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Abstract. For n ≥ 3, confirming a weak version of a conjecture of Hoffmann, we show that every anisotropic
quadratic form in I n of dimension 2n + 2n−1 splits over a finite extension of the base field of degree not
divisible by 4. The first new case is n = 4, where we obtain a classification of the corresponding quadratic
forms up to odd degree base field extensions and get this way a strong upper bound on their essential 2-
dimension. As well, we compute the reduced Chow group of the maximal orthogonal grassmannian of the
quadratic form and conclude that its canonical 2-dimension is 2n +2n−2 −2.

Résumé. Pour n ≥ 3, en confirmant une version faible d’une conjecture de Hoffmann, on montre que toute
forme quadratique anisotrope de dimension 2n +2n−1 dans I n se déploie sur une extension finie du corps
de base d’un degré qui n’est pas divisible par 4. Le premier nouveau cas est celui de n = 4, où l’on obtient
une classification des formes quadratiques correspondantes à une extension de degré impair près ce qui
donne une forte borne supérieure pour leur 2-dimension essentielle. De plus, on détermine le groupe de
Chow réduit de la grassmannienne orthogonale maximale de la forme quadratique et on en déduit que sa
dimension 2-canonique est égale à 2n +2n−2 −2.
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Let F be a field (of any characteristic) and let I = I (F ) be the Witt group of classes of even-
dimensional non-degenerate quadratic forms over F defined as in [4, Section 8] (and denoted
Iq (F ) there). For n ≥ 2, we write I n = I n(F ) for the subgroup in I (F ) generated by the n-fold
Pfister forms. We refer to [4, 9.B] for other equivalent definitions of I n(F ) (denoted I n

q (F ) there).
Any element of I is represented by an anisotropic quadratic form. By the Arason–Pfister

Hauptsatz, the smallest possible dimension of a nonzero anisotropic quadratic form in I n is 2n

(see [4, Theorem 23.7(1)] for the characteristic-free version). The quadratic forms in I n of dimen-
sion 2n are classified: as a consequence of the Arason–Pfister Hauptsatz and [4, Corollary 23.4)],
they are exactly the forms similar to n-fold Pfister forms. In particular, any 2n-dimensional qua-
dratic form in I n splits over a finite base field extension of degree dividing 2.
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The smallest possible dimension exceeding 2n of an anisotropic quadratic form in I n is
2n + 2n−1. For n = 3 this has been shown in [12] (characteristic ̸= 2) and in [1] (arbitrary
characteristic); for n = 4 in [6] (characteristic ̸= 2) and in [5, Theorem 4.2.11] (characteristic 2); for
arbitrary n and characteristic ̸= 2 a proof has been given in [15, Theorem 5.4] and then extended
to characteristic 2 in [13, Proposition 11.5].

For n = 2, quadratic forms in I n of dimension 2n + 2n−1 are the well-understood Albert
forms. For n ≥ 3, by a conjecture of Hoffmann ([6, Conjecture 2] for characteristic ̸= 2 and [5,
Conjecture 4.3.1] for characteristic 2), quadratic forms in I n of dimension 2n + 2n−1 should be
classified as products of an Albert bilinear form (i.e., a 6-dimensional symmetric bilinear form of
determinant −1) by a Pfister form (of foldness n−2). In particular, such forms should split over a
finite base field extension of degree dividing 2 as well.

However, the two above conjectures are so far proved for n = 3 only: the proof for characteristic
̸= 2 of [12] is extended to characteristic 2 in [5, Proposition 4.1.2]. The main result of the present
note is

Theorem 1. For any n ≥ 3 and in any characteristic, every quadratic form in I n of dimension
2n +2n−1 splits over a finite base field extension of degree not divisible by 4.

Proof. Let X be a connected component of the highest orthogonal grassmannian of a quadratic
form q in I n(F ) of dimension 2n +2n−1. Theorem 1 means that the index i (X ) of the variety X ,
defined as the g.c.d. of the degrees of closed points on X , divides 2. In other terms, taking into
account Springer’s Theorem [4, Corollary 18.5], i (X ) = 2 provided that q is not split.

We write X for X over an algebraic closure of F and we write CH(X ) for the ring given by the
image of the change of field homomorphism CH(X ) → CH(X ) of the Chow rings. Note that the
kernel of the change of field homomorphism is the ideal of the elements of finite order. For this
reason, CH(X ) is sometimes called the reduced Chow group of X .

By [4, Theorem 86.12], the ring CH(X ) is generated by certain homogeneous elements e1, . . . ,el

of codimensions 1, . . . , l := 2n−1 + 2n−2 − 1. It is convenient to define ei := 0 for i > l . For any
i ≥ 1, the element ei is characterized by the property that (−1)i 2ei is the i th Chern class of the
tautological vector bundle on X (see [4, Proposition 87.13]); in particular, 2ei ∈ CH(X ).

Since for any field extension K /F , the anisotropic part of the quadratic form qK over the field
K is either 0, or 2n , or 2n +2n−1, it follows by [4, Corollary 88.6] (see also [4, Corollary 88.7]) that
ei ∈ CH(X ) for all i different from k := 2n−1 −1 and l . By [4, (86.15)], for any i ≥ 1, we have

e2
i −2ei−1ei+1 +2ei−2ei+2 −·· ·+ (−1)i−12e1e2i−1 + (−1)i e2i = 0 ∈ CH(X ).

In particular,
2ek el = 2ek+1el−1 −2ek+2el−2 +·· ·±2em−1em+1 ±e2

m ∈ CH(X ),

where m := (k + l )/2. Therefore 2e ∈ CH(X ), where e ∈ CH(X ) is the product e1 . . .el of all the
generators. Since e is the class of a 0-cycle of degree 1 (see [4, Corollary 86.10]), the variety X
(over F ) possesses a 0-cycle of degree 2. □

For n = 4, in view of [6, Proposition 4.1] and [5, Proposition 4.3.2], Theorem 1 provides a
classification of the corresponding quadratic forms “up to odd degree extensions” which yields a
strong upper bound on their essential 2-dimension. We provide details right below, starting with
the classification result:

Theorem 2. For a field F (of any characteristic), let q be a quadratic form in I 4(F ) of dimension
24 = 24 +23. Then there exists a finite field extension K /F of odd degree such that qK is isomorphic
to the tensor product of an Albert bilinear form by a Pfister form.

Proof. By Theorem 1, we can find a finite field extension K /F of odd degree and a field extension
L/K of degree dividing 2 such that qL is split. The description of qK then follows from [6,
Proposition 4.1] (for characteristic ̸= 2) and [5, Proposition 4.3.2] (for characteristic 2). □
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To formulate the result on the essential 2-dimension, let us consider the functor I 4
24, associat-

ing to every extension field K of a fixed field F the set of isomorphism classes of quadratic forms
in I 4(K ) of dimension 24. The essential 2-dimension of an element in I 4

24(K ) as well as the essen-
tial 2-dimension ed2 I 4

24 of the functor I 4
24 are defined as in [3, Section 1].

Corollary 3. One has ed2 I 4
24 ≤ 7.

Proof. Writing F for the base field and taking q ∈ I 4
24(K ) for a field extension K /F , we find by

Theorem 2 an odd degree field extension L/K such that qL is isomorphic to the tensor product of
the diagonal Albert bilinear form 〈a1, a2, a3, a4, a5,−a1a2a3a4a5〉 by the Pfister form 〈〈b1,b2]] for
some nonzero a1, . . . , a5,b1 ∈ L and some b2 ∈ L, where in characteristic ̸= 2 the element b2 is also
nonzero. The subfield F (a1, . . . , a5,b1,b2) ⊂ L, whose transcendence degree over F is at most 7, is
then a field of definition of qL . It follows that ed2 q = ed2 qL ≤ 7 and so ed2 I 4

24 ≤ 7. □

Recall that the essential 2-dimension is a 2-local version of and constitutes a lower bound for
the essential dimension, measuring, informally speaking, how many independent parameters are
required to describe an isomorphism class of the corresponding type of objects; in particular,
ed2 I 4

24 ≤ ed I 4
24. For n = 3, since the description of the corresponding quadratic forms does

not involve odd degree extensions, similar to the proof of Corollary 3 arguments show that
ed2 I 3

12 ≤ ed I 3
12 ≤ 6. In fact, in characteristic ̸= 2, ed2 I 3

12 = ed I 3
12 = 6 by [3, Theorem 7.1]: the lower

bound 6 ≤ ed2 I 3
12 is obtained by constructing a nontrivial degree 6 cohomological invariant with

coefficients in Z/2Z for I 3
12.

For n ≥ 4, assuming [6, Conjecture 2], one gets

ed2 I n
2n+2n−1 ≤ ed I n

2n+2n−1 ≤ n +3.

Finally, one has ed2 I n
2n = ed I n

2n = n +1 for any n. Indeed, as already mentioned, any q ∈ I n
2n

is isomorphic to b · 〈〈b1,b2, . . . ,bn]] for some n + 1 parameters b,b1, . . . ,bn , ensuring that n + 1
is an upper bound for ed I n

2n . On the other hand, associating in characteristic ̸= 2 to q the
symbol (b,b1, . . . ,bn) in the (n + 1)st Galois cohomology group with coefficients in Z/2Z, one
gets a nontrivial degree n + 1 cohomological invariant showing that n + 1 is a lower bound
for ed2 I n

2n (see [11, Theorem 3.4]). The non-triviality of the cohomological invariant is shown
in [2, Section 3]. The characteristic 2 case is treated similarly using cohomological invariants
with values in étale motivic cohomology groups (cf. [14, Section 3] and especially [14, Proof of
Lemma 3.1]); the non-triviality of the cohomological invariant follows from [7].

To conclude, let us return to the case of arbitrary n ≥ 2. Let X be the highest orthogonal
grassmannian of an anisotropic quadratic form q ∈ I n . If dim q = 2n , then i (X ) = 2 and therefore
the ring CH(X ) contains 2CH(X ). By [4, Corollary 88.6], CH(X ) also contains the elements
e1, . . . ,e2n−1−2 – the generators of the ring CH(X ) with exception of the very last one e2n−1−1. Since
i (X ) ̸= 1, we conclude that CH(X ) is exactly the subring in CH(X ) generated by 2CH(X ) and
e1, . . . ,e2n−1−2 (cf. [4, Example 88.10]).

Now let us assume that dim q = 2n +2n−1, where n ≥ 3. Since i (X ) = 2 by Theorem 1, we still
have the inclusion CH(X ) ⊃ 2CH(X ). Besides, it has been shown in the proof of Theorem 1 that
CH(X ) ∋ ei for all i except i = k := 2n−1 −1 and i = l := 2n−1 +2n−2 −1.

Theorem 4. For any n ≥ 3 and any anisotropic quadratic form q in I n of dimension 2n +2n−1, the
ring CH(X ) of its highest grassmannian X is generated by 2CH(X ) and all ei with i ̸∈ {k, l }.

Proof. Since CH(X ) ⊃ 2CH(X ), it suffices to show that the ring Ch(X ) is generated by ei with
i ̸∈ {k, l }, where Ch(X ) := CH(X )/2CH(X ) and Ch(X ) := Im(Ch(X ) → Ch(X )). By [4, Theorem 87.7]
(originally proved in [16]), it suffices to show that neither ek nor el is in Ch(X ).

By [4, Corollary 82.3] once again, the anisotropic part of q over the function field of its quadric
Y has dimension 2n . By [4, Corollary 88.7], we conclude that ek ̸∈ Ch(X ).
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Finally, let us assume that el ∈ Ch(X ) and seek for a contradiction. By [4, Theorem 90.3]
(originally proved in [16]), the canonical 2-dimension of the variety X equals k and does not
change when the base field is extended to the function field of Y . It follows by [10, Theorem 3.2]
that a shift of the upper Chow motive U (X ) with coefficients Z/2Z is a direct summand of the
motive of Y . On the other hand, by [4, Lemma 82.4], the complete motivic decomposition of the
quadric Y consists only of shifts of the upper motive U (Y ). Moreover, since the variety XF (Y ) has
no 0-cycle of odd degree, the motives U (Y ) and U (X ) are not isomorphic, see [9, Corollary 2.15].
The contradiction obtained proves Theorem 4. □

Regarding the motives of the varieties X and Y from the above proof, each of them decom-
poses in a finite direct sum of indecomposable motives; moreover, by [9, Corollary 2.6] , such a
decomposition is unique in the usual sense. The upper motive U (X ) (resp., U (Y )) is defined as
the summand with nontrivial Ch0 (unique in any decomposition given). By [9, Corollary 2.15],
the motives U (X ) and U (Y ) are isomorphic if and only if each of the two varieties XF (Y ) and YF (X )

possesses a 0-cycle of odd degree.
Let us also recall that canonical dimension cd(X ) of a smooth projective variety X is the

minimum of dimension of the image of a rational self-map X 99K X , c.f. [8]. See also [8,
Definition 1.3] for a definition using the essential dimension of a certain functor related to X .
Canonical 2-dimension, which appeared in the above proof, is its 2-local version also providing a
lower bound for it.

Corollary 5. For any anisotropic q as in Theorem 4, the canonical 2-dimension cd2(X ) of its
highest grassmannian X is equal to k + l = 2n +2n−2 −2.

Proof. As in the proof of Theorem 4, ei ∈ Ch(X ) for i ̸∈ {k, l }. Moreover, it follows from Theorem 4
(and has been shown in its proof explicitly) that neither ek nor el is in Ch(X ). Thus in terms of
the J-invariant in [4, Chapter 88], we have J (q) = {k, l } and so [4, Theorem 90.3] tells us that
cd2(X ) = k + l . □
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