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Abstract. We propose a new controllability property for linear nonautonomous control systems in finite
dimension: the nonuniform complete controllability, which is halfway between the classical Kalman’s pro-
perties of complete controllability and uniform complete controllability. This new concept has a strong
linkage, as we prove, with the property of nonuniform bounded growth for the corresponding plant. In
addition, we also prove that if a control system is nonuniformly completely controllable and its plant
(uncontrolled part) has the property of nonuniform bounded growth, then there exist a linear feedback
control leading to a nonuniformly exponentially stable closed–loop system.

Résumé. Nous proposons une nouvelle propriété de contrôlabilité pour des systèmes de contrôle linéaires
non autonomes en dimension finie: la contrôlabilité complète non uniforme, qui est à mi-chemin entre les
propriétés classiques de contrôlabilité complète et la contrôlabilité complète uniforme établies par Kalman.
Ce nouveau concept à un lien étroit, comme nous le prouvons, avec la propriété de croissance bornée non
uniforme de la plante correspondante. En outre, il est aussi prouvé que si un système de contrôle est non
uniformément complètement contrôlable et sa plante (partie non contrôlée) à la propriété de croissance
bornée non uniforme, alors on a un résultat de stabilisation asymptotique par bouclage linéaire ou la
convergence est non uniformément exponentielle.
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1. Introduction

The properties of controllability and feedback stabilizability are fundamental topics of control
theory and rely on intrisic properties of the involved dynamical systems. This work provides
new results describing the connection between these two concepts for a particular case of the
nonautonomous linear control systems:

ẋ(t ) = A(t )x(t )+B(t )u(t ), (1)

where t 7→ A(t ) ∈ Mn×n(R) and t 7→ B(t ) ∈ Mn×p (R) are matrix valued functions for any t ≥ 0,
having orders n×n and n×p respectively. In addition, A(·) and B(·) are measurable and bounded
on finite intervals, t 7→ x(t ) ∈ Rn is known as the state vector and piecewise continuous map
t 7→ u(t ) ∈Rp is the open–loop control or input. Finally, when considering the null input u(t ) ≡ 0,
this enable us to call the linear system

ẋ = A(t )x (2)

as the plant or the uncontrolled part of the control system (1). The transition matrix of (2)
is denoted by ΦA(t , s). Now, any solution of (2) passing through x0 at t = t0, is denoted by
t 7→ x(t , t0, x0) = ΦA(t , t0)x0. In addition, given an input u, any solution of (1) passing through
the initial condition x0 at time t = t0 ≥ 0 will be denoted by t 7→ x(t , t0, x0,u). The solution of (1)
is given by the expression:

x(t , t0, x0,u) =ΦA(t , t0)x0 +
∫ t

t0

ΦA(t ,τ)B(τ)u(τ)dτ. (3)

A linear control system is controllable if, roughly speaking, for any initial condition x0 there
exists at least one input u that drives it to the origin in finite time; a formal definition will be
stated in the next section.

If A(·) and B(·) are constant matrices, namely, when (1) is an autonomous linear control
system, the controllability has been studied in depth. In particular, it has been established that
the controllabilty implies the property of feedback stabilizability: there exists a linear feedback
input u =−F x with F ∈ Mp,n(R) such that the closed loop system

ẋ = [A−BF ]x (4)

is uniformly asymptotically stable, and we refer to [2, 8, 11, 16, 37] for details.
In the nonautonomous case, the relation between controllability and feedback stabilizability

is more elusive. This is due to the fact that the above properties are not univocally extended for
the nonautonomous framework: there are numerous notions of controllability and asymptotic
stability, which leads to different possible results relating them, as will be described in the next
sections. In consequence, the problem of feedback stabilizability for linear nonautonomous
control systems must be addressed by taking into account this multiplicity of properties.

1.1. Novelty of this work

The present work introduces and characterizes a controllability property for nonautonomous
control systems: the nonuniform complete controllability (NUCC), which is more general than
the classical Kalman’s uniform complete controllability (UCC) but more restrictive than mere
complete controllability (CC), both described in Section 2. We present examples of systems that
shows the differences between these three classes.

The first novel result is the Lemma 6, which relates the classical UCC with the property of
uniform bounded growth for nonautonomous linear systems (2), which is well known in the
qualitative theory of linear nonautonomous systems but not so much in control theory.
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Our second novel result is the Theorem 25, which states that the plant of a nonuniformly
completely controllable system (2) must satisfy a condition that will be called as nonuniform
Kalman’s condition, which is weaker than the classical uniform version. The proof is fashioned
along the Kalman’s approach [15] but the nonuniformities induce technical difficulties and forces
a deeper treatment.

The third novel result concerns feedback stabilization: Theorem 26 proves that if a linear
control system (1) is NUCC and its plant has the property of nonuniform bounded growth
property, it can be stabilized by a linear feedback input such that any solution of the closed loop
system starting at t = t0 is nonuniformly exponentially stable.

1.2. Notations and basic settings

Given M ∈ Mn(R), M T is the transpose, tr(M) is the trace. The inner product of two vectors
x, y ∈ Rn is denoted by 〈y, x〉 = xT y and the euclidean norm of a vector will be denoted by
|x| =p〈x, x〉. Given A ∈ Mn(R), the matrix norm induced by | · | is

∥A∥ = sup
η ̸=0

|Aη|
|η| =

√
λmax(AT A),

where λmax(AT A) is the maximum eigenvalue of AT A, while its minimum eigenvalue will be
denoted by λmin(AT A).

A symmetric matrix M = M T ∈ Mn(R) is semi–positive definite if xT M x = 〈M x, x〉 ≥ 0 for any
real vector x ̸= 0, and this property will be denoted as M ≥ 0. In case that the above inequalities
are strict, we say that M = M T is positive definite.

Given two matrices M , N ∈ Mn(R), we write M ≤ N if N −M ≥ 0 or equivalently, if 〈M x, x〉 ≤
〈N x, x〉 for any x ∈Rn .

If M ∈ Mn(R) is positive definite and κ is a positive scalar such that M ≤ κI is verified, it will be
useful to recall that

tr(M) ≤ nκ and 0 ≤λmin(M) ≤λmax(M) ≤ κ. (5)

Finally, we will denote by B the set of functionsα : R→Rmapping bounded sets into bounded
sets.

1.3. Structure of the article

This article is on the crossroads of linear control systems theory and the theory of nonau-
tonomous dynamical systems. In addition, the proof of our main results use methods and ideas
which are current tools in nonautonomous dynamics but are not well known in control theory
and; to make things more complicated; the classical control theory is not well known for scho-
lars working on dynamical systems. In order to mitigate these mismatches, we estimated neces-
sary and useful to write an encyclopaedic Section 2 focused to provide a common basis for both
research communities.

In section 3 we move into the nonuniform framework, introducing the new notion of nonuni-
form complete controllability (NUCC) and describe its main consequences. Finally, the section
4 provides sufficient conditions under which that nonuniform complete controllability implies
feedback stabilizability, where the closed loop system (4) is nonuniformly exponentially stable.

2. Controllability and Feedback stabilizability: basic notions and nonuniform
preliminaries

In this section we briefly recall the classical definitions and results of controllability and feedback
stabilizability stated respectively in the seminal Kalman’s paper [15] and the article of Ikeda
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et al. [13]. Moreover, we will see that the uniform complete controllability is related with the
property of uniform bounded growth while the specificities of the feedback stabilizability can be
understood by considering some types of exponential stabilities: uniform and nonuniform ones.
There exist several ways to define these stabilities but we choose to define them as a limit case of
the properties of uniform/nonuniform exponential dichotomy.

2.1. Controllability

The properties of controllability were introduced by R. Kalman in [15] for the linear control
system (1) and we will briefly recall them by following [1, 32]:

Definition 1. The state x0 ∈Rn of the control system (1) is controllable at time t0 ≥ 0, if there exists
an input u : [t0, t f ] →Rp such that x(t f , t0, x0,u) = 0. In addition, the control system (1) is:

(i) Controllable at time t0 ≥ 0 if any state x0 is controllable at time t0 ≥ 0,
(ii) Completely controllable (CC) if it is controllable at any time t0 ≥ 0.

There exists a well known necessary and sufficient condition ensuring both controllability
at time t0 and complete controllability, which is stated in terms of the controllability Gramian
matrix, usually defined by

W (a,b) =
∫ b

a
ΦA(a, s)B(s)B T (s)ΦT

A (a, s)ds.

The control system (1) is controllable at time t0 ≥ 0 if and only if there exists t f > t0 ≥ 0 such
that W (t0, t f ) > 0. In addition, is completely controllable if and only if for any t0 ≥ 0, there exists
t f > t0 such that W (t0, t f ) > 0. We refer the reader to [3, 19] for a detailed description. Essentially,
invertibility of the Gramian allows us to construct an explicit input function that drives the system
towards the origin. By considering a given couple of initial state x0 and initial time t0, together
with the following input u∗ : [t0, t f ] →Rp described by:

u∗(t ) =−B T (t )ΦT
A (t0, t )W −1(t0, t f )x0, (6)

we can see by (3) that the respective solution of (1) with u = u∗ satisfies:

x(t f , t0, x0,u∗) =ΦA(t f , t0)x0 −
∫ t f

t0

ΦA(t f ,τ)B(τ)B T (τ)ΦT
A (t0,τ)W −1(t0, t f )x0 dτ,

=ΦA(t f , t0)x0 −ΦA(t f , t0)W (t0, t f )W −1(t0, t f )x0 = 0.

It is important to emphasize that, in some references, the controllability Gramian matrix is
also denoted by

K (a,b) =
∫ b

a
ΦA(b, s)B(s)B T (s)ΦT

A (b, s)ds,

which verifies the following properties{
K (a,b) =ΦA(b, a)W (a,b)ΦT

A (b, a)

W (a,b) =ΦA(a,b)K (a,b)ΦT
A (a,b),

(7)

and the above mentioned controllability condition can also be stated in terms of invertibility of
K (t0, t f ).

A stronger property of controllability, also due to R. Kalman [15, 17], is given by the uniform
complete controllability (UCC). In this case, there exists a time σ > 0 such that “one can always
transfer x to 0 and 0 to x in a finite length σ of time; moreover, such a transfer can never take place
using an arbitrarily small amount of control energy” [15, p. 157]. Kalman stated the property in
terms of the Gramian. We recall a slightly different version restricted to the positive half line:
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Definition 2. The linear control system (1) is said to be uniformly completely controllable on
[0,+∞) if there exists a fixed constant σ > 0 and positive numbers α0(σ), β0(σ), α1(σ) and β1(σ)
such that the following relations hold for all t ≥ 0:

0 <α0(σ)I ≤W (t , t +σ) ≤α1(σ)I , (8)

and
0 <β0(σ)I ≤ K (t , t +σ) ≤β1(σ)I . (9)

By using (7), we can see that the condition (9) is equivalent to

0 <β0(σ)I ≤ΦA(t +σ, t )W (t , t +σ)ΦT
A (t +σ, t ) ≤β1(σ)I ,

which is widely employed in the literature. Nevertheless, by following [5, p. 114], we adopted (9)
by its practical convenience. It is important to emphasize that, in several references, the explicit
dependence of αi and βi (i = 0,1) with respect to σ is not considered1.

The property of uniform complete controllability have noticeable consequences, which have
been pointed out by R. Kalman in [15] and are summarized by the following result, whose proof
is sketched in [15, p. 157] (see also [31]):

Proposition 3. If the linear control system (1) is UCC then:

(i) The inequalities (8)–(9) are also verified for any σ′ >σ.
(ii) There exists a function α : [0,+∞) → (0,+∞), with α(·) ∈ B, such that the plant (2) has a

transition matrix verifying the property

∥ΦA(t , s)∥ ≤α(|t − s|) for all t , s ∈ [0,+∞). (10)

The above result deserves some comments:

Remark 4. The statement (i) of Proposition 3 implies the existence of positive functions
α0,α1,β0,β1 : [σ,+∞) → (0,+∞) related to (8) and (9). These maps are used to construct the
map α(·) in (10).

Remark 5. Kalman’s article [15] does not provide additional properties for the mapα(·) from (10).
However, as done in the work of B. Zhou [36, Lemma 4] the condition (10) withα(·) ∈B is referred
as the Kalman’s condition.

Proposition 3 describes the strong linkage between the UCC and the Kalman’s condition. In
addition, inequality (10) states that any solution t 7→ΦA(t , t0)x0 of the plant (2) passing through
x0 at t = t0 verifies

|ΦA(t , t0)x0| ≤α(|t − t0|)|x0|,
that is, the growth of any solution of (2) over an interval [t0, t ] (or [t , t0]) is dependent of the time
elapsed between t and t0 but is independent of the initial time t0 (or t ).

The next result describes a set of equivalences with the Kalman’s condition:

Lemma 6. Let ΦA(t , s) be the transition matrix of the linear system (2). The following properties
are equivalent:

(i) There exist constants K > 1 and β> 0 such that:

∥ΦA(t , s)∥ ≤ K eβ|t−s| for any t , s ∈ [0,+∞). (11)

(ii) The linear system (2) satisfies the Kalman’s condition.
(iii) For any h > 0 there exists Ch > 1 such that any solution t 7→ x(t ) of (2) verifies

|x(t )| ≤Ch |x(s)| for any t ∈ [s −h, s +h]. (12)

1In Appendix A, we present some considerations about the control energy required to transfer the state x0 to the
origin.
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Proof.

Proof of (i) → (ii). That is direct since u 7→ α(u) = K eα|u| is continuous and we can deduce
α(·) ∈B, that is, α(·) maps bounded sets into bounded sets.

Proof of (ii) → (iii). Let us consider an arbitrary constant h > 0 and a solution t 7→ x(t ) of (2).
Note that (10) implies:

|ΦA(t , s)x(s)| = |x(t )| ≤α(|t − s|)|x(s)|.
Now, if t ∈ [s−h, s+h], which is equivalent to h ≥ |t −s|, then the above inequality implies that

|x(t )| ≤ sup
|θ|≤h

α(|θ|)|x(s)|,

and (12) is verified with Ch = max

{
1+h, sup

|θ|≤h
α(|θ|)

}
. Note that Ch is well defined since α(·) ∈B.

Proof of (iii) → (i). Given a fixed h > 0 there exists Ch > 1 such that the property (iii) is verified.
Firstly, we will suppose that t ≥ s, then we can assume the existence of n ∈N such that t ∈ [s+(n−
1)h, s +nh]. By a recursive application of the property (iii) we can deduce that |x(t )| ≤ C n

h |x(s)|.
On the other hand, we also can see that n −1 ≤ t−s

h ≤ n, which allow us to verify that:

|x(t )| = |ΦA(t , s)x(s)| ≤C n
h |x(s)| ≤Ch e

ln(Ch )
h (t−s) |x(s)|,

and (11) is verified with K = Ch > 1 and β = ln(Ch )
h > 0. The case t ≤ s can be proved in a similar

way. □

The properties (i) and (iii) are well known in the qualitative theory of LTV systems. In addition,
its equivalence has been proved by W. Coppel in [10, pp. 8–9]. We will refer to (11) as uniform
bounded growth, which also allows the limit caseβ= 0 and Ch = 1 and we refer to S. Siegmund [28]
and K.J. Palmer [23] for more details. As we stated before, the uniform bounded growth property
is less known in control theory and, to the best of our knowledge, its equivalence with the
Kalman’s condition seems not have been noticed in the literature.

The next result, whose proof has been sketched by Kalman in [15, p. 157], describes a more
surprising relation between the properties of uniform complete controllability and the Kalman’s
condition:

Proposition 7. If any two of the properties (8),(9) and (10) hold, the remaining one is also true.

The respective definitions of nonuniform complete controllability and nonuniform bounded
growth -which will be detailed and explored in section 3- will allow us to obtain a result similar to
the preceding proposition for the nonuniform situation.

2.2. Feedback stabilizability

By considering linear inputs of the form

u(t ) =−F (t )x(t ), (13)

the control system (1) becomes a closed loop LTV system represented by

ẋ(t ) = Â(t )x(t ) with Â(t ) = A(t )−B(t )F (t ), (14)

whose corresponding transition matrix will be denoted by ΦÂ(·, ·) or ΦA−BF (·, ·). The matrix
function F (·) in (13) is called feedback gain. A far–reaching question in control theory is to
determine the existence of a feedback gain such that the origin is an asymptotically stable
solution of (14), i.e. a stabilizing feedback.
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For the autonomous framework, the controllability implies that the eigenvalues of the closed
loop matrix Â = A−BF can be arbitrarily assigned2 with an appropriate feedback matrix F . Con-
trarily to the autonomous case, there exists a myriad of asymptotic stabilities for nonautonomous
systems and we refer the reader to [12] and [26, Chapter VIII] for details. Particularly, a work from
Ikeda et al. [13] describes the links between the CC and UCC properties of the control system (1)
and the asymptotic stability of the closed loop system (14) summarized as follows:

Proposition 8 ([13, Theorem 1]). The linear control system (1) is completely controllable if and
only if for any initial time t0 and any continuous and monotonically nondecreasing function
t 7→ δ(t , t0) defined for any t ≥ t0 such that δ(t0, t0) = 0, there exist a feedback gain F (t ) defined
for t ≥ t0 and a number a(t0) > 0 such that

∥ΦA−BF (t , t0)∥ ≤ a(t0)e−δ(t ,t0) for all t ≥ t0. (15)

The property (15) characterizes the complete stabilizability of system (1) and t 7→ δ(t , t0) is
called measure of decay in [13]. The CC is equivalent to the existence of a feedback gain F (t ) such
that the closed loop system (14) is asymptotically stable for any measure of decay previously
designed. For alternative approaches relating CC and feedback stabilizability, we refer to [1,
Theorem 3.2].

Proposition 9 ([13, Theorem 2]). If the linear control system (1) is uniformly completely control-
lable, then for any m > 0 there exists a feedback F (t ) defined for any t ≥ 0 and a positive number
M such that

∥ΦA−BF (t , t0)∥ ≤ M e−m(t−t0) for all t0 ≥ 0 and t ≥ t0.

As we can see, the UCC implies the existence of a feedback gain F (t ) such that the closed loop
system (14) is uniformly exponentially stable for any rate of exponential decay previously chosen.
A converse result is also proved in [13, Theorem 3] provided that A(·) and B(·) are bounded
matrices. For complementary approaches relating UCC and feedback stabilizability, we refer the
reader to [14, Proposition 4.3] and [36, Theorem 4].

It is important to emphasize that Propositions 8 and 9 are respectively associated to the
properties of complete stabilizability [13, Definition 3] and uniform complete stabilizability [13,
Definition 4]. Nevertheless, there exist several related definitions of stabilizability and we refer
the reader to [1, Section 2.3],[24, Definition 2.2] and [25, Definition 2.8].

2.3. Exponential dichotomy and bounded growth properties

The properties of exponential dichotomies are ubiquitous in the study of linear systems (2) but its
use in linear control systems is less widespread. We will see that it provides us an interesting way
to study the relation between complete controllability and feedback stabilization. Let us recall its
definition for an arbitrary linear system

ẋ =V (t )x (16)

but having in mind the plant (2) and the closed loop system (14).

Definition 10. The system (16) has a uniform exponential dichotomy (UED) on R+
0 := [0,+∞) if

there exist a projector P (·) and a couple of constants M ≥ 1 and λ> 0 such that
P (t )ΦV (t , t0) =ΦV (t , t0)P (t0) for all t , t0 ≥ 0,

∥ΦV (t , t0)P (t0)∥ ≤M e−λ(t−t0) for all t ≥ t0 ≥ 0,

∥ΦV (t , t0)[I −P (t0)]∥ ≤M e−λ(t0−t ) for all t0 ≥ t ≥ 0.

2Complex eigenvalues must come in conjugate pairs.
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We refer the reader to [10, 21, 22] for additional details. Moreover, the above property can be
seen as a special case of the nonuniform exponential dichotomy, defined as follows:

Definition 11. The system (16) has a nonuniform exponential dichotomy (NUED) on R+
0 if there

exists a projector P (·) together with three constants M ≥ 1, λ> 0 and ε ∈ [0,λ) such that
P (t )ΦV (t , t0) =ΦV (t , t0)P (t0) for all t , t0 ≥ 0,

∥ΦV (t , t0)P (t0)∥ ≤M eεt0 e−λ(t−t0) for all t ≥ t0 ≥ 0,

∥ΦV (t , t0)[I −P (t0)]∥ ≤M eεt0 e−λ(t0−t ) for all t0 ≥ t ≥ 0.

The exponential dichotomy mimics the hyperbolicity condition of the autonomous case in the
sense that the projector splits the solutions of (16) between contractive (stable) and expansive
(unstable). Despite the apparent similarity between definitions 10 and 11, we stress that, in the
uniform case, contractions as well as expansions depend only on the elapsed time between t and
t0 while; in the nonuniform framework, they are also dependent of t0. This motivates to denote
eεt0 as the nonuniformity, which induces qualitative differences.

There are spectral theories constructed on the basis of these dichotomy properties. The key
definitions are the following:

Definition 12. The uniform exponential dichotomy spectrum of the linear system (16) is defined
by the set

ΣU (V ) = {
γ ∈R : ẋ = [V (t )−γI ]x has not a UED on R+

0

}
.

Definition 13. The nonuniform nonuniform exponential dichotomy spectrum of the linear sys-
tem (16) is defined by the set

ΣNU (V ) = {
γ ∈R : ẋ = [V (t )−γI ]x has not a NUED on R+

0

}
.

The spectrum ΣU (V ) has been deeply studied and we refer to [18, 28, 29] for a detailed
description and characterization. The spectrum ΣNU (V ) has been studied in [9, 33], where the
authors emulate the previous results and we refer to [30] and [39] for additional results.

The spectraΣU (V ) andΣNU (V ) have been characterized as the finite union of closed intervals,
also called spectral intervals, which mimic the role of the real part of the eigenvalues. These
spectra are not necessarily bounded but it is well known thatΣU (V ) is bounded when (16) has the
property of uniform bounded growth defined in (11). Similarly, the spectrumΣNU (V ) is bounded
when (16) has the property of nonuniform bounded growth defined as follows:

Definition 14. The linear system (16) has a nonuniform bounded growth on the interval J ⊂
[0,+∞) if there exist constants K0 > 0, a > 0 and η> 0 such that its transition matrix satisfies

∥ΦV (t ,τ)∥ ≤ K0 eητ ea|t−τ| for any t ,τ ∈ J . (17)

We refer to [9] and [38] for more details about the nonuniform bounded growth property. An
example of this property has been considered in [7, p. 21]:

ẋ = [λ0 +at sin(t )]x with λ0 < a < 0.

In fact, its transition matrix is given by

Φ(t , s) = eλ0(t−s)−a cos(t )(t−s)−as(cos(t )−cos(s))+a(sin(t )−sin(s))),

and, it can be proved that
|Φ(t , s)| ≤ e2|a|s e(|λ0|+2|a|)|t−s|,

while the Kalman’s condition (10) is not verified. Indeed, otherwise, by Lemma 6 it would exist
constants K ≥ 1 and α> 0 such that

|Φ(t , s)| ≤ K eα|t−s|,
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that is,

λ0(t − s)−a cos(t )(t − s)−as{cos(t )−cos(s)}+a(sin(t )− sin(s))) ≤ ln(K )+α|t − s|.

The above expression is true when t = s. Now, the inequality

{λ0 −a cos(t )}
(t − s)

|t − s| −as
{cos(t )−cos(s)}

|t − s| +a
(sin(t )− sin(s)))

|t − s| ≤ ln(K )

|t − s| +α,

must be verified for any t ̸= s, in particular, for any couple of sequences {tn}n and {sn}n such that
tn ̸= sn for any n ∈ N. Now, when considering the sequences tn = 2nπ and sn = 2nπ− π

2 and
evaluate at t = tn and s = sn , it follows that tn − sn = π

2 and we have

λ0 −a −a
(
2nπ− π

2

) 2

π
+a

2

π
≤ 2

ln(K )

π
+α for any n ∈N,

finally, as a < 0, by letting n →+∞ we will obtain a contradiction.

2.4. Nonuniform asymptotic stability properties

Contrarily to the autonomous case, there is not a univocal definition of asymptotic stability and
there exist several ways to characterize them. We will focus on a limit case of the nonuniform
exponential dichotomy studied previously. The formal definitions are:

Definition 15. The closed loop system (14) is:

(i) ã(t0)–nonuniformly exponentially stable if there exist constants ã(t0) > 0, M ≥ 1, λ > 0
such that

∥ΦA−BF (t , t0)∥ ≤M ã(t0)e−λ(t−t0) for all t ≥ t0 ≥ 0. (18)

(ii) eεt0 –nonuniformly exponentially stable if there exist constants M ≥ 1, λ> 0 and ε ∈ [0,λ)
such that

∥ΦA−BF (t , t0)∥ ≤M eεt0 e−λ(t−t0) for all t ≥ t0 ≥ 0. (19)

Note that the nonuniform exponential stability described by (19) can be seen as a limit case of
Definition 11 with P (s) = I . Similarly, when ε = 0 in (19) we obtain a limit case of Definition 10
with P (s) = I which coincides with the uniform exponential stability.

The numbers ã(t0) and eεt0 are called nonuniformities and constitute the main difference
between uniform and nonuniform exponential stabilities. In fact, at is was pointed out in [27,
p. 101], for the uniform situation the exponential decay is only dependent of the elapsed time
t − t0 while, in (18)–(19), this decay is also dependent of the initial time t0, considered by the
nonuniformities. For additional details, we refer the reader to [34–36].

Note that the stabilization for the closed loop system (14) described by (18) is a particular case
of the complete stabilizability described by Proposition 8 by considering a specific measure of
decay δ(t , t0) =λ(t − t0).

Remark 16. Despite that the stability described by (19) is a particular case of (18), we reserve
a special treatment for it since corresponds to the purely contractive case of the nonuniform
exponential dichotomy of Definition 11. In this sense, given a F (·) such that the closed loop
system (14) is eεt0 –nonuniformly exponentially stable, this is equivalent to the spectral property

ΣNU (A−BF ) ⊂ (−∞,0).
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3. Controllability in a nonuniform framework

A strong consequence of the Propositions 3 and 7 stated in the previous section, is that if the
plant of the linear control system (1) does not verify the Kalman’s condition (10), then the control
system cannot be uniformly completely controllable but still can be completely controllable. In
this context, and assuming that the property (10) is not verified, an open problem is:

(a) To explore the existence of a set of controllability properties halfway the complete con-
trollability and uniform complete controllability.

(b) Given a controllability property as in the above sense, to determine the asymptotic
stability of the corresponding closed loop system, which must be stronger than the one
stated in Proposition 8 but weaker than those stated in Proposition 9.

There exist multiple ways to propose controllability properties having the above features.
In Lemma 6, we proved that the classical Kalman’s condition is actually the uniform bounded
growth condition. We can re-interpret Kalman’s Proposition 7 saying that inequalities (8)-(9),
along with the uniform bounded growth (11) form a trifecta. So, in order to move into the
nonuniform situation, we will take the nonuniform bounded growth property (19) and introduce
a nonuniform complete controllability notion, also based on Gramian inequalities, prompting to
an extension of Propositions 3 and 7.

3.1. Nonuniform complete controllability: definition and consequences

Definition 17. The linear control system (1) is said to be nonuniformly completely controllable,
if there exist fixed numbers µ0 ≥ 0, µ1 ≥ 0, µ̃0 ≥ 0, µ̃1 ≥ 0 and functions α0(·),β0(·),α1(·),β1(·) :
[0,+∞) → (0,+∞) such that for any t ≥ 0, there exists σ0(t ) > 0 with:

0 < e−2µ0t α0(σ)I ≤W (t , t +σ) ≤ e2µ1t α1(σ)I . (20)

0 < e−2µ̃0t β0(σ)I ≤ K (t , t +σ) ≤ e2µ̃1t β1(σ)I , (21)

for every σ≥σ0(t ).

Remarks 18. In the context of the above property, note that:

(i) If µ := max{µ0, µ̃0,µ1, µ̃1}, the estimates (20) and (21) can be stated in terms of µ. Also, as
done in the dichotomy & stability literature [7, 9, 34], the numbers µ0, µ̃0, µ1 and µ̃1 will
be called the Gramian nonuniformities.

(ii) When µ = 0 and t 7→ σ0(t ) is constant for all t ≥ 0, we recover the uniform complete
controllability.

(iii) By (20) or (21), it is straightforward to verify that NUCC implies CC.
(iv) By using (7), it follows directly that (21) is equivalent to

0 < e−2µ̃0t β0(σ)I ≤ΦA(t +σ, t )W (t , t +σ)ΦT
A (t +σ, t ) ≤ e2µ̃1t β1(σ)I . (22)

(v) Given an initial time t ≥ 0, there existsσ0(t ) > 0 such that any state x can be transferred to
the origin in an interval [t , t +σ0(t )]. Nevertheless, the energy remarks stated by Kalman
are no longer valid since the bounds of W (t , t +σ0(t )) are not uniform with respect to the
initial time. We refer to Appendix A for additional details.

(vi) In order to facilitate the writing, in some occasions when the context requires it, we will
use the notation σt :=σ0(t ).

If the linear control system (1) is nonuniformly completely controllable, we can see that its
corresponding plant admits properties and restrictions related to Propositions 3 and 7, which
will be described by the next results.
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Lemma 19. If the control system (1) is nonuniformly completely controllable with nonuniformi-
ties {µ0, µ̃0,µ1, µ̃1} and positive functions {α0,β0,α1,β1}, then for any t ≥ 0, there exists σ0(t ) > 0
such that for any σ≥σ0(t ), the plant of (1) verifies the following estimates:

e−(µ̃0+µ1)t

√
β0(σ)

α1(σ)
≤ ∥ΦA(t +σ, t )∥ ≤ e(µ0+µ̃1)t

√
β1(σ)

α0(σ)
. (23)

Proof. For any x ̸= 0, we can see that (20) is equivalent to

0 < e−2µ0t α0(σ)∥x∥2 ≤ xT W (t , t +σ)x ≤ e2µ1t α1(σ)∥x∥2.

By considering the change of variable x = ΦT
A (t +σ, t )η, with η ̸= 0, the previous estimate is

transformed into

e−2µ0t α0(σ)|ΦT
A (t +σ, t )η|2 ≤ ηT K (t , t +σ)η≤ e2µ1t α1(σ)|ΦT

A (t +σ, t )η|2.

On the other hand, as (21) is equivalent to

0 < e−2µ̃0t β0(σ)|η|2 ≤ ηT K (t , t +σ)η≤ e2µ̃1t β1(σ)|η|2,

the above two inequalities leads to the following estimates:

e−2µ̃0t β0(σ)|η|2 ≤ e2µ1t α1(σ)|ΦT
A (t +σ, t )η|2,

and
e−2µ0t α0(σ)|ΦT

A (t +σ, t )η|2 ≤ e2µ̃1t β1(σ)|η|2,

which implies that

e−2(µ̃0+µ1)t β0(σ)

α1(σ)
≤

( |ΦT
A (t +σ, t )η|

|η|

)2

≤ e2(µ0+µ̃1)t β1(σ)

α0(σ)

and the result follows by considering the supreme over η ̸= 0 and recalling that ∥ΦA∥ = ∥ΦT
A∥. □

A direct consequence from inequality (23) is the estimation:

e−(µ0+µ̃1)t

√
α0(σ)

β1(σ)
≤ ∥ΦA(t +σ, t )∥−1 ≤ e(µ̃0+µ1)t

√
α1(σ)

β0(σ)
, (24)

which will be useful to prove the next result:

Lemma 20. If the control system (1) is nonuniformly completely controllable with nonuniformi-
ties {µ0, µ̃0,µ1, µ̃1} and positive functions {α0,β0,α1,β1}, then for any t ≥ 0, there exists σ0(t ) > 0
such that for any σ≥σ0(t ), the plant of (1) verifies the following estimates:

e−(µ0+µ̃1)t

√
α0(σ)

β1(σ)
≤ ∥ΦA(t , t +σ)∥ ≤ e(µ̃0+µ1)t

√
α1(σ)

β0(σ)
. (25)

Proof. Since ∥I∥ = 1, we have that

1 = ∥ΦA(t , t +σ)ΦA(t +σ, t )∥ ≤ ∥ΦA(t , t +σ)∥∥ΦA(t +σ, t )∥,

and, by using (24) we conclude that

e−(µ0+µ̃1)t

√
α0(σ)

β1(σ)
≤ ∥ΦA(t +σ, t )∥−1 ≤ ∥ΦA(t , t +σ)∥.

In addition, the inequality (22) is equivalent to

e−2µ̃0t β0(σ)|x|2 ≤ xTΦA(t +σ, t )W (t , t +σ)ΦT
A (t +σ, t )x ≤ e2µ̃1t β1(σ)|x|2

for any x ̸= 0. Therefore, by choosing η=ΦT
A (t +σ, t )x, this estimation becomes:

e−2µ̃0t β0(σ)|ΦT
A (t , t +σ)η|2 ≤ ηT W (t , t +σ)η≤ e2µ̃1t β1(σ)|ΦT

A (t , t +σ)η|2.
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By combining the left side of the previous inequality with the right side of (20), we obtain that

e−2µ̃0t β0(σ)|ΦT
A (t , t +σ)η|2 ≤ ηT W (t , t +σ)η≤ e2µ1t α1(σ)|η|2,

which implies that ( |ΦT
A (t , t +σ)η|

|η|

)2

≤ e2(µ̃0+µ1)t α1(σ)

β0(σ)
.

Finally, by taking the supreme over any η ̸= 0, we deduce that

∥ΦA(t , t +σ)∥ ≤ e(µ̃0+µ1)t

√
α1(σ)

β0(σ)
,

and the proof follows. □

Corollary 21. For any η ̸= 0 it follows that for all σ≥σ0(t )

e−(µ0+µ̃1)t

√
α0(σ)

β1(σ)
|η| ≤ |ΦT

A (t , t +σ)η|,

and

e−(µ̃0+µ1)t

√
β0(σ)

α1(σ)
|η| ≤ |ΦT

A (t +σ, t )η|. (26)

Proof. We will prove the second inequality since the first one can be proved in a similar way.
Now, by using the identity |η| = |ΦT

A (t , t +σ)ΦT
A (t +σ, t )η|, we can deduce that

|η| ≤ ∥ΦT
A (t , t +σ)∥|ΦT

A (t +σ, t )η|
≤ ∥ΦA(t , t +σ)∥|ΦT

A (t +σ, t )η|,
and also that

∥ΦA(t , t +σ)∥−1|η| ≤ |ΦT
A (t +σ, t )η|,

and (26) is a direct consequence from (25). □

As we have seen, the preceding results deduce a set of estimates from the Gramian inequal-
ities (20)–(21) and its nonuniformities. These results will allow us to prove that the inequalities
imply a condition that generalizes the Kalman property (10).

Lemma 22. If the control system (1) is nonuniformly completely controllable, then there exist ν> 0
and a function α(·) ∈B satisfying

∥ΦA(t ,τ)∥ ≤ eντ α(|t −τ|) for any t ,τ≥ 0. (27)

Proof. By considering that system (1) is nonuniformly completely controllable, given t ≥ 0, τ≥ 0,
there exist σt ,στ > 0 such that for any σ≥ max{σt ,στ} Lemma 19 allows us to ensure that

∥ΦA(τ+σ,τ)∥ ≤ e(µ̃1+µ0)τ

√
β1(σ)

α0(σ)
(28)

and Lemma 20 leads to that

∥ΦA(t , t +σ)∥ ≤ e(µ1+µ̃0)t

√
α1(σ)

β0(σ)
. (29)

If we consider |t −τ| ≥σ0 := max{σt ,στ}, we have to keep in mind the following subcases:

Case A.1. t > τ. We choose σ= t −τ≥σ0, then we have that for t = τ+σ, the inequality (28) can
be expressed as:

∥ΦA(t ,τ)∥ ≤ e(µ̃1+µ0)τ

√
β1(t −τ)

α0(t −τ)
.
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Case A.2. τ > t . We choose σ = τ− t ≥ σ0. Again, by considering τ = t +σ, the inequality (29) is
given by:

∥ΦA(t ,τ)∥ ≤ e(µ1+µ̃0)t

√
α1(τ− t )

β0(τ− t )
≤ e(µ1+µ̃0)τ

√
α1(τ− t )

β0(τ− t )
.

Gathering the above two cases, we take ν1 = max{µ0 + µ̃1, µ̃0 +µ1} and deduce that

∥ΦA(t ,τ)∥ ≤ eν1τα2(|t −τ|)
where

α2(|t −τ|) := max

{√
β1(|t −τ|)
α0(|t −τ|) ,

√
α1(|t −τ|)
β0(|t −τ|)

}
.

On the other hand, we will consider the case when |t −τ| <σ0 := max{σt ,στ}.

Case B.1. τ< t < τ+σ0 ≤ t +σ0. From Lemma 20 we have easily that for anyσ≥σ0 we have that:

∥ΦA(t ,τ)∥ ≤ ∥ΦA(t , t +σ)∥∥ΦA(t +σ,τ)∥,

≤ e(µ1+µ̃0)t

√
α1(σ)

β0(σ)
∥ΦA(t +σ,τ)∥.

Moreover, as t +σ− τ > σ ≥ σ0, the estimation obtained for the case A.1, combined with
t < τ+σ0 ≤ τ+σ, allow us to deduce that

∥ΦA(t ,τ)∥ ≤ e(µ1+µ̃0)t

√
α1(σ)

β0(σ)
e(µ̃1+µ0)τ

√
β1(t +σ−τ)

α0(t +σ−τ)
,

≤ e(µ1+µ̃0)(τ+σ)

√
α1(σ)β1(t +σ−τ)

β0(σ)α0(t +σ−τ)
e(µ̃1+µ0)τ .

Case B.2. t < τ < t +σ0 < τ+σ0. Similarly as the previous case, by using Lemma 19 and the
estimation of the case A.2 arising from τ+σ− t >σ≥σ0, then for any σ≥σ0 we obtain that:

∥ΦA(t ,τ)∥ ≤ ∥ΦA(t ,τ+σ)∥∥ΦA(τ+σ,τ)∥,

≤ ∥ΦA(t ,τ+σ)∥e(µ0+µ̃1)τ

√
β1(σ)

α0(σ)
,

≤ e(µ1+µ̃0)t

√
α1(τ+σ− t )

β0(τ+σ− t )
e(µ0+µ̃1)τ

√
β1(σ)

α0(σ)
,

≤ e(µ1+µ̃0)(τ+σ)

√
α1(τ+σ− t )β1(σ)

β0(τ+σ− t )α0(σ)
e(µ̃1+µ0)τ .

Based on the last two cases, by choosing ν2 =µ1 + µ̃0 +µ0 + µ̃1, we have that

∥ΦA(t ,τ)∥ ≤ eν2τα3(|t −τ|),

where

α3(|t −τ|) = e(µ1+µ̃0)σmax

{√
α1(σ)β1(|t −τ|+σ)

β0(σ)α0(|t −τ|+σ)
,

√
α1(|τ− t |+σ)β1(σ)

β0(|τ− t |+σ)α0(σ)

}
.

Finally, due to the fact that ν1 ≤ ν2, then

∥ΦA(t ,τ)∥ ≤ eντα(|t −τ|),

where

ν= ν2 and α(|t −τ|) = max{α2(|t −τ|),α3(|t −τ|)}. □
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Remark 23. From now on, the property (27) will be called as the nonuniform Kalman’s property.

Remark 24. We can see that the nonuniform bounded growth from Definition 14 is an example
of the nonuniform Kalman’s condition (27). Nevertheless, the equivalences stated in Lemma 6
for the uniform case cannot be directly adapted to the nonuniform context. More specifically,
the work with intervals developed in the implicance (iii) → (i) cannot be generalized due to the
nonuniformities.

The above lemmas will allow us to generalize the Kalman’s Proposition 7 to the nonuniform
framework, as follows:

Theorem 25. Any two of the properties (20), (21) and (27) imply the third one.

Proof. Firstly, a direct consequence of Lemma 22 is that (20) and (21) imply the property (27).
Secondly, let us assume that the properties (20) and (27) are satisfied. In other words, for any

t ≥ 0, there exists σ0(t ) > 0 such that for all σ≥σ0(t ), the inequality (20) is satisfied. By recalling
that

∥ΦA(t , t +σ)∥−1 ≤ ∥ΦA(t +σ, t )∥
and by using (27), we obtain that

1

eνt

1

eνσα(σ)
≤ ∥ΦA(t +σ, t )∥ ≤ eνt α(σ). (30)

By considering x =ΦT
A (t +σ, t )ηwith η ̸= 0, the inequalities (20) combined with the identity (7)

imply
e−2µ0t α0(σ)|ΦT

A (t +σ, t )η|2 ≤ ηT K (t , t +σ)η≤ e2µ1t α1(σ)|ΦT
A (t +σ, t )η|2.

Now, by considering the inequalities seen in Corollary 1:

∥ΦT
A (t , t +σ)∥−1|η| ≤ |ΦT

A (t +σ, t )η| ≤ ∥ΦT
A (t +σ, t )∥|η|,

combined with (30) and taking supreme over η ̸= 0, we obtain that

e−2νt 1

e2νσα2(σ)
e−2µ0t α0(σ)I ≤ K (t , t +σ) ≤ e2νt α2(σ)e2µ1t α1(σ)I

and the condition (21) is satisfied for all σ≥σ0(t ).
Finally, and following the same line of proof in the previous case, let us assume that the

conditions (21) and (27) are satisfied. We use (27) in order to obtain a similar expression to (30):

1

eνt

1

α(σ)
≤ ∥ΦA(t , t +σ)∥ ≤ eνt eνσα(σ)

and by combining it with (21) we have that:

e−2νt 1

α2(σ)
e−2µ̃0t β0(σ) <W (t , t +σ) < e2νt e2νσα2(σ)e2µ̃1t β1(σ)

then the estimate (20) follows. □

A noticeable consequence of Theorem 25 is that any control system whose plant has the
nonuniform Kalman’s property (27) cannot be UCC when ν > 0, but could be NUCC provided
that (20) and/or (21) are satisfied. In this case, it is desirable to know examples of systems
having the nonuniform Kalman’s property. The nonuniform bounded growth described by (17)
provides a distinguished one, as it was stated in Remark 24. Note that we have arrived to a point
where the controllability analysis of the 1960’s unexpectedly meets the qualitative theory of linear
nonautonomous systems.

The new concept of NUCC is less restrictive than the classical UCC. In the Subsection 3.2 it is
presented an example of a NUCC system, while in the Subsection 3.3 it is showed that this new
concept is effectively an intermediate stage between UCC and CC. We remark that the example
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exhibited in the Subsection 3.3 was introduced by Kalman himself in his seminal work [15, p. 157]
as a CC system that does not fulfill the UCC conditions.

3.2. An example of a nonuniformly completely controllable system

If we assume that the linear system (2) admits the property of nonuniform bounded growth
with parameters (K0, a,η), it is interesting to explore some conditions on B(t ) leading to the
estimate (20) and, as a consequence of the Theorem 25, leading to a NUCC linear control system.

In fact, we will assume that for any t ≥ 0:

b0 e−2β0t I ≤ B(t )B T (t ) ≤ b1 e2β1t I .

Note that the previous condition includes the particular, and ubiquitous, case of constant B , with
BB T > 0. Based on the transition matrix property, we have that for any vector x ̸= 0, it follows that
x =ΦT

A (s, t )ΦT
A (t , s)x and then:

|x|2 ≤ ∥ΦT
A (s, t )∥2|ΦT

A (t , s)x|2 −→ |x|2
∥ΦA(s, t )∥2 ≤ |ΦT

A (t , s)x|2,

and by considering the nonuniform bounded growth hypothesis, we can ensure that

∥ΦA(s, t )∥ ≤ K0 ea|s−t |+ηt ⇐⇒ 1

K0 ea|s−t |+ηt
≤ 1

∥ΦA(s, t )∥ .

From the above, we will obtain the right-hand estimate of (20). For any t ≥ 0, there exist
σ0(t ) > 0 such that for any σ≥σ0(t ) and x ̸= 0:∫ t+σ

t
xTΦA(t , s)B(s)B T (s)ΦT

A (t , s)x ds ≤
∫ t+σ

t
K 2

0 e2a(s−t )+2ηs b2
1 e2β1s |x|2 ds,

= K 2
0 b2

1|x|2 e−2at
∫ t+σ

t
e2(a+η+β1)s ds,

which implies that

xT W (t , t +σ)x ≤ K 2
0 b2

1

2(a +η+β1)
e−2at

[
e2(a+η+β1)(t+σ)−e2(a+η+β1)t

]
|x|2,

= K 2
0 b2

1

2(a +η+β1)

[
e2(a+η+β1)σ−1

]
e2(η+β1)t |x|2.

Similarly, notice that∫ t+σ

t
xTΦA(t , s)B(s)B T (s)ΦT

A (t , s)x ds ≥
∫ t+σ

t

1

K 2
0

e−2a(s−t )−2ηt b2
0 e−2β0s |x|2 ds,

= b2
0

K 2
0

|x|2 e2(a−η)t
∫ t+σ

t
e−2(a+β0)s ds,

which implies

xT W (t , t +σ)x ≥ b2
0

K 2
0 2(a +β0)

e2(a−η)t
[

e−2(a+β0)t −e−2(a+β0)(t+σ)
]
|x|2,

= b2
0

K 2
0 2(a +β0)

[
1−e−2(a+β0)σ

]
e−2(η+β0)t |x|2

and the nonuniform complete controllability follows.
As an extra comment, in the previous proof we can notice that σ0(t ) = σ0 > 0 is constant and

works in order to prove the inequalities for all t ≥ 0.
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3.3. An example of a CC but not NUCC system

In [15, p. 157], Kalman proved that the LTV control system

ẋ =−t x +
√

2(t −1)e−t+1/2 u(t ) with t ≥ 1 (31)

is CC but not UCC.
In fact, it is easy to check that the transition matrixΦ(t ,τ) = e

τ2−t2
2 does not verify the property

of uniform bounded growth (11) and, by Lemma 6, the Kalman condition (10) cannot be verified.
Now, it follows from Proposition 3 that (31) does not have the property of uniform complete
controllability.

On the other hand, Kalman also verifies that

W (t , t +σ) = e2(σ−1)t+(σ−1)2 −e−2t+1,

If σ= 1, we will have that

W (t , t +1) = 1−e−2t+1 > 0 since t ≥ 1,

and for any t0 ≥ 1 we can choose t f = t0 +1 such that

W (t0, t f ) = 1−e−2t0+1 > 0,

and it follows that (31) is completely controllable.
Now, we will verify that (31) cannot be NUCC. Indeed, otherwise, the Gramian inequali-

ties (20)–(21) will be verified and Lemma 22 would imply the existence of α(·) ∈ B and ν > 0
such that

Φ(t ,τ) = e
τ2−t2

2 ≤α(|t −τ|)eντ,

which is equivalent to

(τ− t )(τ+ t ) = τ2 − t 2 ≤ 2ln(α(|t −τ|))+2ντ.

Now, given the above constant ν, let us consider τ = βn and t = βn −3ν where the sequence
{βn} verifies 1+3ν< 2βn for any n ∈N and βn →+∞. Then, the above inequality is equivalent to:

3ν(2βn −3ν) ≤ 2ln(α(3ν))+2νβn or 3ν≤ 2ln(α(3ν))

2βn −3ν
+ 2νβn

2βn −3ν
.

Now, by letting n → +∞, and using the fact that ν > 0, the above inequality leads to a
contradiction.

4. Feedback stabilization for nonuniformly completely controllable control systems

4.1. Nonuniform exponential stabilities and the nonuniform exponential dichotomy

The main result of this section states that a family of nonuniformly completely controllable linear
control systems (1) having the property of nonuniform bounded growth can be stabilized by a
feedback gain F (t ) such that the closed loop system (14) is nonuniformly exponentially stable.
Firstly, let us consider the family of Riccati differential equations parametrized by the number
L > 0:

Ṡ(t )+ (A(t )+L I )T S(t )+S(t ) (A(t )+L I )−S(t )B(t )B T (t )S(t ) =−I , (32)

where A(·) and B(·) are the matrices of the linear control system (1). This family of equations will
play an essential role in the present section, whose main result is:
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Theorem 26. Assume that the linear control system (1) is nonuniformly completely controllable
and that the following additional properties are verified:

1.– The corresponding plant has the property of nonuniform bounded growth on [0,+∞) with
constants (K0, a,η),

2.– The property (20) is verified with constants µ0 > 0 and µ1 > 0.

In addition, if t 7→ SL (t ) is a solution of the Riccati equation (32) with

L > 2(θ2 +2θ1), where θ1 =µ1 +4η and θ2 = η+2(µ1 +µ0), (33)

then, for any rate of decay L −θ1 > 2θ2 +3θ1 previously chosen, there exist a constant M ≥ 1 and
a feedback gain F (t ) such that the closed loop system (14) is e(θ1+θ2)t0 –nonuniformly exponentially
stable, that is,

∥ΦA−BF (t , t0)∥ ≤ M e(θ1+θ2)t0 e−(L−θ1)(t−t0) for any t ≥ t0. (34)

The above result deserves several comments:

1.– As usual in feedback stabilization results, F (t ) is constructed by using a solution of the Riccati
equation (32), whose existence is ensured in the next subsection.

2.– Note that (34) coincides with (19) when considering λ = L −θ1 > 0 and ε = θ1 +θ2. We also
stress that (33) implies ε ∈ [0,λ).

3.– As the NUCC is a particular case of CC, we can compare Theorem 26 with Proposition 8 ([13,
Theorem 1]). In fact, if we consider the measure decay δ(t , t0) = (L −θ1)(t − t0) such that (33)
is verified, we will have the existence of a(t0) > 0 such that

∥ΦA−BF (t , t0)∥ ≤ a(t0)e−(L−θ1)(t−t0) for any t ≥ t0. (35)

Despite the formal similarity between (34) and (35), we emphasize that a meticulous
reading of [13, p. 724] shows that the constant a(t0) from Proposition 8 is given explicitly
by a(t0) = [1+λmax(SL (t0))]1/2, where SL is solution of the Riccati equation (32). In turn,
from the expression (34) we can deduce that a(t0) = M e(θ1+θ2)t0 .

4.– In Proposition 9 [13, Theorem 2], corresponding to a UCC system, the exponential decay
of the closed loop system can be arbitrarily chosen. In Theorem 26, the exponential decay
L − θ1 can be chosen only for L > 2(θ2 + 2θ1), where θ1 and θ2 depend on the available
bounds µ0 and µ1 for the Gramian W and the number η of the bounded growth property.
Although there is a limitation with respect to UCC, we stress that arbitrarily large rate of
convergence can certainly be achieved, which is an important fact from the control point
of view. An attentive reading of our proof will show that the restriction is due to a technical
result, namely, a sufficient condition of nonuniform exponential stability (Proposition 28),
and still remains a challenge to overcome.

5.– Remark 16 allows us to see the Theorem 26 from the perspective of Definition 13: there exists
a feedback gain F (t ) such that the closed loop system (14) has a nonuniform exponential
dichotomy on [0,+∞) with the identity as projector and constants M ≥ 1, L − θ1 > 0 and
θ1 +θ2 ∈ [0,L −θ1).

Additionally, Theorem 26 can be interpreted from a spectral point of view relating NUCC with
the localization of ΣNU as far to the left as desired:

Corollary 27. If a linear control system (1) is NUCC and verifies (1)–(2), then for any L ∈
(2(θ2 + 2θ1),+∞), there exists a feedback gain F (t ) such that the nonuniform spectrum of (14)
verifies

ΣNU (A−BF ) ⊂ (−∞,−L +θ2 +2θ1) ⊂ (−∞,0).
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Proof. We will prove an equivalent contention, namely

[−L +θ2 +2θ1,+∞) ⊂ [ΣNU (A−BF )]c .

Firstly, notice that if λ≥−L + (θ2 +2θ1) it follows that

λ+L −θ1 > θ1 +θ2 > 0. (36)

Secondly, by Theorem 26 we know that (34) is verified and we multiply it by e−λ(t−t0) with t ≥ t0

and λ≥−L + (θ2 +2θ1), which leads to

∥e−λ(t−t0)ΦA−BF (t , t0)∥ ≤ M e(θ1+θ2)t0 e−(λ+L−θ1)(t−t0) for any t ≥ t0 ≥ 0.

Notice that, as ΦA−BF−λI (t , s) = ΦA−BF (t , s)e−λ(t−s), the above estimation can be written as
follows:

∥ΦA−BF−λI (t , t0)∥ ≤ M e(θ1+θ2)t0 e−(λ+L−θ1)(t−t0) for any t ≥ t0 ≥ 0.

Finally, the above inequality combined with (36) implies that system

ẋ = (A(t )−B(t )F (t )−λI )x

admits nonuniform exponential dichotomy with identity projector. Then we have that λ ∈
[ΣNU (A−BF )]c , which concludes the proof. □

4.2. Proof of Theorem 26

The proof will be made in several steps.

Step 1: Auxiliary results. Riccati equations are ubiquitous in feedback stabilization results and,
in this case, the equation (32) will be related to the following result:

Proposition 28. If the linear system

ż =U (t )z (37)

verifies the following properties:

(i) There exists a positive definite operator S(t ) ∈ Mn(R) of class C 1 in t > 0 and constants
C1 > 0, C2 > 0, φ1 ≥ 0 and φ2 ≥ 0 such that

C1 e−2φ1t I ≤ S(t ) ≤C2 e2φ2t I , (38)

(ii) There exists a constant L > 2(φ2 +2φ1) such that

Ṡ(t )+U T (t )S(t )+S(t )U (t ) ≤−(Id+L S(t )), (39)

then system (37) is e(φ1+φ2)t0 –nonuniformly exponentially stable, namely, there exist constants
M ≥ 1, λ= L

2 −φ1 > 0 and ε=φ1 +φ2 ∈ (0,λ) such that

∥ΦU (t , t0)∥ ≤ M e(φ1+φ2)t0 e−( L
2 −φ1)(t−t0) for any t ≥ t0 ≥ 0.

Proof. Firstly, let us construct the map H : (0,+∞)×Rn → [0,+∞) defined by

H(t , x) = 〈S(t )x, x〉, (40)

where S(t ) is the positive definite operator stated in (i).
Let t 7→ x(t ) be a solution of (37), by using (38) we easily deduce that

C1 e−2φ1t |x(t )|2 ≤ H(t , x(t )) ≤C2 e2φ2t |x(t )|. (41)

Secondly, note that for t ≥ τ≥ 0, we have that

H(t , x(t )) ≤ e−L (t−τ) H(τ, x(τ)). (42)
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In fact, by (40) combined with (39), it is straightforward to deduce that

d

dt
H(t , x(t )) = xT (t ){S′(t )+S(t )U (t )+U T (t )S(t )}x(t ),

≤−|x(t )|2 −L xT (t )S(t )x(t ),

≤−L H(t , x(t ))

and (42) follows by the comparison lemma for scalar differential equations.
Finally, by considering (41) and (42), we obtain that for any t ≥ τ:

|ΦU (t ,τ)x(τ)|2 = |x(t )|2 ≤ 1

C1
e2φ1t H(t , x(t )) ≤ 1

C1
e2φ1t e−L (t−τ) H(τ, x(τ)),

≤ 1

C1
e2φ1t e−L (t−τ) C2 e2φ2τ |x(τ)|2,

≤ C2

C1
e−(L−2φ1)(t−τ)+2(φ1+φ2)τ |x(τ)|2,

and therefore, if we define M = max
{

1,
√

C2
C1

}
, we have that

∥ΦU (t ,τ)∥ ≤ M e(φ1+φ2)τ e−( L
2 −φ1)(t−τ) .

Now, notice that L > 2(2φ1+φ2) impliesλ= L
2 −φ1 >φ1+φ2 = ε> 0 and the result follows. □

The above result is inspired in Theorem 2.2 from [20], which provides a necessary condition
ensuring that (37) is a nonuniform contraction, namely, a type of nonuniform asymptotic stability
that is more general than those stated in Definition 15. The fact of working with a more specific
stability allows us to consider a less restrictive condition as (38).

Lemma 29. If the linear control system (1) is nonuniformly completely controllable, then the
perturbed control system

ẏ(t ) = [A(t )+ℓI ]y(t )+B(t )u(t ), (43)

with ℓ> 0, is also nonuniformly completely controllable.

Proof. As we said before, the transition matrix associated to the plant of (43) is given by
ΦA+ℓI (t , s) = ΦA(t , s)eℓ(t−s), then the corresponding controllability Gramian matrix of (43) is
given by:

Wℓ(t , t +σ) =
∫ t+σ

t
ΦA+ℓI (t , s)B(s)B T (s)ΦT

A+ℓI (t , s)ds,

=
∫ t+σ

t
e2ℓ(t−s)ΦA(t , s)B(s)B T (s)ΦT

A (t , s)ds.

By considering the nonuniform complete controllability of system (1), then for any t ≥ 0, there
exists σ0(t ) > 0 such that for any σ ≥ σ0(t ) the estimate (20) is satisfied, then by combining this
fact with the inequality e−ℓσ ≤ eℓ(t−s) ≤ 1 for any t ≤ s ≤ t +σ, we can deduce that

0 <α0(σ)e−2ℓσ e−2µ0t I ≤Wℓ(t , t +σ) ≤α1(σ)e2µ1t I . (44)

By using again ΦA+ℓI (t , s) =ΦA(t , s)eℓ(t−s) combined with (27) and ℓ> 0, it is straightforward
to see that the plant of (43) has the nonuniform Kalman’s condition. Finally, Theorem 25 implies
that (21) is satisfied for Kℓ(t , t +σ) and the Lemma follows. □
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Remark 30. As we pointed out in Remark 18, the nonuniform complete controllability of (43)
implies its complete controllability, then by the Lemma 29 withℓ=L combined with Proposition
6.6 from [15, p. 159] and the assumptions (1)–(2), the existence of solutions SL (·) of the Riccati
equation (32) is ensured3.

Notice that if we consider a linear feedback input u(t ) = −F (t )y(t ), the control system (43)
with the particular choice ℓ= L

2 becomes:

ẏ(t ) =
[

A(t )+ L

2
I

]
y(t )+B(t )u(t ) =

[
A(t )+ L

2
I −B(t )F (t )

]
y(t ). (45)

The Proposition 28 will be used to deduce sufficient conditions ensuring the nonuniform
exponential stability for the linear system (45). In order to address this task, we need to introduce
a second result, which is an adaptation from Ikeda et al. [13, Lemma 4] to the nonuniform context:

Lemma 31. If the linear control system (1) satisfies the hypothesis (1) then there exist functions
γ1(·) and γ2(·) such that for any σ> 0 we have that:

γ1(σ)e−2ηt I ≤
∫ t+σ

t
ΦT

A (s, t )ΦA(s, t )ds ≤ γ2(σ)e2ηt I . (46)

Proof. By (1) we know that the plant has the property of nonuniform bounded growth with
constants (K0, a,η). Then, by using (17) we can write

1

K 2
0

e−2a|t−s|−2ηs |x|2 ≤ |ΦA(s, t )x|2 ≤ K 2
0 e2a|s−t |+2ηt |x|2 for any x ̸= 0,

where the left estimation is obtained by noticing that |x| = |ΦA(t , s)ΦA(s, t )x| combined with (17).
Now, we can deduce∫ t+σ

t

1

K 2
0

e−2a(s−t )−2ηs |x|2 ds ≤
∫ t+σ

t
|ΦA(s, t )x|2 ds ≤

∫ t+σ

t
K 2

0 e2a(s−t )+2ηt |x|2 ds.

In relation to the left hand inequality, we can ensure that∫ t+σ

t

1

K 2
0

e−2a(s−t )−2ηs |x|2 ds = 1

K 2
0 2(a +η)

[
e−2ηt −e−2aσ−2ηt ] |x|2,

= 1

K 2
0 2(a +η)

e−2ηt [
1−e−2aσ] |x|2

and about the right expression we have that∫ t+σ

t
K 2

0 e2a(s−t )+2ηt |x|2 ds = K 2
0

2a

[
e2aσ+2ηt −e2ηt ] |x|2,

= K 2
0

2a
e2ηt [

e2aσ−1
] |x|2

and (46) follows by considering

γ1(σ) = 1

K 2
0 2(a +η)

[
1−e−2aσ]

and γ2(σ) = K 2
0

2a

[
e2aσ−1

]
. □

Step 2: Feedback stabilization of the linear control system (43).

Lemma 32. Under the assumptions of Theorem 26, for any L > 2(θ2+2θ1) there exist M ≥ 1 and a
linear feedback u(t ) =−F (t )x(t ) such that the shifted control system (45) is e(θ1+θ2)s –nonuniformly
exponentially stable, namely,

∥ΦA+L
2 I−BF (t , s)∥ ≤ M e−( L

2 −θ1)(t−s)+(θ1+θ2)s for all t ≥ s ≥ 0. (47)

3By Proposition 6.6 from [15] we know that SL (t ) = lim
t1→+∞Π(t ,0, t1) where t 7→ Π(t ,0, t1) is solution of (32) for any

t ≤ t1 and verifies the terminal condition Π(t1,0, t1) = 0.
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Proof. As it was previously pointed out in Remark 30, the existence of a solution SL (·) for the
Riccati equation (32) is ensured. Now, let us consider the linear system (45) with a feedback gain
defined by:

F (t ) = 1

2
B T (t )SL (t ). (48)

Upon inserting (48) into (45) we obtain

ẏ =
[

A(t )+ L

2
I −B(t )F (t )

]
y =

[
A(t )+ L

2
I − 1

2
B(t )B T (t )SL (t )

]
y. (49)

We will prove that the linear system (49) satisfies all the assumptions of Proposition 28, with
U (t ) = Â(t )+ L

2 I , where Â(t ) = A(t )−B(t )F (t ).
Firstly, we will verify that the solution SL(t ) of the Riccati equation (32) satisfies the condi-

tion (38). In fact, as the nonuniform complete controllability implies complete controllability, by
using Lemma 29 with ℓ= L

2 , the Lemma 3 from [13] also states that:

D−1(t ) ≤ SL (t ) ≤ E(t )

where the matrices D(t ) and E(t ) are defined by

D(t ) = Y −1
L
2

(t , tc (t ))+ tr
(
W L

2
(t , tc (t ))

)1+
tr

(
Y L

2
(t , tc (t ))

)
λmin

(
Y L

2
(t , tc (t ))

)
2

I

and

E(t ) =W −1
L
2

(t , tc (t ))+ tr
(
Y L

2
(t , tc (t ))

)1+
tr

(
W L

2
(t , tc (t ))

)
λmin

(
W L

2
(t , tc (t ))

)
2

I ,

with Y L
2

(t , tc (t )) described by

Y L
2

(t , tc (t )) =
∫ tc (t )

t
ΦT

A+L
2 I

(s, t )ΦA+L
2 I (s, t )ds,

where tc (t ) is any number such that W L
2

(t , tc (t )) is positive definite.

A direct consequence of Lemma 29 with ℓ = L
2 is that for all t ≥ 0, there exists σ0(t ) > 0,

the Gramian matrix W L
2

(t , t +σ) is positive definite for any σ ≥ σ0(t ). In consequence, we will
consider tc (t ) = t +σ.

In order to estimate the lower and upper bounds for D−1(t ) and E(t ) respectively, we need to
obtain auxiliary estimations. By using (44) with ℓ= L

2 , we have that

0 <α0(σ)e−Lσ e−2µ0t I ≤W L
2

(t , t +σ) ≤α1(σ)e2µ1t I .

In addition, by following the lines of Lemma 31, we deduce the inequalities

γ
L
2

1 (σ)e−2ηt I ≤ Y L
2

(t , t +σ) ≤ γ
L
2

2 (σ)e2ηt I ,

where

γ
L
2

1 (σ) = 1

K 2
0 2(a + L

2 +η)

[
1−e−2(a+L

2 )σ
]

and γ
L
2

2 (σ) = K 2
0

2(a + L
2 )

[
e2(a+L

2 )σ−1
]

.

Y −1
L
2

(t , t +σ) ≤ e2ηt

γ
L
2

1 (σ)
I W −1

L
2

(t , t +σ) ≤ eLσ+2µ0 t

α0(σ)

trY L
2

(t , t +σ) ≤ nγ
L
2

2 (σ)e2ηt tr W L
2

(t , t +σ) ≤ nα1(σ)e2µ1t

γ
L
2

1 (σ)e−2ηt ≤λmin(Y L
2

(t , t +σ)) α0(σ)e−(Lσ+2µ0t ) ≤λmin(W L
2

(t , t +σ))
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By gathering the above left inequalities and using that θ1 =µ1 +4η, we can conclude that:

D(t ) ≤

 e2ηt

γ
L
2

1 (σ)
+nα1(σ)e2µ1t

1+ nγ
L
2

2 (σ)e4ηt

γ
L
2

1 (σ)

2 I

≤ max

 1

γ
L
2

1 (σ)
,nα1(σ)


e2ηt +e2µ1t

1+ nγ
L
2

2 (σ)e4ηt

γ
L
2

1 (σ)

2 I

≤ max

 1

γ
L
2

1 (σ)
,nα1(σ)


e2θ1t +e2θ1t

1+ nγ
L
2

2 (σ)eθ1t

γ
L
2

1 (σ)

2 I

≤ Ñ−1 e2θ1t I ,

and, as D(t ) is positive definite, we can deduce that:

Ñ e−2θ1t I ≤ D−1(s) ≤ SL (t ).

Similarly, by using the above right inequalities and recalling that θ2 = η+2(µ1 +µ0), we have
that:

SL (t ) ≤ E(t )

≤
[

eLσ+2µ0t

α0(σ)
+nγ

L
2

2 (σ)e2ηt
(
1+ nα1(σ)e2µ1t

α0(σ)e−Lσ−2µ0t

)2]
I

≤ max

{
eLσ

α0(σ)
,nγ

L
2

2 (σ)

}[
e2µ0t +e2ηt

(
1+ nα1(σ)eLσ e2(µ1+µ0)t

α0(σ)

)2]
I

≤ max

{
eLσ

α0(σ)
,nγ

L
2

2 (σ)

}[
e2θ2t +e2θ2t

(
1+ nα1(σ)eLσ e2θ2t

α0(σ)

)2]
I ,

and we deduce that

SL (t ) ≤ M̃ e2θ2t I ,

and the estimate (38) is verified.
Finally, we will verify that the solution SL (t ) of the Riccati equation (32) satisfies the condi-

tion (39) from Proposition 28. In order to do that, if we consider (14) and (48), we can see that
SL (t ) can be seen as a solution of the following equation:

Ṡ(t )+
(

A(t )+ L

2
I

)T

S(t )+S(t )

(
A(t )+ L

2
I

)
−S(t )B(t )B T (t )S(t ) =−(I +L S(t )).

Under some minor transformations and considering Â(t ) = A(t )−B(t )F (t ) with F (t ) defined
by (48), the previous equation can be rewritten as follows:

Ṡ(t )+
(

Â(t )+ L

2
I

)T

S(t )+S(t )

(
Â(t )+ L

2
I

)
=−(I +L S(t )),

and the condition (39) is verified for any L > 0, where U (t ) = Â(t )+ L
2 I .

Therefore by choosing L > 2(θ2 +2θ1), the Proposition 28 ensures that the linear system (49)
is nonuniformly exponentially stable, and more specifically, the inequality (47) is verified. □

Step 3: End of proof. By using the identity ΦA−BF+L
2 I (t , s) = ΦA−BF (t , s)e

L
2 (t−s) combined

with (47), it follows that

∥ΦA−BF (t , s)∥ ≤ M e(θ1+θ2)s e−(L−θ1)(t−s) for all t ≥ s ≥ 0,

and the Theorem follows.
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5. Conclusions and comments

This paper introduced a new property of controllability for nonautonomous linear control sys-
tems: the nonuniform complete controllability (NUCC), which is more general than the uniform
complete controllability (UCC) but is more specific than the complete controllability (CC), both
classical in control theory. First, we reviewed the uniform context, established by R. Kalman, and
proved that the currently called Kalman’s condition is equivalent to the uniform bounded growth
property (Lemma 6). Then, we moved into the nonuniform context, introduced the NUCC prop-
erty and proved that this new notion of controllability is strongly related to the nonuniform ver-
sion of Kalman condition (Theorem 25).

This paper also proved that the nonuniformly complete controllability implies the feedback
stabilizability, where the linear feedback gain leads to a nonuniformly exponentially stable linear
system (Theorem 26). We stressed that this class of stability is a limit case of a dichotomy
property, namely, the nonuniform exponential dichotomy (NUED), and allows an interpretation
of the feedback stabilization from a spectral theory arising from the NUED (Corollary 27).

The current results can certainly be improved and also raise new questions:

(1) Our result of feedback stabilization (Theorem 26) cannot be achieved for exponential
decays L −θ1 ∈ (0,3θ1 +2θ1]. This restriction is due to the specific approach carried out
in our proof (Proposition 28) and could be improved in future research.

(2) Another open problem is to obtain a feedback stabilization for a general NUCC linear
system. Note that an assumption of Theorem 26 is that the plant has the property of
nonuniform bounded growth. It will be extremely interesting to generalized our result
by considering the nonuniform Kalman’s condition instead of the nonuniform bounded
growth.

(3) Our intepretation of Theorem 26 from a perspective of the nonuniform exponential
dichotomy spectrum ΣNU (A) suggests to enquire about the links between feedback
stabilizability and feedback assignability of the spectrum, that is, given a set S ⊂ R, find
a feedback gain F such that ΣNU (A−BF ) =S . This problem has been previously studied
for UCC nonautonomous systems and we refer to [4, 6] for details.

Appendix A. Energy of the controlling input

The energy of an input u(·) of the control system (1) is the nonnegative number:

E(u) =
(∫ +∞

t0

uT (t )u(t )dt

) 1
2

.

The following is an analysis from the point of view of the energy required for the input u⋆(·)
described by (6) to take an initial state x0 and bring it to the origin. We have that

E 2(u⋆) =
∫ t f

t0

xT
0 W −T (t0, t f )ΦA(t0, t )B(t )B T (t )ΦT

A (t0, t )W −1(t0, t f )x0 dt ,

= xT
0 W −T (t0, t f )

[∫ t f

t0

ΦA(t0, t )B(t )B T (t )ΦT
A (t0, t )dt

]
W −1(t0, t f )x0,

= xT
0 W −T (t0, t f )

[
W (t0, t f )

]
W −1(t0, t f )x0 = xT

0 W −T (t0, t f )x0,

where W −T stands for the transpose of the inverse of W . Since W (t0, t f ) is positive definite,
then W −T (t0, t f ) is also positive definite. In addition, W −T (t0, t f ) and W −1(t0, t f ) have the same
eigenvalues and they are the inverse of the eigenvalues of W (t0, t f ). Based on the above, we have
the following bounds:

λmin(W −1(t0, t f ))∥x0∥2 ≤ E 2(u⋆) ≤λmax(W −1(t0, t f ))∥x0∥2
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or, equivalently:
λmax(W (t0, t f ))∥x0∥2 ≤ E 2(u⋆) ≤λmin(W (t0, t f ))∥x0∥2. (50)

In the context of the classical uniform case, from (8) and (9), with σ= t f − t0, it follows that:

α0(σ) ≤λmin(W (t0, t f )) ≤λmax(W (t0, t f )) ≤α1(σ),

therefore, by considering this estimation for inequality (50) we have that:

α0(σ)∥x0∥2 ≤ E 2(u⋆) ≤α1(σ)∥x0∥2

and the required energy, in order to control the state x0, can not be made arbitrarily small.
Moreover, in the worst case scenario, the required energy is α1(σ)∥x0∥2, which is independent
of the initial time t0.

Now, when considering the nonuniform complete controllability framework, there exists
nonnegative numbers {µ0,µ1, µ̃0, µ̃1} and functions {α0(·),β0(·),α1(·),β1(·)} such that for any t0 ≥
0, there exists σ0(t0) > 0 where the estimates (20) and (21) are verified for all σ ≥ σ0(t0). In
particular, from (20), the size of eigenvalues of W (t0, t0 +σ) depends on the initial time t0 and
the energy bounds are the following:

e−2µ0t0 α0(σ)∥x0∥2 ≤ E 2(u⋆) ≤ e2µ1t0 α1(σ)∥x0∥2.

Let us observe that the required controlling energy belongs to an interval that exponentially
grows towards (0,+∞) as t0 → +∞. In other words, and considering the same approach as in
item (ii) of Remark 18, the last inequality indicates that the lower and upper bounds for the energy
depend on the initial time t0, which corresponds to a generalization of the uniform case.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.

References

[1] B. D. O. Anderson, A. Ilchmann and F. R. Wirth, “Stabilizability of linear time-varying
systems”, Syst. Control Lett. 62 (2013), no. 9, pp. 747–755.

[2] B. D. O. Anderson and J. B. Moore, Optimal control, linear quadratic methods, Dover
Publications, 1990.

[3] B. D. O. Anderson and L. M. Silverman, “Uniform complete controllability for time-varying
systems”, IEEE Trans. Autom. Control 12 (1967), no. 6, pp. 790–791.

[4] P. T. Anh, A. Czornik, T. S. Doan and S. Siegmund, “Proportional local assignability of di-
chotomy spectrum of one-sided continuous time-varying linear systems”, J. Differ. Equa-
tions 309 (2022), pp. 176–195.

[5] Z. Artstein, “Uniform controllability via the limiting systems”, Appl. Math. Optim. 9 (1982),
no. 2, pp. 111–131.

[6] A. Babiarz, L. V. Cuong, A. Czornik and T. S. Doan, “Necessary and sufficient conditions for
assignability of dichotomy spectra of continuous time-varying linear systems”, Automatica
125 (2021), article no. 109466 (8 pages).

[7] L. Barreira and C. Valls, Stability of nonautonomous differential equations, Springer, 2008,
pp. xiv+285.

[8] C. T. Chen, Introduction to linear systems theory, Holt, Rinehart and Winston Inc., 1970.



Ignacio Huerta, Pablo Monzón and Gonzalo Robledo 1691

[9] J. Chu, F.-F. Liao, S. Siegmund, Y. Xia and W. Zhang, “Nonuniform dichotomy spectrum and
reducibility for nonautonomous equations”, Bull. Sci. Math. 139 (2015), no. 5, pp. 538–557.

[10] W. A. Coppel, Dichotomies in stability theory, Springer, 1978, pp. ii+98.
[11] B. d’Andréa-Novel and M. Cohen de Lara, Commande linéaire des systèmes dynamiques,

Masson, 1994, pp. xviii+245. With a preface by A. Bensoussan.
[12] W. Hahn, Stability of motion, Springer, 1967, pp. xi+446.
[13] M. Ikeda, H. Maeda and S. Kodama, “Stabilization of linear systems”, SIAM J. Control 10

(1972), pp. 716–729.
[14] A. Ilchmann and G. Kern, “Stabilizability of systems with exponential dichotomy”, Syst.

Control Lett. 8 (1987), no. 3, pp. 211–220.
[15] R. E. Kalman, “Contributions to the theory of optimal control”, Bol. Soc. Mat. Mex., II 5

(1960), pp. 102–119.
[16] R. E. Kalman, “On the general theory of control systems”, IFAC Proceedings Volumes 1

(1960), no. 1, pp. 491–502.
[17] R. E. Kalman, “Lectures on controllability and observability”, in Controllability and Observ-

ability (C.I.M.E. 1st Ciclo, Sasso Marconi (Bologna), 1968), Ed. Cremonese, 1969, pp. 1–149.
[18] P. E. Kloeden and M. Rasmussen, Nonautonomous dynamical systems, American Mathe-

matical Society, 2011, pp. viii+264.
[19] E. Kreindler and P. Sarachik, “On the concepts of controllability and observability of linear

systems”, IEEE Trans. Autom. Control 9 (1964), no. 2, pp. 129–136.
[20] F.-F. Liao, Y. Jiang and Z. Xie, “A generalized nonuniform contraction and Lyapunov func-

tion”, Abstr. Appl. Anal 2012 (2012), article no. 613038 (14 pages).
[21] Z. Lin and Y.-X. Lin, Linear systems exponential dichotomy and structure of sets of hyperbolic

points, World Scientific, 2000, pp. xii+205.
[22] Y. A. Mitropolsky, A. M. Samoilenko and V. L. Kulik, Dichotomies and stability in nonau-

tonomous linear systems, Taylor & Francis, 2003, pp. xx+368.
[23] K. J. Palmer, “Exponential dichotomy and expansivity”, Ann. Mat. Pura Appl. 185 (2006),

S171–S185.
[24] V. N. Phat and Q. P. Ha, “New characterization of controllability via stabilizability and

Riccati equation for LTV systems”, IMA J. Math. Control Inf. 25 (2008), no. 4, pp. 419–429.
[25] M. A. Rotea and P. P. Khargonekar, “Stabilizability of linear time-varying and uncertain

linear systems”, IEEE Trans. Autom. Control 33 (1988), no. 9, pp. 884–887.
[26] N. Rouche, P. Habets and M. Laloy, Stability theory by Liapunov’s direct method, Springer,

1977, pp. xii+396.
[27] W. J. Rugh, Linear system theory, Prentice Hall, 1993, pp. xii+356.
[28] S. Siegmund, “Dichotomy spectrum for nonautonomous differential equations”, J. Dyn.

Differ. Equations 14 (2002), no. 1, pp. 243–258.
[29] S. Siegmund, “Reducibility of nonautonomous linear differential equations”, J. Lond. Math.

Soc. 65 (2002), no. 2, pp. 397–410.
[30] C. M. Silva, “Nonuniform µ-dichotomy spectrum and kinematic similarity”, J. Differ. Equa-

tions 375 (2023), pp. 618–652.
[31] L. M. Silverman and B. D. O. Anderson, “Controllability, observability and stability of linear

systems”, SIAM J. Control 6 (1968), pp. 121–130.
[32] E. D. Sontag, Mathematical control theory. Deterministic finite dimensional systems., sec-

ond edition, Springer, 1998.
[33] X. Zhang, “Nonuniform dichotomy spectrum and normal forms for nonautonomous dif-

ferential systems”, J. Funct. Anal. 267 (2014), no. 7, pp. 1889–1916.
[34] B. Zhou, “On asymptotic stability of linear time-varying systems”, Automatica 68 (2016),

pp. 266–276.



1692 Ignacio Huerta, Pablo Monzón and Gonzalo Robledo

[35] B. Zhou, “Stability analysis of non-linear time-varying systems by Lyapunov functions with
indefinite derivatives”, IET Control Theory Appl. 11 (2017), no. 9, pp. 1434–1442.

[36] B. Zhou, “Lyapunov differential equations and inequalities for stability and stabilization of
linear time-varying systems”, Automatica 131 (2021), article no. 109785 (11 pages).

[37] K. Zhou, J. C. Doyle and K. Glover, Robust and optimal control, Prentice Hall, 1996.
[38] L. Zhou, K. Lu and W. Zhang, “Equivalences between nonuniform exponential dichotomy

and admissibility”, J. Differ. Equations 262 (2017), no. 1, pp. 682–747.
[39] H. Zhu and Z. Li, “Nonuniform dichotomy spectrum intervals: theorem and computation”,

J. Appl. Anal. Comput. 9 (2019), no. 3, pp. 1102–1119.


	1. Introduction
	1.1. Novelty of this work
	1.2. Notations and basic settings
	1.3. Structure of the article

	2. Controllability and Feedback stabilizability: basic notions and nonuniform preliminaries
	2.1. Controllability
	2.2. Feedback stabilizability
	2.3. Exponential dichotomy and bounded growth properties
	2.4. Nonuniform asymptotic stability properties

	3. Controllability in a nonuniform framework
	3.1. Nonuniform complete controllability: definition and consequences
	3.2. An example of a nonuniformly completely controllable system
	3.3. An example of a CC but not NUCC system

	4. Feedback stabilization for nonuniformly completely controllable control systems
	4.1. Nonuniform exponential stabilities and the nonuniform exponential dichotomy
	4.2. Proof of Theorem 26

	5. Conclusions and comments
	Appendix A. Energy of the controlling input
	Declaration of interests
	References

