λ(|γ|2 −1). (2.3)

Note that we have to include the Lagrange multiplyer λ as we are constraining the curve γ to
be on the unit sphere.

Then, employing Theorem 12, a direct calculation shows that the critical points of (2.3) are
given by

d2

ds2

(
∂L Sn

2

∂γ′′

)
− d

ds

(
∂L Sn

2

∂γ′

)
+ ∂L Sn

2

∂γ
= 2(γ(4) +2(|γ′|2)′γ′+2|γ′|2γ′′+λγ).

Taking also into account the variation of L Sn

2 with respect to the Lagrange multiplyer λ we
obtain the Euler–Lagrange equation

γ(4) +2(|γ′|2)′γ′+2|γ′|2γ′′+λγ= 0 (2.4)

together with the constraint |γ|2 = 1.
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From now on, we will assume that the curve γ is parametrized with respect to arclength, that
is |γ′|2 = 1, such that (2.4) simplifies to

γ(4) +2γ′′+λγ= 0. (2.5)

In order to determine λ we test (2.5) with γ and find

λ=−〈γ(4),γ〉−2〈γ,γ′′〉 =−|γ′′|2 +2,

where we used the identities provided by Lemma 13 and thus exploited the fact that γ is
parametrized with respect to arclength.

It is well-known that biharmonic curves have constant geodesic curvature which, using our
framework, can be seen as follows:

Remarks 14.

(1) It is easy to see that the Lagrange multiplyer λ and the geodesic curvature k1 of the curve
γ are related via the identity

λ=−|γ′′|2 +2 =−k2
1 +1.

Hence, the inclusion of the Lagrange multiplyer λ in (2.3) has the effect that it forces the
curve γ to have constant geodesic curvature.

This fact is well-known and is usually deduced by choosing a Frenet-frame for the
curve γ and analyzing the associated Frenet equations.

(2) We will present another short argument why biharmonic curves always need to have
constant geodesic curvature that holds for biharmonic curves on an arbitrary manifold.

Suppose we have a biharmonic curve on a Riemannian manifold, then it satisfies

τ2(γ) =∇3
T T +R(∇T T,T )T = 0.

Multiplying this equation with T we obtain

〈∇3
T T,T 〉 = 0

which implies
d

ds
〈∇2

T T,T 〉− 1

2

d

ds
|∇T T |2 = 0.

Exploiting that the curve is parametrized with respect to arclength we can then deduce
that

d

ds
|∇T T |2 = 0,

which implies that k2
1 = const.

Combining the previous observations we get the following well-known result:

Proposition 15. Let γ : I → Sn ⊂ Rn+1 be a curve parametrized by arclength. Then γ is bihar-
monic if

γ(4) +2γ′′+γ(2−|γ′′|2) = 0. (2.6)

Remarks 16.

(1) The equation for biharmonic curves on spheres (2.6) was first derived in [5, Corollary 4.2]
making use of geometric methods. In that reference the equation for biharmonic curves
to spheres is given in the following form

γ(4) +2γ′′+γ(1−k2
1) = 0,

where k1 represents the geodesic curvature of the curve γ. Noting that

k2
1 = |∇T T |2 = |γ′′|2 −|γ′|4 = |γ′′|2 −1

it is obvious that this version is the same as (2.6).
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(2) We would like to point out that it is necessary to include the Lagrange multiplyer λ in the
Lagrangian (2.3) as we are dealing with a constraint variational problem. However, we do
not have to include a second Lagrange multiplyer to justify that the curve is parametrized
with respect to arclength. The fact that we are choosing an arclength parametrization can
be considered as making a convenient choice in order to simplify our calculations but it
is not a constraint required from the actual variational problem.

The following result was proved in [4] and [5, Proposition 4.4].

Theorem 17. Let γ : I → Sn ⊂ Rn+1 be a curve parametrized by arclength. Then there exist the
following two classes of proper biharmonic curves on Sn :

(1) When k2
1 = 1 these are circles parametrized by

γ(s) = cos(
p

2s)e1 + sin(
p

2s)e2 +e3, (2.7)

where ei , i = 1,2,3 are constant orthogonal vectors satisfying |e1|2 = |e2|2 = |e3|2 = 1
2 .

(2) When 0 < k2
1 < 1 they are non-planar curves parametrized as follows

γ(s) = cos(as)e1 + sin(as)e2 +cos(bs)e3 + sin(bs)e4, (2.8)

where |ei |2 = 1
2 , i = 1, . . . ,4 and a2 +b2 = 2 with a2 ̸= b2.

In the following we will give a different proof of Theorem 17 as was originally presented
in [4, 5], making use of the Euler–Lagrange method, as we want to employ it frequently in the
rest of this article.

Proof of Theorem 17. In order to find the first class of solutions (2.7) we make the ansatz

γ(s) = cos(as)e1 + sin(as)e2 +e3,

where ei , i = 1,2,3 are constant orthogonal vectors satisfying |e1|2 = |e2|2 and |e1|2 + |e3|2 = 1 as
we require |γ|2 = 1 and a ∈ R. In the following we set α2 := |e1|2. Inserting this ansatz into the
Lagrangian for biharmonic curves (2.3) we find

L Sn

2 (α) = a4(α2 −α4).

To determine the critical points of L Sn

2 (α) we calculate

d

dα
L Sn

2 (α) = 2a4α(1−2α2)

and it is clear that this expression vanishes ifα2 = 1
2 . Finally, we use the fact that γ is parametrized

with respect to arclength which, given our ansatz, is expressed via α2a2 = 1. Hence, we get that
a2 = 2 completing the proof.

In order to obtain the second class of solutions (2.8) we make the ansatz

γ(s) = cos(as)e1 + sin(as)e2 +cos(bs)e3 + sin(bs)e4,

where |e1|2 = |e2|2, |e3|2 = |e4|2 . We set α2
j := |e j |2, j = 1,3. Inserting this ansatz into the

Lagrangian for biharmonic curves (2.3) we get

L Sn

2 (α1,α3,λ) = a4(α2
1 −α4

1)+b4(α2
3 −α4

3)−2a2b2α2
1α

2
3 +λ(α2

1 +α2
3 −1).

In order to find the critical points of this Lagrangian we differentiate with respect to α1,α3,λ and
set the resulting equations equal to zero leading to the system

a4(1−2α2
1)−2a2b2α2

3 −λ= 0,

b4(1−2α2
3)−2a2b2α2

1 −λ= 0,

α2
1 +α2

3 = 1.
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Combining this set of equations we find after some algebraic manipulations

(a4 +b4 −2a2b2)(1−2α2
1) = 0

from which we deduce that α2
1 =α2

3 = 1
2 . The requirement that γ is parametrized with respect to

arclength is then given by the constraint a2 +b2 = 2, a2 ̸= b2 completing the proof. □

3. Proofs of the main results

In this section we provide the proofs of the main results of this article.

Proof of Theorem 1. The proof is based on the Euler–Lagrange method provided by Theorem 12.
Recall that the 4-energy of a curve γ : I →Sn is given by

E4(γ) =
∫

I
|∇3

T T |2 ds.

We again make use of the embedding ι : Sn →Rn+1 which helps us rewrite

dι(∇3
T T ) = γ(4) +4〈γ′′′,γ′〉γ+3|γ′′|2γ+5〈γ′,γ′′〉γ′+|γ′|2γ′′+|γ′|4γ.

Consequently, the Lagrangian associated with the 4-energy for a curve on the sphere has the form

L Sn

4 (γ(4),γ′′′,γ′′,γ′,γ) = |γ(4)|2 +16|〈γ′′′,γ′〉|2 +9|γ′′|4 +35|〈γ′′,γ′〉|2|γ′|2
+|γ′|4|γ′′|2 −|γ′|8
+8〈γ′′′,γ′〉〈γ(4),γ〉+6〈γ(4),γ〉|γ′′|2 +10〈γ′′,γ′〉〈γ(4),γ′〉
+2|γ′|2〈γ(4),γ′′〉+2|γ′|4〈γ(4),γ〉
+24〈γ′′′,γ′〉|γ′′|2
+λ(|γ|2 −1), (3.1)

where we again introduced the Lagrange multiplyer λ to constrain the curve γ to Sn .
By a direct calculation we find taking into account that the curveγ is parametrized with respect

to arclength

d4

ds4

∂L Sn

4

∂γ(4)
= 2γ(8) −2

d4

ds4

(|γ′′|2γ)+2γ(6) +2γ(4),

d3

ds3

(
∂L Sn

4

∂γ′′′

)
= 0,

d2

ds2

(
∂L Sn

4

∂γ′′

)
= 2γ(6) +2γ(4) +10

d2

ds2

(
γ′〈γ(4),γ′〉),

d

ds

(
∂L Sn

4

∂γ′

)
= 12γ′′|γ′′|2 −8γ′′+4γ′′〈γ(4),γ′′〉+12γ′

d

ds
|γ′′|2 +4γ′

d

ds
〈γ(4),γ′′〉+10

d

ds

(
γ′′〈γ(4),γ′〉),

∂L Sn

4

∂γ
=−2γ(4)|γ′′|2 +2γ(4) +2λγ.

Varying (3.1) with respect to the Lagrange multiplyer λ we obtain the constraint |γ|2 = 1. Hence,
from Theorem 12 we can deduce that

0 = γ(8) +2γ(6) +3γ(4) −γ(4)|γ′′|2 −6γ′′|γ′′|2 +4γ′′−2γ′′〈γ(4),γ′′〉

+5
d2

ds2

(
γ′〈γ(4),γ′〉)− d4

ds4

(|γ′′|2γ)−6γ′
d

ds
|γ′′|2 −2γ′

d

ds
〈γ(4),γ′′〉−5

d

ds

(
γ′′〈γ(4),γ′〉)+λγ.

In order to determine λ we form the scalar product with γ, using the identifies provided by
Lemma 13 and inserting back into the above equation completes the proof. □
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As the proof of Theorem 3 is based on the Lagrangian for triharmonic curves we again use the
embedding of Sn into Rn+1 via the map ι and find

dι(∇2
T T ) = γ′′′+3〈γ′′,γ′〉γ+|γ′|2γ′.

Thus, we obtain the following Lagrangian

L Sn

3 (γ,γ′,γ′′,γ′′′) = |γ′′′|2 +9|〈γ′′,γ′〉|2 +|γ′|6 +6〈γ′′,γ′〉〈γ′′′,γ〉+2|γ′|2〈γ′,γ′′′〉+λ(|γ|2 −1) (3.2)

with the Lagrange multiplyer λ ∈R.
In order to prove Theorem 3 we first establish the following

Proposition 18. Consider a curve γ : I →Sn of the form

γ(s) = cos(as)e1 + sin(as)e2 +cos(bs)e3 + sin(bs)e4 (3.3)

with |e1|2 = |e2|2, |e3|2 = |e4|2. Then, γ is a proper triharmonic curve parametrized by arclength if
the following algebraic relations hold

a6(1−2α2
1)−2a4 +3a2 −2a2b4α2

3 +λ= 0, (3.4)

b6(1−2α2
3)−2b4 +3b2 −2b2a4α2

1 +λ= 0,

a2α2
1 +b2α2

3 = 1,

α2
1 +α2

3 = 1,

whenever a2,b2 ̸= 1. Here, λ ∈R and we have set α2
j = |e j |2, j = 1,3.

Proof. From the ansatz (3.3) we get

|γ(l )|2 =α2
1a2l +α2

3b2l , l = 1,2,3.

Inserting into the Lagrangian for triharmonic curves (3.2) we obtain

L Sn

3 (α1,α3,λ) =α2
1a6 +α2

3b6 + (α2
1a2 +α2

3b2)3 −2(α2
1a2 +α2

3b2)(α2
1a4 +α2

3b4)+λ(α2
1 +α2

3 −1)

= a6(α2
1 −2α4

1 +α6
1)+b6(α2

3 −2α4
3 +α6

3)+a2b4(3α2
1α

4
3 −2α2

1α
2
3)

+a4b2(3α4
1α

2
3 −2α2

1α
2
3)+λ(α2

1 +α2
3 −1).

The critical points of L Sn

3 (α1,α3,λ) are given by the set of equations

0 = a6(1−4α2
1 +3α4

1)+a2b4(3α4
3 −2α2

3)+a4b2(6α2
1α

2
3 −2α2

3)+λ, (3.5)

0 = b6(1−4α2
3 +3α4

3)+a2b4(6α2
1α

2
3 −2α2

1)+a4b2(3α4
1 −2α2

1)+λ,

1 =α2
1 +α2

3.

In addition, we have the following constraint due to the requirement that the curve γ is supposed
to be parametrized by arclength

a2α2
1 +b2α2

3 = 1.

Using this constraint in the first equation of (3.5) we manipulate

0 = a6(1−4α2
1 +3α4

1)+a4((6α2
1 −2)(1−a2α2

1)
)+a2(3(1−a2α2

1)2 −2b4α2
3

)+λ
= a6(1−2α2

1)−2a4 +3a2 −2a2b4α2
3 +λ.

This shows the validity of the first equation in (3.4), the second one can be derived by the same
method. The last two equations in (3.4) represent the fact that |γ|2 = |γ′|2 = 1. □

Remark 19. One can easily check that a = b = 1 solves the system (3.4) which corresponds to a
geodesic solution.
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Proof of Theorem 3. Using the first two equations of (3.4) we obtain

a6 −b6 −2(a4 −b4)+3(a2 −b2)−2α2
1a4(a2 −b2)−2α2

3b4(a2 −b2) = 0.

Employing the identity

a6 −b6 = (a2 −b2)(a4 +b4 +a2b2)

and assuming that a ̸= b we can thus deduce

a4 +b4 +a2b2 −2(a2 +b2)+3−2α2
1a4 −2α2

3b4 = 0.

In order to manipulate the last two terms involving α2
1,α2

3 we make use of the last two equations
of (3.4) as follows

α2
1a4 +α2

3b4 = a2(1−α2
3b2)+b2(1−α2

1a2)

= a2 +b2 −a2b2(α2
1 +α2

3)

= a2 +b2 −a2b2

such that we obtain

a4 +b4 +a2b2 −2(a2 +b2)+3−2α2
1a4 −2α2

3b4 = a4 +b4 −4(a2 +b2)+3a2b2 +3

yielding the claim. □

For the further analysis we recall the following

Definition 20 (Frenet-frame). Let γ : I → M be a curve which is parametrized with respect to
arclength. Then, its Frenet-frame is defined by

F1 = T,

∇T F1 = k1F2,

∇T Fi =−ki−1Fi−1 +ki Fi+1, i = 2, . . . ,n −1,

...

∇T Fn =−kn−1Fn−1,

(3.6)

where ki , i = 1, . . .n −1 represent the curvatures of the curve γ.

Proof of Theorem 5. In order to prove the first result concerning the classification of triharmonic
helices in space forms we note that the equation for triharmonic curves in space forms reads as

∇5
T T +K∇3

T T −K 〈T,∇3
T T 〉T −K 〈T,∇T T 〉∇2

T T +K 〈T,∇2
T T 〉∇T T = 0. (3.7)

A direct calculation using (3.6), assuming that ki , i = 1, . . . ,4 are constant and ki = 0, i ≥ 5,
shows that

∇2
T T =−k2

1T +k1k2F3,

∇3
T T =−k1(k2

1 +k2
2)F2 +k1k2k3F4,

∇4
T T = k2

1(k2
1 +k2

2)T −k1k2(k2
1 +k2

2 +k2
3)F3 +k1k2k3k4F5,

∇5
T T = k1

(
(k2

1 +k2
2)2 +k2

2k2
3

)
F2 −k1k2k3(k2

1 +k2
2 +k2

3 +k2
4)F4.

Inserting these identities into (3.7) then yields

k1
(
(k2

1 +k2
2)2 +k2

2k2
3 −K (2k2

1 +k2
2)

)
F2 −k1k2k3(k2

1 +k2
2 +k2

3 +k2
4 −K )F4 = 0.

Testing this equation with both F2,F4 then completes the first part of the proof.
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Concerning the second claim of the theorem, which is the classification of 4-harmonic helices
in space forms, we recall that in this case the equation for 4-harmonic curves acquires the form

∇7
T T +K∇5

T T −K 〈∇5
T T,T 〉T −K 〈∇T T,T 〉∇4

T T +K 〈∇4
T T,T 〉∇T T

+K 〈∇2
T T,T 〉∇3

T T −K 〈T,∇3
T T 〉∇2

T T = 0, (3.8)

which is precisely (2.1) for r = 4. In order to characterize the solutions of (3.8) with constant
curvatures we use the Frenet equations (3.6) and a direct calculation shows

∇2
T T =−k2

1T +k1k2F3,

∇3
T T =−k1(k2

1 +k2
2)F2 +k1k2k3F4,

∇4
T T = k2

1(k2
1 +k2

2)T −k1k2(k2
1 +k2

2 +k2
3)F3 +k1k2k3k4F5,

∇5
T T = k1

(
(k2

1 +k2
2)2 +k2

2k2
3

)
F2 −k1k2k3(k2

1 +k2
2 +k2

3 +k2
4)F4 +k1k2k3k4k5F6,

∇6
T T =−k2

1

(
(k2

1 +k2
2)2 +k2

2k2
3

)
T +k1k2

(
(k2

1 +k2
2)2 +k2

3(k2
1 +2k2

2 +k2
3 +k2

4)
)
F3

−k1k2k3k4(k2
1 +k2

2 +k2
3 +k2

4 +k2
5)F5 +k1k2k3k4k5k6F7,

∇7
T T =−k1

(
(k2

1 +k2
2)3 +k2

2k2
3(2k2

1 +2k2
2 +k2

3 +k2
4)

)
F2

+k1k2k3
(
(k2

1 +k2
2)2 + (k2

3 +k2
4)2 +k2

1k2
3 +2k2

2k2
3 +k2

4(k2
1 +k2

2 +k2
5)

)
F4

−k1k2k3k4k5(k2
1 +k2

2 +k2
3 +k2

4 +k2
5 +k2

6)F6.

Using the above expressions it is easy to see that a number of terms in (3.8) vanish and we obtain
the following simplification

∇7
T T +K∇5

T T +K 〈∇4
T T,T 〉∇T T +K 〈∇2

T T,T 〉∇3
T T = 0,

which, when expressed in terms of its Frenet frame, acquires the form

k1

[
− (k2

1 +k2
2)3 −k2

2k2
3(2k2

1 +2k2
2 +k2

3 +k2
4)+K

(
(k2

1 +k2
2)2 +k2

2k2
3

)+2K k2
1(k2

1 +k2
2)

]
F2

+k1k2k3

[
(k2

1 +k2
2)2 + (k2

3 +k2
4)2 +k2

1k2
3 +2k2

2k2
3 +k2

4(k2
1 +k2

2 +k2
5)−K (2k2

1 +k2
2 +k2

3 +k2
4)

]
F4

+k1k2k3k4k5

[
− (k2

1 +k2
2 +k2

3 +k2
4 +k2

5 +k2
6)+K

]
F6 = 0.

The claim now follows from testing this system with F2,F4,F6 completing the proof. □

Proof of Theorem 7. The idea of the proof is to use the constraints (1.7) and to perform a case by
case analysis. First of all we note that we have k1 ̸= 0 as we are considering a proper triharmonic
curve.

(1) If k1 ̸= 0 and ki = 0, i = 1,2,3 then we get k2
1 = 2 leading to the first class of curves. It was

shown in [1, Theorem 1.1] that it actually solves the equation for triharmonic curves.
(2) If k1,k2 ̸= 0 and k3 = k4 = 0 we are in the situation detailed in Theorem 3 leading to the

second case.
(3) If k1,k2,k3 ̸= 0 and k4 = 0 the constraints (1.7) acquire the form

3∑
i=1

k2
i = 1, (k2

1 +k2
2)2 +k2

2k2
3 = 2k2

1 +k2
2 . (3.9)

Using the first equation to eliminate k2
3 from the second one we find

k2
1 +k2

2 = 2

exploiting that k1 ̸= 0. Reinserting this into the second equation of (3.9) we find

k2
2 +k2

2k2
3 = 0

leading to a contradiction such that this case cannot occur.
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(4) If k j ̸= 0, j = 1, . . .4 the constraints (1.7) are given by

4∑
i=1

k2
i = 1, (k2

1 +k2
2)2 +k2

2k2
3 = 2k2

1 +k2
2 . (3.10)

Again, eliminating k2
3 from the second equation, making use of the first constraint, we

find

k2
1(k2

1 +k2
2)−k2

2k2
4 = 2k2

1 .

Using once more the first equation of (3.10) to replace k2
1 +k2

2 we arrive at

k2
1(1+k2

3 +k2
4)+k2

2k2
4 = 0

leading to a contradiction again.
(5) If k1 ̸= 0,k2 = 0,k3 ̸= 0,k4 = 0 the system (1.7) reduces to k2

1 = 2 leading to the first claim
of the theorem.

(6) If k1,k2 ̸= 0,k3 = 0,k4 ̸= 0 we get the condition (k2
1 +k2

2)2 = 2k2
1 +k2

2 leading to the second
case of the theorem while k4 can be arbitrary. However, it is a direct consequence of the
Frenet equations (3.6) that once k3 = 0 any geodesic curvature k j , j ≥ 4 will no longer
appear when expressing the equation for triharmonic curves in terms of its Frenet frame.

The proof is now complete. □

A careful inspection of the proof of Theorem 5 shows that it is enough to know the structure of
the highest order derivatives of r -harmonic helices to obtain classification results if we assume
that all geodesic curvatures of the curve are non-zero. Hence, as a first step towards the proof of
Theorem 9 we establish an expression for the iterated derivatives appearing in the equation for
r -harmonic curves (1.4) suited to our particular analysis.

Lemma 21. Let γ : I → M be an r -harmonic curve parametrized by arclength whose geodesic
curvature are all constant together with its Frenet frame {F j }, j = 1,2r −2.

(1) For 2 ≤ l ≤ 2r −3 we have

∇2l−1
T T =

l−2∑
j=1

a j F2 j −
(

2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
F2l−2 +

(
2l−1∏
i=1

ki

)
F2l , (3.11)

where a j is a function of kp , p = 1, . . . , l −2.
(2) The highest derivative appearing in the equation for r -harmonic curves has the form

∇2r−1
T T =

r−2∑
j=1

b j F2 j −
(

2r−3∏
i=1

ki

)(
2r−2∑
j=1

k2
j

)
F2r−2, (3.12)

where b j is a function of kp , p = 1, . . . l −2.

Proof. The proof uses induction. Choosing l = 3 in (3.11) we get precisely the formula derived in
the proof of Theorem 5 confirming the base case.

For the induction step we differentiate (3.11) using the Frenet equations (3.6) and find

∇2l
T T =

l−2∑
j=1

ã j F2 j−1 +
l−2∑
j=1

a j k2 j F2 j+1 +
(

2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
k2l−3F2l−3

−
(

2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
k2l−2F2l−1 −

(
2l−1∏
i=1

ki

)
k2l−1F2l−1 +

(
2l−1∏
i=1

ki

)
k2l F2l+1,
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where ã j is again a function of the kp , p = 1, . . . l −1. Differentiating again using (3.6) then yields

∇2l+1
T T =−

l−2∑
j=1

ã j k2 j−2F2 j−2 +
l−2∑
j=1

ã j k2 j−1F2 j −
l−2∑
j=1

ã j k2
2 j F2 j +

l−2∑
j=1

ã j k2 j k2 j+1F2 j+2

−
(

2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
k2l−3k2l−4F2l−4 +

(
2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
k2

2l−3F2l−2

+
(

2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
k2

2l−2F2l−2 −
(

2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
k2l−2k2l−1F2l

+
(

2l−1∏
i=1

ki

)
k2l−1k2l−2F2l−2 −

(
2l−1∏
i=1

ki

)
k2

2l−1F2l

−
(

2l−1∏
i=1

ki

)
k2

2l F2l +
(

2l+1∏
i=1

ki

)
F2l+2.

Now, it is straightforward to see that(
2l−3∏
i=1

ki

)(
2l−2∑
j=1

k2
j

)
k2l−2k2l−1F2l +

(
2l−1∏
j=1

ki

)
k2

2l−1F2l +
(

2l−1∏
i=1

ki

)
k2

2l F2l =
(

2l−1∏
i=1

ki

)(
2l∑

j=1
k2

j

)
F2l .

Hence, we may conclude that

∇2l+1
T T =

l−1∑
j=1

ã j F2 j −
(

2l−1∏
i=1

ki

)(
2l∑

j=1
k2

j

)
F2l +

(
2l+1∏
i=1

ki

)
F2l+2

completing the induction step and thus establishing the first claim. The second formula follows
from the first one taking into account that for an r -harmonic curve we have k2r−1 = 0. □

We are now ready to give the proof of Theorem 9.

Proof of Theorem 9. First, we rewrite the equation for r-harmonic curves in space forms (2.1),
extracting the two leading derivatives, as follows

∇2r−1
T T +K∇2r−3

T T −K 〈T,∇2r−3
T T 〉T +

r−2∑
l=1

(−1)l (〈T,∇l
T T 〉∇2r−3−l

T T −〈T,∇2r−3−l
T T 〉∇l

T T
)=0. (3.13)

Testing this equation with F2r−2 we obtain

〈∇2r−1
T T,F2r−2〉+K 〈∇2r−3

T T,F2r−2〉

+
r−2∑
l=1

(−1)l (〈T,∇l
T T 〉〈∇2r−3−l

T T,F2r−2〉−〈T,∇2r−3−l
T T 〉〈∇l

T T,F2r−2〉
)= 0.

Regarding the last two terms, we make the following splitting into even and odd addends

r−2∑
l=1

(−1)l 〈∇2r−3−l
T T,F2r−2〉 =

r−2
2∑

l=1

(〈∇2r−3−2l
T T,F2r−2〉−〈∇2r−3−(2l−1)

T T,F2r−2〉
)
.

As 2r −3−(2l−1) = 2r −2−2l is clearly even it is a direct consequence of the Frenet equations (3.6)
that ∇2r−3−(2l−1)

T T can be written as

∇2r−3−(2l−1)
T T =∑

j
a j F2 j+1,

where a j are functions of the geodesic curvatures k j , such that

〈∇2r−3−(2l+1)
T T,F2r−2〉 = 0.
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Secondly, using (3.11), we find

〈∇2r−3−2l
T T,F2r−2〉 =

r−l−3∑
j=1

a j 〈F2 j ,F2r−2〉︸ ︷︷ ︸
=0

−
(

2r−2l−5∏
i=1

ki

)(
2r−2l−4∑

j=1
k2

j

)
〈F2(r−l−2),F2r−2〉︸ ︷︷ ︸

=0

+
(

2r−2l−3∏
i=1

ki

)
〈F2(r−l−1),F2r−2︸ ︷︷ ︸

=0

〉

for all l ≥ 1. Hence, we may conclude that

r−2∑
l=1

(−1)l 〈∇2r−3−l
T T,F2r−2〉 = 0

and by the same reasoning we can also deduce that

〈∇l
T T,F2r−2〉 = 0, 1 ≤ l ≤ r −2.

Now, using (3.11) and (3.12) we obtain from the equation for r -harmonic curves (3.13) that

0 = 〈∇2r−1
T T,F2r−2〉+K 〈∇2r−3

T T,F2r−2〉

=−
(

2r−3∏
i=1

ki

)(
2r−2∑
j=1

k2
j

)
+K

(
2r−3∏
i=1

ki

)
.

This completes the proof. □

3.1. Evidence in support of Conjecture 1

In this subsection we will collect a number of results which support the statement of Conjec-
ture 11.

First, recall that the equation for a triharmonic curve on a general Riemannian manifold is
given by

0 = τ3(γ) =∇5
T T +RM (∇3

T T,T )T −RM (∇2
T T,∇T T )T, (3.14)

which is precisely (1.4) for r = 3.

Proposition 22. Let γ : I → M be a triharmonic curve parametrized with respect to arclength.
Then the following equation holds

d3

ds3 |∇T T |2 − d

ds
|∇2

T T |2 = 0. (3.15)

Proof. To obtain the first identity we multiply (3.14) by T and calculate

0 = 〈∇5
T T,T 〉

= d

ds
〈∇4

T T,T 〉−〈∇4
T T,∇T T 〉

= d2

ds2 〈∇3
T T,T 〉−2

d

ds
〈∇3

T T,∇T T 〉+〈∇3
T T,∇2

T T 〉

= d3

ds3 〈∇2
T T,T 〉−3

d2

ds2 〈∇2
T T,∇T T 〉+ 5

2

d

ds
|∇2

T T |2.

To finish the proof we note that 〈∇2
T T,T 〉 =−|∇T T |2 which holds as γ is parametrized with respect

to arclength. □
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Corollary 23. Let γ : I → N be a triharmonic curve parametrized with respect to arclength. Then
the following conservation law holds

d2

ds2 |∇T T |2 −|∇2
T T |2 = c1 (3.16)

for some c1 ∈R.

Proof. This is a direct consequence of the conservation law (3.15). □

Choosing a Frenet frame along γ equation (3.16) implies

(k ′
1)2 +2k1k ′′

1 −k4
1 −k2

1k2
2 = c1,

where ki , i = 1,2 represent the curvatures of the curve γ. In the case of c1 = 0 this equation is
solved by

k1 = α

s
, k2 = β

s
, α2 +β2 = 5,

which gives rise to the triharmonic curve with non-constant geodesic curvature and torsion
constructed in [12].

In the following, we extend the previous analysis to the case of 4-harmonic curves. These are
solutions of

0 = τ4(γ) =∇7
T T +RM (∇5

T T,T )T −RM (∇4
T T,∇T T )T +RM (∇3

T T,∇2
T T )T, (3.17)

which is precisely (1.4) in the case of r = 4.

Proposition 24. Let γ : I → M be a 4-harmonic curve parametrized with respect to arclength.
Then the following conservation law holds

d5

ds5 |∇T T |2 −2
d3

ds3 |∇2
T T |2 + d

ds
|∇3

T T |2 = 0. (3.18)

Proof. Testing (3.17) with T a direct calculation yields the following identity

0 = d2

ds2 〈∇5
T T,T 〉−2

d

ds
〈∇5

T T,∇T T 〉+〈∇5
T T,∇2

T T 〉.
From the proof of Proposition 22 we know that

〈∇5
T T,T 〉 =−5

2

d3

ds3 |∇T T |2 + 5

2

d

ds
|∇2

T T |2.

Moreover, we have

〈∇5
T T,∇T T 〉 = d4

ds4

1

2
|∇T T |2 − d2

ds2 2|∇2
T T |2 +|∇3

T T |2.

Finally, a direct calculation shows

〈∇5
T T,∇2

T T 〉 = 1

2

d3

ds3 |∇2
T T |2 − 3

2

d

ds
|∇3

T T |2.

The claim follows by combing the different equations. □

A dimensional analysis of the conservation law (3.18) suggests the following: Assume that we
are looking for a 4-harmonic curve with non-constant geodesic curvature k1. Inspecting the
terms in (3.18) suggests that k1 = C

s2 as all three terms scale as 1
s9 . Hence, one may expect that

there exist 4-harmonic curves with non-constant geodesic curvature k1 = α
s2 ,α ∈R.

Finally, we note that the construction of conservation laws can be carried out for polyhar-
monic curves as well by multiplying (1.4) with T and manipulating the resulting equation as we
have demonstrated for triharmonic and 4-harmonic curves. Again, a simple dimensional analy-
sis then leads to the conclusion of Conjecture 11.
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