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Abstract. Let G be a finite group. The group pseudo-algebra of G is defined as the multi-set C (G) =
{(d ,mG (d)) | d ∈ Cod(G)}, where mG (d) is the number of irreducible characters of G with codegree d ∈
Cod(G). We show that there exist two finite p-groups with distinct orders that have the same group pseudo-
algebra, providing an answer to Question 3.2 in [7]. In addition, we also discuss under what hypothesis two
p-groups with the same group pseudo-algebra will be isomorphic.

Résumé. Soit G un groupe fini. La pseudo-algèbre de groupe de G est définie comme le multi-ensemble
C (G) = {(d ,mG (d)) | d ∈ Cod(G)}, où mG (d) est le nombre de caractères irréductibles de G de codegré
d ∈ Cod(G). Nous montrons qu’il existe deux p-groupes finis avec des ordres distincts qui ont la même
pseudo-algèbre de groupe, ce qui fournit une réponse à la question 3.2 de [7]. De plus, nous discutons
également sous quelles hypothèses deux p-groupes ayant la même pseudo-algèbre de groupe sont forcément
isomorphes.
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1. Introduction

All groups considered in this article are finite. As usual, G will always be a finite group, and
k(G) denotes the number of conjugacy classes of G . We write Irr(G) to denote the set of complex
irreducible characters of G and cd(G) = {χ(1) | χ ∈ Irr(G)}. Let χ ∈ Irr(G). The codegree of χ is
defined as

codχ= |G : kerχ|
χ(1)

,

which was introduced by Qian, Wang and Wei in [9]. The concept has been studied extensively
and proved to have interesting connections with some algebraic structure of finite groups (see,
for example, [4, 6–8, 10]).
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In [7], A. Moretó first introduced the concept of the group pseudo-algebra, which is defined as
the multi-set

C (G) = {(d ,mG (d)) | d ∈ Cod(G)},

where Cod(G) = {codχ | χ ∈ Irr(G)} and mG (d) is the number of irreducible characters having
codegree d . He showed that if two finite abelian groups have the same group pseudo-algebra,
then they are isomorphic. Additionally, a natural question arises: must groups have the same
order if they have the same group pseudo-algebra? A particular case of the question asks whether
G ∼= A provided that C (G) =C (A), where G is a finite group and A is an abelian p-group for some
prime p. He gave an affirmative answer when either A is cyclic or the exponent of A does not
exceed p2 (see [7, Theorem 3.4]). Thus, the next natural case to look is when the exponent of A is
p3. We will prove that if G is a nonabelian group and A is an abelian p-group of exponent p3 so
that C (G) =C (A), then p = 2. This result guides us in constructing examples, suggesting that the
question does not always yield a positive answer.

Theorem 1. Let p be a prime. There exists an abelian p-group A and a group G with C (G) =C (A)
so that G is not isomorphic to A. Hence, groups may have different orders even though they have
the same group pseudo-algebra.

From the above theorem, it is clear that the question does not always have a positive answer
when the abelian p-group A has three generators. Thus, it might be a good idea to focus on the
case when A has two generators, in particular, when A ∼= Cpn ×Cp , where p is a prime. We first
consider metacyclic groups G satisfying C (G) =C (A) and it turns out that G must be isomorphic
to A. Applying this result, we can prove that for a group G and A ∼=Cpn ×Cp , if C (G) =C (A), then
either G ∼= A or |G : G ′| = p2 and p > 2.

Theorem 2. Let G be a group and A ∼=Cpn ×Cp , where p is a prime and n ⩾ 3 is an integer. Suppose
that C (G) =C (A). Then G is a p-group and one of the following holds:

(1) G ∼= A.
(2) |G : G ′| = p2, p > 2 and Z (G) is noncyclic. In addition, there is a unique maximal subgroup

X of G ′ which is normal in G so that the factor group G/X is nonabelian of order p3 and of
exponent p.

Applying the above result, we show that G ∼= A if A ∼= Cp3 ×Cp and C (G) = C (A). We also
demonstrate that under the same hypothesis as stated in the above theorem, if, in addition, G
has either a metacyclic maximal subgroup or a two-generator derived subgroup G ′, then G ∼= A.

Theorem 3. Let G be a group and A ∼= Cpn ×Cp , where p is a prime. Suppose that C (G) = C (A).
Then G ∼= A if one of the following holds:

(1) G has a metacyclic maximal subgroup,
(2) The derived subgroup G ′ is generated by two elements,
(3) The derived subgroup G ′ is abelian.

2. Main Results

In this section, we start by stating a fact that will be used frequently. Theorem A in [9] yields that
if G is a group such that Cod(G) is a set of powers of a prime p, then G is a p-group. Now we prove
the following basic lemmas.

Lemma 4. Let G be a nonabelian group and A be an abelian p-group of order pa for some prime
p. Suppose that C (G) =C (A). Then |cd(G)|⩾ 3.
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Proof. Since A is abelian, we have that A ∼= Irr(A) and so Cod(A) coincides with the set of element
orders of A. Hence Cod(G) = Cod(A) is a set of powers of p. It follows that G is a p-group.
Assume that |cd(G)| < 3. Then |cd(G)| = 2 as G is nonabelian. So we may assume cd(G) = {1, pe }
for some positive integer e. Let |A| = pa , |G| = pn and |G : G ′| = pr . By C (G) = C (A), we have
that k(G) = k(A) = pa . Then pr < pa < pn . Notice that |G| = |G : G ′| + (k(G)− |G : G ′|)p2e . Thus
pn−r −1 = (pa−r −1)p2e , contrary to the fact that p2e does not divide pn−r −1. Hence |cd(G)|⩾ 3,
as wanted. □

Now we delve deeper into the degree set of G . In particular, we consider the case when
cd(G) = {1, p, p2}.

Lemma 5. Let G be a nonabelian group and A be an abelian p-group of order pa for some prime
p. Suppose that C (G) = C (A) and cd(G) = {1, p, p2}. Then p = 2 and |G| = 2a+2. In particular, if
we write |G : G ′| = pr and k1 = |{χ ∈ Irr(G) | χ(1) = p}| and k2 = |{χ ∈ Irr(G) | χ(1) = p2}|, then
k1 = pa −pr −pr−2 and k2 = pr−2.

Proof. Following the same reasoning process as in Lemma 4, G is a p-group. Since C (G) =C (A),
we have that k(G) = k(A) = pa and so |G| > pa as G is nonabelian. On the other hand, we have
that

|G| = |G : G ′|+k1p2 +k2p4

⩽ pr +p2 + (pa −pr −1)p4

= pa+4 −pr+4 +pr −p4 +p2

< pa+4.

Hence, |G| = pa+1, pa+2, or pa+3. Notice that |G : G ′| = k(G)−k1 −k2 and so |G| = k(G)+k1(p2 −
1)+k2(p4 − 1). Hence (p2 − 1) | (|G| −k(G)), which indicates that |G| = pa+2. By [5, Theorem 3],
such groups do not exist if p is odd. Hence, p = 2. Now it is easy to see that k1 = pa −pr −pr−2

and k2 = pr−2. □

With the above lemmas, we are prepared to provide an example for Theorem 1, and it is
advisable to look at 2-groups. Let A ∼= C23 × C2 × C2 be an abelian 2-group. Then C (A) =
{(1,1), (2,7), (22,8), (23,16)}. Since χ(1) < codχ for all non-principal characters χ of G , it fol-
lows that cd(G) is a subset of {1,2,22}. By Lemma 4 and Lemma 5, if there is a group G so
that C (G) = C (A), then |G| = 27 and cd(G) = {1,2,4}. We notice that such a group does ex-
ist. For example, using GAP, G can be one of SmallGroup(128,755), SmallGroup(128,756),
SmallGroup(128,773). To enhance the readability, we present the information of the irre-
ducible representations of SmallGroup(128,773) (see https://people.maths.bris.ac.uk/~matyd/
GroupNames/128/C4sC4s7D4.html)

Since there is a counterexample when A has three generators, we move on to the case when
A =Cpn ×Cp , where p is a prime. We first give the following lemma.

Lemma 6. Let G be a group and A = Cpn ×Cp , where p is a prime. Suppose that C (G) = C (A).
Then G is a p-group and G/G ′ ∼=Cpm ×Cp for some integer m ⩽ n.

https://people.maths.bris.ac.uk/~matyd/GroupNames/128/C4sC4s7D4.html
https://people.maths.bris.ac.uk/~matyd/GroupNames/128/C4sC4s7D4.html


1664 Mark L. Lewis and Quanfu Yan

Proof. It is clear that [9, Theorem A] implies that G is a p-group. By [7, Lemma 3.3], G/Φ(G) ∼=
A/Φ(A) ∼=Cp ×Cp . Notice that G ′ ⩽Φ(G) andΦ(G)/G ′ ∼=Φ(G/G ′). Then G/G ′ has two generators.
It follows that G/G ′ ∼= Cpm ×Cp l for some positive integers m and l . If both m and l are greater
than 1, then it is easy to see that G has more irreducible characters of codegree p2 than the abelian
group A. This is impossible. Hence, without loss of generality, we can let l = 1. On the other hand,
it is clear that m ⩽ n. The proof is complete now. □

We now consider a class of two-generator groups: metacyclic groups. We obtain the following
result.

Theorem 7. Let G be a metacyclic group and A = Cpn ×Cp , where p is a prime. Suppose that
C (G) =C (A). Then G is abelian and G ∼= A.

Proof. We write G = HK , where H and K are cyclic subgroups of G and H is normal in G . If either
one of these has index p, then by ([1, Theorem 1.2]), k(G) can be computed and it is not a power
of p. Therefore, both H and K have index greater than or equal to p2. Then the group G maps
onto a group, say M , of order p4, which is a product of two cyclic groups of order p2. Clearly, the
irreducible characters of M can be viewed as irreducible characters of G . If M is abelian, then
M ∼= Cp2 ×Cp2 . Notice that C (G) = C (A) = {(1,1), (p, p2 − 1), (p2, p2(p − 1)), . . . , (pn , pn(p − 1))}.
Hence, M has more irreducible characters of codegree p2 than G . Thus M is nonabelian. It
follows that Z (M) is noncyclic of order p2 and so cd(M) = {1, p} and |kerχ| = p for all nonlinear
characters χ ∈ Irr(M). In other words, all nonlinear characters of M have codegree p2. Notice that
M ′ ⩽ Z (M) and M ′ is cyclic. So M ′ has order p. Since M/M ′ must be isomorphic to a subgroup of
A, we have that M/M ′ ∼=Cp2×Cp . Hence, there are p2(p−1) linear characters having codegree p2.
Together with those nonlinear characters, there are more than p2(p −1) irreducible characters of
codegree p2. □

Next, we give a proof of Theorem 2.

Proof of Theorem 2. If G is abelian, then (1) follows. Assume now that G is nonabelian. By
Lemma 6, we can write G/G ′ ∼=Cpa−1 ×Cp , where 2 ⩽ a ⩽ n. A proof similar to Theorem 7 shows
that G is a p-group, k(G) = k(A) = pn+1 and |G|⩾ pn+3. Since G is a nonabelian p-group with two
generators, by [3, Lemma 2.2] we can let X be the unique maximal subgroup of G ′ which is normal
in G . Consider the factor group G =G/X . Then |G| = pa+1, G/G ′ ∼=G/G ′, and G ′ =G ′/X has order

p. Notice that for any irreducible character χ ∈ Irr(G) with χ(1) > 1, codχ = pa+1

χ(1)|kerχ| ⩾ pa . Then

χ(1)⩽ p and kerχ= 1. This implies that cd(G) = {1, p} and all nonlinear irreducible characters are
faithful. Hence G ′ is the unique minimal normal subgroup of G .

Write G/G ′ = C /G ′ ×D/G ′, where C /G ′ ∼= Cpa−1 and D/G ′ ∼= Cp . Next, we will discuss in two
cases.

Case 1: |G : G ′| > p2. We claim that that G is metacyclic. By [3, Theorem 2.3], we only need to
show that G is metacyclic. If Φ(C ) = 1, then C is elementary abelian and so C /G ′ ∼=Cp and a = 2,
contrary to |G : G ′| > p2. As Φ(C ) char C ⩽G , it follows that Φ(C ) ⩽G . Hence by the uniqueness
of G ′, we have that G ′ ⩽Φ(C ). Notice that (C /G ′)/(Φ(C )/G ′) ∼= C /Φ(C ) is cyclic. Then C is cyclic.
Since G/C is cyclic, G is metacyclic. Hence, the above claim holds. It follows from Theorem 7 that
G is abelian, which is a contradiction. Hence, this case cannot happen.

Case 2: |G : G ′| = p2. If p = 2, then |G : G ′| = 4 and such groups have been classified. By the
equation |G| = |G : G ′|+ (k(G)−|G : G ′|) ·22, it is easy to see that k(G) is not a power of 2, contrary
to the hypothesis C (G) = C (A). Hence p > 2. Since G/G ′ ∼= G/G ′ ∼= Cp ×Cp , it follows that G has
order p3. Now we only need to show that G has exponent p. If G has exponent p2, then the group
C defined above is cyclic of order p2 and hence G is metacyclic and so G must be metacyclic. It
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follows from Theorem 7 that G is abelian, which is a contradiction. Hence G is of exponent p and
so (2) follows. □

By Lemma 4 and Lemma 5, we have that if A ∼=Cp3×Cp and G is a group satisfying C (G) =C (A),
then G ∼= A. Theorem 3 immediately follows from Theorem 2 and a result of Blackburn. He proved
that if a p-group G and its derived subgroup G ′ are generated by two elements, then G ′ is abelian
(see [2, Theorem 4]).

Proof of Theorem 3. If G is abelian, there is nothing to prove. If G is not isomorphic to A, then
by Theorem 2, we have that |G : G ′| = p2 and p > 2. If G has a metacyclic maximal subgroup M ,
then G ′ ⩽Φ(G) is a subgroup of M and so G ′ is metacyclic, which indicates that G ′ is generated
by two elements. Hence by Blackburn’s result, G ′ is abelian. Now we have that G ′ is abelian in all
three cases. Notice that χ(1) | |G : G ′| for all irreducible characters χ of G . Then cd(G) is a subset
of {1, p, p2}. It follows from Lemma 4 and 5 that p = 2. This is a contradiction. Therefore, G ∼= A,
as desired. □
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