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Abstract. We consider the cubic Schrödinger equation on the line, for which the scattering theory requires
modifications due to long range effects. We revisit the construction of the modified wave operator, and recall
the construction of its inverse, in order to describe the asymptotic behavior of these operators near the origin.
At leading order, these operators, whose definition includes a nonlinear modification in the phase compared
to the linear dynamics, correspond to the identity. We compute explicitly the first corrector in the asymptotic
expansion, and justify this expansion by error estimates.

Résumé. Nous considèrons l’équation de Schrödinger cubique sur la droite, pour laquelle la théorie du scat-
tering demande des modifications dues aux effets à longue portée. Nous reprenons la construction de l’opé-
rateur d’onde modifié, et rappelons la construction de son inverse, afin de décrire le comportement de ces
opérateurs près de l’origine. Au premier ordre, ces opérateurs, dont la définition contient une modification
non linéaire de la phase par rapport à la dynamique linéaire, coïncident avec l’identité. Nous calculons ex-
plicitement le premier correcteur du développement asymptotique, et justifions ce développement par des
estimations d’erreur.
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1. Introduction

We consider the cubic Schrödinger equation on the line,

i∂t u + 1

2
∂2

x u =λ|u|2u, x ∈R, (1.1)
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with λ ∈R. It is well known that in terms of scattering, this equation corresponds to a borderline
case, where long range effects appear (see [1]). The goal of this paper is to analyze the modified
scattering map near the origin, as well as the modified wave operator and its inverse. We first
recall a few aspects of scattering theory for the nonlinear Schrödinger equation in the short range
case, then turn to the specificities of this long range setting.

1.1. Short range scattering

Denote by U (t ) the Schrödinger group,

U (t ) := ei t
2 ∂

2
x .

In view of the explicit formula for U (t ) as a convolution operator, we have

U (t ) f (x) ∼
t→±∞ei x2

2t
1

(it )1/2
f̂
( x

t

)
, (1.2)

where we normalize the Fourier transform as follows,

F f (ξ) = f̂ (ξ) = 1p
2π

∫
R

f (x)e−ixξ dx.

See Lemma 5 for a more precise statement regarding (1.2). Consider, for the sake of comparison
with (1.1), the case of a quintic, defocusing nonlinearity

i∂t u + 1

2
∂2

x u = |u|4u, x ∈R. (1.3)

The discussion for, e.g., the two-dimensional or the three-dimensional cubic Schrödinger equa-
tion would be similar. Given

u− ∈Σ := {
f ∈ H 1(R); ∥ f ∥Σ := ∥ f ∥L2 +∥∂x f ∥L2 +∥x f ∥L2 <∞}

, (1.4)

there exists a unique u0 ∈ Σ= H 1 ∩F (H 1) such that the (unique, global) solution u to (1.3) with
u|t=0 = u0 satisfies

∥U (−t )u(t )−u−∥Σ −→
t→−∞0.

We recall that U (t ) is unitary on H 1, but not on F (H 1), this is why the quantity measured above
is not u(t )−U (t )u−. The map u− 7→ u0 is classically referred to as wave operator (see e.g. [7]).

Conversely, given u0 ∈Σ, there exists u+ ∈Σ such that

∥U (−t )u(t )−u+∥Σ −→
t→+∞0.

The map u− 7→ u+ is called the scattering operator. It can be defined for other (defocusing)
nonlinearities, but strictly supercubic, in view of [1], where it is proved that, typically for (1.1), it is
not possible to compare the nonlinear dynamics with the linear one for large time (see also [7]).
We will see in the next subsection that in the cubic case (1.1), nontrivial long range effects must
be taken into account, and that these effects are explicit.

In general, rather little is known regarding properties of the scattering map S. For instance,
it is proven in [3] that for smooth, power-like nonlinearities such that short range scattering is
known, the wave and scattering operators are analytic. The formula for the associated Taylor
series is given, and the formula differs whether the expansion is considered at the origin or at a
nontrivial state. Such asymptotic expansions (not necessarily in the analytic case) have proven
useful in the context of inverse problems, see e.g. [21, 22] and references therein.
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1.2. Long range case: modified scattering

The picture is different in the case of (1.1): the nonlinear dynamics cannot be compared to the
linear one, unless one considers the trivial case u ≡ 0 ([1]), so a modified scattering theory has
been developed in order to describe the large time behavior of u, sharing some similarities with
the linear case, presented in e.g. [6].

Given asymptotic states u− and u+, we introduce the long range phase corrections (different
whether t →−∞ of t →+∞),

S±(t , x) :=∓λ
∣∣∣û±

( x

t

)∣∣∣2
log |t |. (1.5)

Loosely speaking, the existence of modified wave operator reads as follows: given u− (sufficiently
small), there exists a solution u to (1.1) such that

u(t , x) ∼
t→−∞eiS−(t ,x) U (t )u−(x) ∼

t→−∞eiS−(t ,x)+i x2
2t

1

(it )1/2
û−

( x

t

)
,

where the second approximation stems from (1.2). Note that the phase modification S− is by no
means negligible as t →−∞: it accounts for long range effects, as established initially in [28]. We
denote by u|t=0 =W mod− (u−) the modified wave operator.

The modified asymptotic completeness is similar: given u0 (sufficiently small), there exists u+
such that the solution u to (1.1) with u|t=0 = u0 satisfies

u(t ) ∼
t→+∞eiS+(t ) U (t )u+.

Such a result was proven initially in [15]. The modified scattering map is given by Smod(u−) = u+.
At this stage, we have not addressed the function spaces in which the above asymptotics have
been proven.

In [28], the existence of modified wave operators was established for u− ∈F (H 2), with ∥û−∥L∞

sufficiently small, and the solution u to (1.1) has an L2 regularity, u0 ∈ L2(R). We emphasize, as
the notation will be used many times, that the space F (H s ) is characterized by

F (H s ) =
{

f ∈S ′(R), ∥ f ∥2
F (H s ) :=

∫
R
〈x〉2s | f (x)|2 dx <∞

}
, 〈x〉 =

√
1+x2.

The result of [28] also addresses the case where u− ∈H (defined below, see (1.6)) where, provided
again that ∥û−∥L∞ sufficiently small, the solution u to (1.1) has an H 1 regularity, and convergence
holds in this space.

In [15], the asymptotic completeness was proven for u0 ∈ Hγ ∩F (Hγ) with γ > 1/2 and
∥u0∥Hγ∩F (Hγ) sufficiently small. The obtained asymptotic state u+ is such that û+ ∈ L2 ∩L∞.

Denote
H := { f ∈ H 1(R); 〈x〉∂x f ,〈x〉3 f ∈ L2(R)}

= { f ∈S ′(R);∥ f ∥H := ∥〈x〉∂x f ∥L2 +∥〈x〉3 f ∥L2 <∞}.
(1.6)

In [2], the main result of [28] was adapted for u− ∈ H with ∥û−∥L∞ sufficiently small, and the
regularity of the solution u to (1.1) was proven to be at least Σ, hence u0 ∈ Σ, making it possible
to connect this result with the asymptotic completeness from [15], thus defining a map u− 7→ u+
from (a subset of) H to L2∩L∞. When invoking the modified scattering operator, we refer to this
notion.

This gap in regularity between u− and u+ was considerably diminished in [17], where, with the
same notations as above, the authors consider the setting (along with smallness conditions)

u− ∈F (Hα), u0 ∈F (Hβ), u+ ∈F (Hδ),

with the constraints 1/2 < δ < β < α < 1, allowing these three indices to be arbitrarily close one
from another. This is achieved by adapting the notion of (modified) asymptotic completeness
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in order to avoid loss of differentiability issues, in space dimensions two and three, where the
borderline nonlinearity in terms of scattering is |u|2/d u.

We also emphasize that there are many references addressing the theory of long range scat-
tering for nonlinear Schrödinger equations (e.g. [4, 18, 19, 24–27]), as well as for Schrödinger-like
equations, like Hartree equation (e.g. [8, 12, 13, 29]), derivative nonlinear Schrödinger equation
(e.g. [14, 16]), Maxwell–Schrödinger system (e.g. [9, 10]), wave-Schrödinger system (e.g. [11]), not
to mention other dispersive equations.

We note that the very definition of the modified wave and scattering operators encodes the
fact that the nonlinearity is cubic, and recovering the nonlinearity from the scattering map does
not make sense, contrary to the case of [21, 22]. In the case where λ is allowed to depend on x
in a somehow perturbative way, Chen and Murphy [5] showed that the inverse of the modified
wave operator uniquely determines λ. One of the tools of the proof there is to study the behavior
of this operator near the origin, thanks to a rather implicit expansion ([5, Proposition 4.1]). We
present a more explicit formula in the next subsection, when λ is constant.

To fix the ideas, we summarize the above discussion by introducing the following definition,
where regularity aspects are left out for simplicity.

Definition 1. Given u−, the modified wave operator acting on u− is given by u|t=0 = W mod− (u−),
where u solves (1.1), and satisfies

u(t , x) = eiS−(t ,x) U (t )u−(x)+o(1) in L2(R) as t −→−∞,

where S− is defined in (1.5).
The modified scattering operator is defined by Smod(u−) = u+ if the above solution u satisfies in

addition
u(t , x) = eiS+(t ,x) U (t )u+(x)+o(1) in L2(R) as t −→+∞,

where S+ is defined in (1.5).

1.3. Main result

In the same spirit as what has been achieved for the wave and scattering operators in the short
range case, we consider the asymptotic behavior of the modified wave and scattering operators,
with two restrictions compared to [3]. First, we shall confine ourselves to the asymptotic
expansion near the origin. Second, we compute only the first two terms of this asymptotic
expansion. We will see that this already requires some amount of work, but that the same method
should provide some, if not all, higher order terms in the expansion at the origin. On the other
hand, the description of these operators near a nontrivial state certainly requires a different
approach.

We emphasize that the question addressed here is different from the (higher order) asymptotic
expansion of the large time behavior of u(t ), as studied in [23]. Our main results are gathered in
the following statement:

Theorem 2. Let v− ∈H and v0 ∈Σ.

• For any 0 < η< 2, we have, in Σ and as ε→ 0,

W mod
− (εv−) = εv−+ε3w2 +O

(
ε5−η) ,

where w2 ∈Σ is defined by

w2 =−iλ
∫ −1

−∞

(
U (−τ)

(|U (τ)v−|2U (τ)v−
)+ 1

|τ|F
−1 (|v̂−|2v̂−

))
dτ

− iλ
∫ 0

−1
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ.
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• For any 0 < η< 2, we have, in L2 and as ε→ 0,(
W mod

+
)−1

(εv0) = εv0 +ε3µ2 +O
(
ε5−η) ,

where µ2 =µ2(v0) ∈ L2 is defined by

µ2 =−iλ
∫ 1

0

(
U (−s)

(|U (s)v0|2U (s)v0
))

ds

+λ
∫ ∞

1

(
M(−τ)F−1

(∣∣∣áM(τ)v0

∣∣∣2 áM(τ)v0

)
−F−1 (|v̂0|2v̂0

)) dτ

τ
,

and M(t ) stands for the multiplication by e
i x2

2t .
• For any 0 < η< 2, we have, in L2 and as ε→ 0,

Smod(εv−) = εv−+ε3ν2 +O
(
ε5−η) ,

where ν2 ∈ L2 is defined by ν2 = w2+µ2(v−), where w2 is given by the first point, and µ2 by
the second.

Remark 3. The functions µ2 and ν2 are more regular than merely L2, as we will see in Section 6
that they belong to Hγ∩F (Hγ) for any 0 < γ< 1.

It may be surprising that the leading order behavior of the modified wave and scattering oper-
ators at the origin is the identity: we recall that from their definition, these operators are already
nontrivial, and account for long range effects. We also emphasize that the first corrector has a
more involved expression than in the short range case, a case where we would simply have (typ-
ically for the two-dimensional and three-dimensional cubic Schrödinger equations, see e.g. [3])

w2 =−iλ
∫ 0

−∞
(
U (−s)

(|U (s)v0|2U (s)v0
))

ds,

µ2 =−iλ
∫ ∞

0

(
U (−s)

(|U (s)v0|2U (s)v0
))

ds.

Note that in the (one-dimensional) long range case, these integrals diverge.

As evoked above, in principle, the method of proof that we present allows to compute (some)
higher order terms in the asymptotic expansions near the origin.

1.4. Outline

In Section 2, we recall several properties which are classical in the context of scattering theory
for nonlinear Schrödinger equations, and which are of constant use in this paper. In Section 3,
we revisit the construction of the modified wave operator W mod− , in such a way that the leading
order behavior of this operator at the origin, presented in Section 4, is rather straightforward.
In Section 4, we also consider the first corrector in the asymptotic expansion of W mod− at the
origin, an aspect which requires some extra work. In Section 5, we recall the modified asymptotic
completeness result established in [15], and infer the leading of behavior of Smod at the origin.
The first corrector is derived in Section 6, where the last two error estimates announced in
Theorem 2 are proved.

1.5. Notations

We recall the classical factorization of the Schrödinger group,

U (t ) = ei t
2 ∂

2
x = M(t )D(t )F M(t ),
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where the multiplication M(t ), the dilation D(t ) and the Fourier transform F are defined by

M(t ) = ei x2
2t , D(t ) f (x) = 1

(it )1/2
f
( x

t

)
,

F f (ξ) = f̂ (ξ) = 1p
2π

∫
R

f (x)e−ixξdx.
(1.7)

Note that each of these three operators is unitary on L2(R), and that (1.2) reads U (t ) ≈ M(t )D(t )F ,
see also Lemma 5. We recall that the space Σ is defined by

Σ= H 1 ∩F (H 1) = {
f ∈ H 1(R); ∥ f ∥Σ := ∥ f ∥L2 +∥∂x f ∥L2 +∥x f ∥L2 <∞}

.

We note that Σ is a Banach algebra, invariant under the Fourier transform, and such that Σ ,→
L1 ∩L∞. In addition, Σ is invariant under the action of U (t ), for any t ∈R.

For functions f ε, g ε⩾ 0 depending on time t and ε, the notation

f ε≲ g ε

means that there exists C independent of t and ε such that

f ε⩽C g ε.

2. Technical preliminaries

In this section, we gather classical estimates which can be found in several references cited in the
introduction.

Lemma 4. The operator
J (t ) = x + it∂x

satisfies the following properties:

• J (t ) =U (t )xU (−t ), and therefore J commutes with the linear part of (1.1),[
J (t ), i∂t + 1

2
∂2

x

]
= 0. (2.1)

• It can be factorized as

J (t ) = it ei x2
2t ∂x

(
e−i x2

2t ·
)

.

As a consequence, J yields weighted Gagliardo–Nirenberg inequalities. For 2 ⩽ r ⩽ ∞,
there exists C (r ) depending only on r such that∥∥ f

∥∥
Lr ⩽

C (r )

|t |δ(r )

∥∥ f
∥∥1−δ(r )

L2

∥∥J (t ) f
∥∥δ(r )

L2 , δ(r ) := 1

2
− 1

r
. (2.2)

Also, if F (z) =G(|z|2)z is C 1, then J (t ) acts like a derivative on F (w):

J (t ) (F (w)) = ∂z F (w)J (t )w −∂z F (w)J (t )w . (2.3)

Lemma 5. Denote by
R(t ) = M(t )D(t )F (M(t )−1)F−1,

where the above terms are defined in (1.7). The following estimates hold for |t |⩾ 1:

(1) For all s > 1/2 and 0⩽ θ⩽ 1,

∥R(t ) f ∥L∞
x
≲

1

|t |1/2+θ ∥ f ∥H s+2θ , ∀ f ∈S (R).

(2) For all 0⩽ θ⩽ 1,

∥R(t ) f ∥L2
x
≲

1

|t |θ ∥ f ∥H 2θ , ∀ f ∈S (R).
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(3) For all 0⩽ θ⩽ 1,

∥J (t )R(t ) f ∥L2
x
≲

1

|t |θ ∥ f ∥H 1+2θ , ∀ f ∈S (R).

(4) We have

∥∂xR(t ) f ∥L2
x
≲

1

|t | ∥ f ∥H 1 + 1

|t | ∥x f ∥H 2 , ∀ f ∈S (R).

Remark 6. We emphasize that R(t ) does not map L∞(R) into itself, since F (M(t )−1)F−1 =
U

( 1
t

)−1 and U
( 1

t

)(
e−it x2

2
)= δ0.

Even though such estimates can be found in the existing literature, we give a proof, as the ideas
will be resumed when M(t )−1 is present.

Proof. In view of the definition of R, we readily have

∥R(t ) f ∥L∞
x
= 1

|t |1/2
∥F (M(t )−1)F−1 f ∥L∞ .

Using Hausdorff–Young inequality and the general estimate

|M(t )−1| = 2

∣∣∣∣sin

(
x2

4t

)∣∣∣∣≲ ∣∣∣∣ x2

t

∣∣∣∣θ , ∀0⩽ θ⩽ 1, (2.4)

we find

∥R(t ) f ∥L∞
x
≲

1

|t |1/2

∥∥∥∥∥
∣∣∣∣ x2

t

∣∣∣∣θF−1 f

∥∥∥∥∥
L1

.

Using the easy property F (H s ) ,→ L1 for s > 1/2 (the same is true on Rd provided that s > d/2,
from Cauchy–Schwarz inequality),

∥R(t ) f ∥L∞
x
≲

1

|t |1/2+θ
∥∥∥〈x〉s |x|2θF−1 f

∥∥∥
L2
≲

1

|t |1/2+θ ∥ f ∥H s+2θ ,

hence the first inequality. For the second one, since D(t ) is unitary on L2, Plancherel formula
and (2.4) yield

∥R(t ) f ∥L2
x
= ∥(M(t )−1)F−1 f ∥L2 ≲

1

|t |θ
∥∥∥|x|2θF−1 f

∥∥∥
L2
≲

1

|t |θ ∥ f ∥H 2θ .

For the third inequality, we use the formula J (t ) =U (t )xU (−t ), along with the factorization

U (−t ) = i M(−t )F−1D

(
1

t

)
M(−t ), (2.5)

to obtain

∥J (t )R(t ) f ∥L2
x
= ∥x(M(t )−1)F−1 f ∥L2 ≲

1

|t |θ
∥∥∥|x|1+2θF−1 f

∥∥∥
L2
≲

1

|t |θ ∥ f ∥H 1+2θ .

To estimate ∂xR(t ) f , two terms appear, whether the derivative hits the first factor M(t ) or not,
and we have

∥∂xR(t ) f ∥L2
x
⩽

∥∥∥ x

t
D(t )F (M(t )−1)F−1 f

∥∥∥
L2

+ 1

|t |
∥∥∂xF (M(t )−1)F−1 f

∥∥
L2 .

The first term on the right hand side is equal to∥∥xF (M(t )−1)F−1 f
∥∥

L2 =
∥∥∂x (M(t )−1)F−1 f

∥∥
L2

⩽
∥∥∥ x

t
F−1 f

∥∥∥
L2

+∥∥(M(t )−1)∂xF−1 f
∥∥

L2

≲
1

|t | ∥ f ∥H 1 + 1

|t |θ ∥x f ∥H 2θ ,



1724 Rémi Carles

for any θ ∈ [0,1]. Note that

1

|t |
∥∥∂xF (M(t )−1)F−1 f

∥∥
L2 = 1

|t |
∥∥x(M(t )−1)F−1 f

∥∥
L2 ≲

1

|t |
∥∥xF−1 f

∥∥
L2 ,

hence the result, by choosing θ = 1. □

3. Modified wave operator

A key aspect in the proofs of the existence of modified wave operators for (1.1), in particular to get
minimal regularity assumptions on the asymptotic state u−, is to consider a suitable approximate
solution near t =−∞. Introduce two such approximate solutions, u1 and u2, defined for t ⩽−10,
given by

u1(t , x) := 1

(it )1/2
ei x2

2t û−
( x

t

)
eiS−(t ,x) = M(t )D(t )ŵ(t , x),

where

ŵ(t ) := û− eiλ|û−|2 log |t |,

where we resume the same notations as in [17], and

u2(t ) :=U (t )F−1ŵ .

As t →−∞, u1 and u2 are close, in view of Lemma 5, since u2(t )−u1(t ) = R(t )ŵ . Our goal is to
keep track of the smallness of the asymptotic state as precisely as possible, in the sense that we
consider uε− = εv− for some fixed v−, assume that ε> 0 is small, and we want to get larger powers
of ε in the error terms whenever we can. It turns out that apparently, u2 is a better candidate than
u1 in this direction. More explicitly, the Duhamel formula for u −u1 (see [17]) contains a linear
term (Rŵ), which we want to remove. We first gather some estimates on u1.

Lemma 7. Let u− ∈ H : ∥u1(t )∥L2 = ∥u2(t )∥L2 = ∥u−∥L2 for all t ⩽ −10. There exists C > 0
independent of u− such that for all t ⩽−10,

∥u1(t )∥L∞ ⩽
∥û−∥L∞p|t | ,

∥∂x u1(t )∥L2 ⩽C
(∥u−∥H +∥u−∥3

H

)
,

∥J (t )u1(t )∥L2 ⩽C∥u−∥H

(
1+∥u−∥2

H log |t |) .

Proof. The conservation of the L2-norm is obvious, as well as the estimate

∥u1(t )∥L∞ ⩽
∥û−∥L∞p|t | .

The expression of u1 yields directly

∥∂x u1(t )∥L2 ⩽ ∥∂x û−∥L2 +|λ| log |t |
|t | ∥û−∥2

L∞∥∂x û−∥L2 .

In view of the factorization for J stated in Lemma 4,

J (t )u1(t ) = it M(t )∂x
(
D(t )û− eiS−(t ))

= ei x2
2t +iS−(t )

(
iD(t )(∂x û−)−λD(t )û−× log |t |×∂x |û−|2

( x

t

))
,

thus

∥J (t )u1(t )∥L2 ≲ ∥û−∥H 1 + log |t |∥û−∥2
L∞∥û−∥H 1 .

The lemma follows. □
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Lemma 8. Let u− ∈H . There exists C > 0 independent of u− such that for all t ⩽−10,

∥R(t )ŵ∥L∞ ⩽
Cp|t |

(
∥û−∥H 1 +∥û−∥3

H 1

)
,

∥R(t )ŵ∥L∞ ⩽
C

|t |3/2

(∥u−∥H + (log |t |)3∥u−∥7
H

)
.

∥U (−t )R(t )ŵ∥Σ⩽ C

|t |
(∥u−∥H + (log |t |)3∥u−∥7

H

)
.

Proof. If we use the first point of Lemma 5 with θ = 0 and s > 1/2, the phase factor causes the
appearance of a log |t | term, since the H 1-norm of ŵ is involved. So we rather take θ > 0 and
s > 1/2 such that s +2θ = 1, and so, for t ⩽−10,

∥R(t )ŵ∥L∞ ≲
∥ŵ∥H 1

|t |1/2+θ ≲
1

|t |1/2+θ
(∥û−∥H 1 + (log |t |)∥û−∥2

L∞∥û−∥H 1

)
≲

1p|t |
(
∥û−∥H 1 +∥û−∥3

H 1

)
,

where the logarithmic factor was left out since θ > 0. It is actually at the level of this estimate that
the H 1-norm of û− appears, instead of merely its L∞-norm.

To obtain the stronger time decay, we choose s = θ = 1 in the first point of Lemma 5, hence,
since H 3(R) is an algebra,

∥R(t )ŵ∥L∞ ≲
∥ŵ∥H 3

|t |3/2
≲

1

|t |3/2

(
∥û−∥H 3 + (log |t |)3∥û−∥7

H 3

)
.

In view of Lemma 4,

∥U (−t )Rŵ∥Σ = ∥Rŵ∥L2 +∥∂xRŵ∥L2 +∥J (t )Rŵ∥L2 ,

and Lemma 5 yields

∥U (−t )R(t )ŵ∥Σ≲ 1

|t | ∥ŵ∥H 3 + 1

|t | ∥xŵ∥H 2 .

Using the fact that H s (R) is an algebra for s > 1/2, we infer

∥U (−t )R(t )ŵ∥Σ≲ 1

|t |
(
∥û−∥H 3 + (log |t |)3∥û−∥7

H 3

)
+ 1

|t |
(
∥xû−∥H 2 + (log |t |)2∥xû−∥5

H 2

)
≲

1

|t |

(
∥u−∥H + ∑

j=0,1
(log |t |)2+ j ∥u−∥5+2 j

H

)
,

hence the lemma. □

Proposition 9. There exist δ0 > 0, C , and a polynomial P, such that the following holds. For any
u− ∈ L2 with u− ∈H , where H is defined in (1.6), and such that ∥û−∥H 1 ⩽ δ0, there exists a unique
u0 ∈Σ such that the solution u ∈C (R,Σ) to (1.1) with u|t=0 = u0 satisfies, for t ⩽−10,

∥U (−t ) (u(t )−u2(t ))∥Σ⩽C∥u−∥3
H P (∥u−∥H )

(log |t |)4

|t | .

Remark 10. The choice of the approximate solution u2 is tailored to ensure that, with the proof
presented below, the error term is superlinear in some norm of u−, uniformly in the limit t →−∞.
On the other hand, the smallness assumption, which is a consequence of the first estimate in
Lemma 8, is stronger than in the cited references, since Sobolev embedding yields H 1(R) ⊂ L∞(R).

Proof. Like in [28] or [17], the proof relies on a fixed point argument near t =−∞. Resuming the
computations from [17] (and keeping the same notations),

i∂t ŵ = λ

t
|ŵ |2ŵ ,
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and so we check that u2 solves the equation

i∂t FU (−t )u2 =λFU (−t )

(
1

t
U (t )F−1 (|ŵ |2ŵ

))
.

Therefore, we want to solve

i∂t FU (−t ) (u −u2) =λFU (−t )

(
|u|2u − 1

t
U (t )F−1 (|ŵ |2ŵ

))
.

We insert the term |u2|2u2 into the above equation, and use the identity

1

t
U (t )F−1 (|ŵ |2ŵ

)= 1

t
MDF MF−1 (|ŵ |2ŵ

)
= 1

t
R(t )

(|ŵ |2ŵ
)+ 1

t
M(t )D(t )

(|ŵ |2ŵ
)

,

with

1

t
M(t )D(t )

(|ŵ |2ŵ
)= M(t )|M(t )D(t )ŵ |2D(t )ŵ = |u1|2u1,

so Duhamel’s formula reads, along with the requirement U (−t ) (u(t )−u2(t )) → 0 as t →−∞,

u(t ) = u2(t )− iλ
∫ t

−∞
U (t −τ)

(|u|2u −|u2|2u2
)

(τ)dτ+ iλ
∫ t

−∞
U (t −τ)

(|u2|2u2 −|u1|2u1
)

(τ)dτ

− iλ
∫ t

−∞
U (t −τ)

(
1

τ
R(τ)

(|ŵ |2ŵ
))

(τ)dτ. (3.1)

The last two lines correspond to source terms, involving only the various approximate solutions,
and can be estimated thanks to Lemma 5, as u2 = u1 +Rŵ .

Denote by Φ(u) = u2 +Φ1(u)+Φ2 +Φ3 the right hand side of (3.1), where Φ j corresponds to
the j -th line (note that Φ2 and Φ3 do not depend on u). We have∣∣∂x

(|u2|2u2 −|u1|2u1
)∣∣= ∣∣∂x

(|Rŵ +u1|2(Rŵ +u1)−|u1|2u1
)∣∣

≲
(|Rŵ |2 +|u1|2

) |∂xRŵ |+ (|Rŵ |+ |u1|) |Rŵ ||∂x u1|.
Using the formula J (t ) = U (t )xU (−t ) from Lemma 4, as well as (2.3) that state that J (t ) can be
thought of as a derivative here, we find

∥U (−t )Φ2(t )∥Σ≲
∫ t

−∞
(∥R(τ)ŵ∥2

L∞ +∥u1(τ)∥2
L∞

)∥U (−τ)Rŵ∥Σdτ

+
∫ t

−∞
(∥R(τ)ŵ∥L∞ +∥u1(τ)∥L∞ )∥R(τ)ŵ∥L∞∥U (−τ)u1(τ)∥Σdτ.

We invoke Lemmas 7 and 8 to estimate the above terms. More precisely, then factor ∥R(τ)ŵ∥L∞

is controlled by the second estimate of Lemma 8, and we get, for ∥û−∥H 1 ⩽ 1 and t ⩽−10:

∥U (−t )Φ2(t )∥Σ≲ ∥û−∥H 1∥u−∥2
H P2 (∥u−∥H )

∫ t

−∞
(log |τ|)4

τ2 dτ,

for some polynomial P2. The term Φ3 is estimated thanks to Lemma 5, and the choice of
parameter is motivated by the previous estimate, keeping in mind that a factor 1

τ is already
present in the definition of Φ3. For the L2-estimate, we thus choose θ = 1 in Lemma 5, so that

∥Φ3(t )∥L2 ≲
∫ t

−∞

∥∥|ŵ |2ŵ
∥∥

H 2

dτ

τ2 ≲
∫ t

−∞
∥ŵ∥2

L∞∥ŵ∥H 2
dτ

τ2

≲ ∥û−∥2
L∞∥û−∥H 2

∫ t

−∞
(
1+ (log |τ|)2∥û−∥4

H 2

) dτ

τ2 .
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The norm ∥xU (−t )Φ3(t )∥L2 = ∥J (t )Φ3(t )∥L2 is estimate similarly, by setting again θ = 1 (in the
third point of Lemma 5, and we get, since the H 2-norm is replaced by an H 3-norm in the above
computation,

∥J (t )Φ3(t )∥L2 ≲ ∥û−∥2
L∞∥û−∥H 3

∫ t

−∞

(
1+ (log |τ|)3∥û−∥6

H 3

) dτ

τ2 .

The choice of suitable parameters for the Ḣ 1-norm was already made in the statement of
Lemma 5, and we have

∥∂xΦ3(t )∥L2 ≲
∫ t

−∞
(∥|ŵ |2ŵ∥H 1 +∥x|ŵ |2ŵ∥H 2

) dτ

τ2 .

The term involving the H 1-norm has been estimated above, so we focus on the other norm. Direct
computations yield ∣∣∂2

x

(
x|ŵ |2ŵ

)∣∣≲ |x||ŵ |2|∂2
x ŵ |+ |ŵ |2|∂x ŵ |+ |x||ŵ ||∂x ŵ |2,

and we get

∥∂xΦ3(t )∥L2 ≲ ∥û−∥2
L∞∥û−∥H 1

∫ t

−∞
(
1+ (log |τ|)∥û−∥2

H 1

) dτ

τ2

+∥û−∥L∞∥u−∥2
H

∫ t

−∞
(
1+ (log |τ|)2∥u−∥4

H

) dτ

τ2 .

The source term is therefore controlled, for t ⩽−10, by:

∥U (−t )(Φ2(t )+Φ3(t ))∥Σ≲ ∥û−∥H 1∥u−∥2
H P (∥u−∥H )

∫ t

−∞

(
log |τ|)4

τ2 dτ, (3.2)

for some polynomial P whose precise expression is irrelevant.
The end of the proof consists of a fixed point argument. Mimicking [28], for α ∈ ]1/2,1[

arbitrary (but fixed), and T ≫ 1, introduce the space

Xα(T ) =
{

u ∈ L∞(]−∞,−T ],L2) such that t 7−→U (−t )u(t ) ∈ L∞(]−∞,−T ],Σ),

sup
t⩽−T

|t |α∥U (−t )(u(t )−u2(t ))∥Σ⩽ ∥û−∥H 1

}
.

and define on Xα(T ) the metric

d(u, v) = sup
t⩽−T

|t |α∥u(t )− v(t )∥L2 .

Note that here, we choose to measure distance by considering the L2 norm only: Xα(T ), equipped
with this distance, is a complete metric space.

For u ∈ Xα(T ), Φ1(u) is estimated by

∥U (−t )Φ1(u(t ))∥L2 ≲
∫ t

−∞
(∥u(τ)∥2

L∞ +∥u2(τ)∥2
L∞

)∥u(τ)−u2(τ)∥L2 dτ

≲ ∥û−∥2
H 1

∫ t

−∞
dτ

τ1+α ≲
∥û−∥2

H 1

|t |α .

For A ∈ {∂x , J (t )}, we have∣∣A
(|u|2u −|u2|2u2

)∣∣≲ |u|2|A(u −u2)|+ (|u|+ |u2|) |Au2||u −u2|. (3.3)
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Therefore,

∥U (−t )Φ1(u(t ))∥Σ≲
∫ t

−∞
∥u(τ)∥2

L∞∥U (−τ)(u(τ)−u2(τ))∥Σdτ

+
∫ t

−∞
(∥u(τ)∥L∞ +∥u2(τ)∥L∞ )∥U (−τ)u2(τ)∥Σ∥u(τ)−u2(τ)∥L∞dτ

≲ ∥û−∥2
H 1 P3 (∥u−∥H )

∫ t

−∞
log |τ|
τ1+α dτ,

for some polynomial P3 whose precise expression is irrelevant, where we have used Lemmas 7
and 8 to estimate ∥U (−τ)u2(τ)∥Σ. The L∞-norm of u(τ)−u2(τ) is controlled by |τ|−1/2−α in view
of Lemma 4 and the definition of Xα(T ). Therefore, by choosing T sufficiently large, we check
that Φ maps Xα(T ) to itself.

To conclude by a fixed point argument, we show that Φ is a contraction provided that ∥û−∥H 1

is sufficiently small. Indeed, for u, v ∈ Xα(T ),

Φ(u)(t )−Φ(v)(t ) =−iλ
∫ t

−∞
U (t −τ)

(|u|2u −|v |2v
)

(τ)dτ,

and so, for t ⩽−10,

∥Φ(u)(t )−Φ(v)(t )∥L2 ≲
∫ t

−∞
(∥u(τ)∥2

L∞ +∥v(τ)∥2
L∞

)∥u(τ)− v(τ)∥L2 dτ

≲ ∥û−∥2
H 1 d(u, v)

∫ t

−∞
dτ

τ1+α ,

where we have used

∥u(τ)∥L∞ +∥v(τ)∥L∞ ⩽ 2∥u2(τ)∥L∞ +C∥u(τ)−u2(τ)∥H 1 +C∥v(τ)−u2(τ)∥H 1

≲
∥û−∥H 1p|τ| ,

since α> 1/2. Therefore,

d (Φ(u),Φ(v))≲ ∥û−∥2
H 1 d(u, v),

hence the result provided that ∥û−∥H 1 is sufficiently small. □

4. Behavior of the modified wave operator near the origin

4.1. Leading order asymptotic behavior

Let uε− = εv− with v− ∈H independent of ε. Denote by uε the solution provided by Proposition 9.
Then like uε−, uε is of order ε, and the remainder in Proposition 9 is O (ε3). The long range
phase correction Sε− is O (ε2 log |t |), for t ⩽ −10: its contribution is negligible for times t such
that ε2| log |t ||≪ 1, so in particular we can match with a linear solution at tεγ =−1/εγ,

i∂t uε1 +
1

2
∂2

x uε1 = 0,

with

uε1|t=−1/εγ =
1

(it )1/2
ei x2

2t F (uε
−)

( x

t

)∣∣∣
t=−1/εγ

.

The right hand side is M(t )D(t )Fuε− evaluated at t = −1/εγ. In view of Lemma 5, up to a small
error term,

uε1(t ) =U (t )uε
−, or, equivalently, uε1 = εv1, with v1(t ) =U (t )v−.
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We choose this definition for the first order approximation uε1. Let t ⩾−1/εγ. Duhamel’s formula
implies

U (−t )
(
uε(t )− vε1(t )

)
=U (−s)

(
uε(s)−uε

2(s)+uε
2(s)−uε1(s)

)∣∣∣
s=−1/εγ

− iλ
∫ t

−1/εγ
U (−τ)

(|uε|2uε
)

(τ)dτ,

that is

U (−t )uε(t )−uε
−

=U (−s)
(
uε(s)−uε

2(s)
)∣∣∣

s=−1/εγ
+U (−s)uε

2(s)
∣∣∣

s=−1/εγ
−uε

−− iλ
∫ t

−1/εγ
U (−τ)

(|uε|2uε
)

(τ)dτ,

The first term on the right hand side is estimated thanks to Proposition 9:∥∥∥U (−s)
(
uε(s)−uε

2(s)
)∣∣∣

s=−1/εγ

∥∥∥
Σ
≲ ε3+γ| logε|.

On the other hand,∥∥∥U (−s)uε
2(s)

∣∣∣
s=−1/εγ

−uε
−
∥∥∥
Σ
= ∥F−1ŵ |s=−1/εγ −uε

−∥Σ = ∥ŵ |s=−1/εγ −F (uε
−)∥Σ.

Recalling that

ŵ =F (uε
−)exp

(
i |F (uε

−)|2 log |t |) ,

we have directly

∥ŵ −F (uε
−)∥Σ≲ ∥〈x〉(ŵ −F (uε

−)
)∥L2 +∥∥∂x ûε−

(
exp

(
i |F (uε

−)|2 log |t |)−1
)∥∥

L2

+| logε|∥∥F (uε
−)∂x |F (uε

−)|2∥∥L2

≲ ε3| logε|.
The integral term can be estimated in Σ by∫ t

−1/εγ
∥uε(τ)∥2

L∞∥U (−τ)uε(τ)∥Σdτ.

Since ∥U (T )uε(−T )∥Σ ≲ ε from Lemmas 7 and 8, and Proposition 9 (where T is independent of
ε), we have the following uniform estimate from [15, Theorem 1.1] (see also [20]), provided that
ε> 0 is sufficiently small,

∥uε(τ)∥L∞ ≲
ε

〈τ〉1/2
, ∀τ ∈R. (4.1)

Writing

∥U (−τ)uε(τ)∥Σ⩽ ∥U (−τ)
(
uε(τ)−uε1(τ)

)∥Σ+∥U (−τ)uε1(τ)∥Σ,

and using the obvious fact that ∥U (−τ)uε1(τ)∥Σ = ε∥v−∥Σ, we have, for t ⩾−1/εγ,∥∥U (−t )uε(t )−uε
−
∥∥
Σ≲ ε3| logε|+ε2

∫ t

−1/εγ

∥∥U (−τ)uε(τ)−uε
−
∥∥
Σ

dτ

〈τ〉 +ε
3
∫ t

−1/εγ

dτ

〈τ〉 .

Therefore, Gronwall lemma yields

sup
−1/εγ⩽t⩽T

∥∥U (−t )uε(t )−uε
−
∥∥
Σ≲ ε3| logε|eCε2| logε|+Cε2 log〈T 〉,

for some constant C independent of ε and T . In particular, for any δ ∈ ]0,1], the right hand side
is O (ε3−δ) on [−1/εγ,1/εβ] for any β> 0. This estimate implies the property

W mod
− (εv−) = εv−+O (ε3−η),

for any η > 0. In the next subsection, we improve this estimate by describing the first corrector
term.
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4.2. Next term in the asymptotic expansion

Following e.g. [3], a refined asymptotic expansion for uε, at least on bounded time intervals, is
given by the solution uε2 to

i∂t uε2 +
1

2
∂2

x uε2 =λ|uε1|2uε1,

where the Cauchy data must be chosen carefully. Formally, as uε1 is of order ε, uε2 is of order ε3,
provided that its Cauchy datum is O (ε3). Set

uεapp = uε1 +uε2.

We now have

U (−t )
(
uε(t )−uεapp(t )

)
=U (−s)

(
uε(s)−uε

2(s)+uε
2(s)−uεapp(s)

)∣∣∣
s=−1/εγ

− iλ
∫ t

−1/εγ
U (−τ)

(|uε|2uε−|uε1|2uε1
)

(τ)dτ.

We have seen before that∥∥∥U (−s)
(
uε(s)−uε

2(s)
)∣∣∣

s=−1/εγ

∥∥∥
Σ
≲ ε3+γ| logε| = o(ε3).

So if we want to catch the ε3 term, this is good. Making U (−s)(uε
2(s)−uεapp(s)) small (o(ε3) in Σ)

at s = −1/εγ is what should tell us how to choose the data for uε2. Indeed, the integral term is
estimated in L2 (Σ will require more care) by∫ t

−1/εγ

(∥uε(τ)∥2
L∞ +∥uε1(τ)∥2

L∞
)∥uε(τ)− vε1(τ)∥L2 dτ≲ ε2

∫ t

−1/εγ
∥uε(τ)−uε1(τ)∥L2

dτ

〈τ〉 ,

and we now write

∥uε(τ)−uε1(τ)∥L2 ⩽ ∥uε(τ)−uεapp(τ)∥L2 +∥uε2(τ)∥L2 ,

so the last term yields a smaller contribution (in terms of ε at least) than in the previous
subsection.

Thus, everything seems to boil down to choosing uε2 at time −1/εγ in an efficient way, so that∥∥∥U (−s)(uε
2(s)−uεapp(s))

∣∣∣
s=−1/εγ

∥∥∥
Σ
= o(ε3).

By construction,

U (−s)(uε
2(s))

∣∣∣
s=−1/εγ

=F−1 (
F (uε

−)exp
(−iλγ|F (uε

−)|2 logε
))

.

Taking into account the second term in the asymptotic expansion of the exponential in ŵ , we
define uε2 by

U (−t )uε2(t ) =−iλγε3(logε)F−1 (|F (v−)|2F (v−)
)−iλε3

∫ t

−1/εγ
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ. (4.2)

Lemma 11. Let v− ∈ H . For every t ∈ R, U (−t )uε2(t )/ε3 converges in L2 ∩L∞(R), and the limit is
independent of γ. This limit is given by

U (−t )v2(t ) =−iλ
∫ −1

−∞

(
U (−τ)

(|U (τ)v−|2U (τ)v−
)+ 1

|τ|F
−1 (|F (v−)|2F (v−)

))
dτ

− iλ
∫ t

−1
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ.

The limit also holds in Σ, and for all t ∈R,∥∥∥∥U (−t )

(
uε2(t )

ε3 − v2(t )

)∥∥∥∥
Σ

≲ εγ.
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Remark 12. We emphasize that even though the limit v2 is independent of γ, the error estimate
improves for large values of γ. In view of the definition of uε2, the matching condition at t =−1/εγ

between uε
2 and uεapp is not better than O

(
ε5(logε)2

)
, so it is no use (in this paper) to consider

γ> 2.

Proof. The proof consists in writing a precise asymptotic expansion of the argument of the
integral involved in (4.2). Writing, for any θ ∈ ]0,1],

M(t ) = ei x2
2t = 1+O

(∣∣∣∣ x2

t

∣∣∣∣θ
)

,

we have, in the same vein as in Lemma 5,

U (τ)v−(x) = M(τ)D(τ)F v−+R1(τ, x),

where, as τ→−∞
∥R1(τ)∥L2 =O

(
1

|τ|θ
)

, ∥R1(τ)∥L∞ =O

(
1

|τ|θ+1/2

)
.

We infer, as τ→−∞,

|U (τ)v−|2U (τ)v− = ei π4
ei x2

2τ

|τ|3/2

(|F (v−)|2F (v−)
)( x

τ

)
+R2(τ, x),

with

∥R2(τ)∥L2 =O

(
1

|τ|1+θ
)

, ∥R2(τ)∥L∞ =O

(
1

|τ|3/2+θ

)
.

In view of (2.5), we next compute

U (−τ)
(|U (τ)v−|2U (τ)v−

)= ie−i x2
2τ F−1D

(
1

τ

)(
ei π4

|τ|3/2

(|F (v−)|2F (v−)
)( x

τ

))

+ ie−i x2
2τ F−1D

(
1

τ

)(
e−i x2

2τ R2(τ, x)

)

=−e−i x2
2τ

|τ| F−1 (|F (v−)|2F (v−)
)

(x)+R3(τ, x)

=− 1

|τ|F
−1 (|F (v−)|2F (v−)

)
(x)+R4(τ, x),

where

∥R4(τ)∥L2∩L∞ =O

(
1

|τ|1+θ
)

.

Set θ = 1, and write

1

λε3 U (−t )uε2(t ) =−iγ(logε)F−1 (|F (v−)|2F (v−)
)− i

∫ −1

−1/εγ
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ

− i
∫ t

−1
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ

=−iγ(logε)F−1 (|F (v−)|2F (v−)
)−i

∫ −1

−1/εγ

(
− 1

|τ|F
−1 (|F (v−)|2F (v−)

)+R4(τ)

)
dτ

− i
∫ t

−1
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ

=−i
∫ −1

−∞
R4(τ)dτ+O

(∫ −1/εγ

−∞
dτ

τ2

)
︸ ︷︷ ︸

=O (εγ)

−i
∫ t

−1
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ.

Therefore,

U (−t )v2(t ) =−iλ
∫ −1

−∞
R4(τ)dτ− iλ

∫ t

−1
U (−τ)

(|U (τ)v−|2U (τ)v−
)

dτ,
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and, by construction,

R4(τ) =U (−τ)
(|U (τ)v−|2U (τ)v−

)+ 1

|τ|F
−1 (|F (v−)|2F (v−)

)
,

hence the formula of the lemma. In particular, by the same arguments as above, the second
integral diverges logarithmically as t →+∞. We leave out the convergence in Σ (since v− ∈ H ,
so we can pay some momentum estimate when controlling M −1), which relies on similar ideas,
like the proof of Lemma 5. Note that the present argument □

We can now improve the error estimate proven in the previous subsection with only the
leading order approximation uε1. By construction,∥∥∥U (−s)(uε

2(s)−uεapp(s))
∣∣∣

s=−1/εγ

∥∥∥
Σ
=O

(
ε5(logε)2) ,

and we have, if 0 < γ< 2,∥∥∥U (−t )
(
uε(t )−uεapp(t )

)∥∥∥
Σ
≲ ε3+γ| logε|+

∫ t

−1/εγ

∥∥U (−τ)
(|uε|2uε−|uε1|2uε1

)
(τ)

∥∥
Σdτ.

In view of (3.3),

∥U (−τ)
(|uε|2uε−|uε1|2uε1

)
(τ)∥Σ≲ ∥uε(τ)∥2

L∞∥U (−τ)
(
uε−uε1

)
(τ)∥Σ

+ (∥uε(τ)∥L∞ +∥uε1(τ)∥L∞
)∥U (−τ)uε1(τ)∥Σ∥uε(τ)−uε1(τ)∥L∞ .

Recalling (4.1), we readily have

∥uε(τ)∥L∞ ≲
ε

〈τ〉1/2
.

On the other hand,

∥U (−τ)uε1(τ)∥Σ = ε∥v−∥Σ,

and Sobolev embedding yields, along with (2.2),

∥uε1(τ)∥L∞ ≲
ε

〈τ〉1/2
,

as well as

∥uε(τ)−uε1(τ)∥L∞ ≲
1

〈τ〉1/2
∥U (−τ)

(
uε− vε1

)
(τ)∥Σ.

Therefore,

∥U (−τ)
(|uε|2uε−|uε1|2uε1

)
(τ)∥Σ≲ ε2

〈τ〉∥U (−τ)
(
uε−uε1

)
(τ)∥Σ

≲
ε2

〈τ〉
(∥∥U (−τ)(uε−uεapp)(τ)

∥∥
Σ+∥U (−τ)uε2(τ)∥Σ

)
.

We see that there exists C such that for all T ⩾ 1,

∥U (−τ)uε2(τ)∥Σ≲ ε3 log〈T 〉 , ∀τ ∈
[
− 1

εγ
,T

]
,

where the logarithmic correction is necessarily present for large positive τ, as pointed out above.
Gronwall lemma now yields, for all 0 < γ< 2,

sup
−1/εγ⩽t⩽T

∥∥∥U (−t )
(
uε(t )−uεapp(t )

)∥∥∥
Σ
≲ ε3+γ| logε|eCε2| logε|+Cε2 log〈T 〉,

for some constant C independent of ε and T . In particular, the right hand side is o(ε3) on
[−1/εγ,1/εβ] for any β> 0.

The first point of Theorem 2 follows, by considering the above error estimate at time t = 0 and
setting w2 = v2|t=0.
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5. Asymptotic completeness

5.1. Main steps of the construction of u+

We recall the main steps from the proof of [15, Theorem 1.2], a result which we state in the
particular case that we shall consider (the initial data may have a different regularity there, and
an extra short range nonlinearity can be incorporated). In passing, we keep track of the size of
the remainders more precisely.

Theorem 13 (From [15]). Let u0 ∈ Σ, with ∥u0∥Σ = ε′ ⩽ δ, where δ> 0 is sufficiently small. There
exist unique functions W ∈ L∞∩L2 and Φ ∈ L∞ such that, for t ⩾ 1 and Cδ<α< 1/4,∥∥∥∥F (U (−t )u(t ))exp

(
iλ

∫ t

1
|û(τ)|2 dτ

τ

)
−W

∥∥∥∥
L2∩L∞

⩽C (ε′)3t−α+C (ε′)2
, (5.1)

and ∥∥∥∥λ∫ t

1
|û(τ)|2 dτ

τ
−λ|W |2 log t −Φ

∥∥∥∥
L∞

⩽C (ε′)3t−α+C (ε′)2
. (5.2)

In particular,

u(t , x) = 1

(it )1/2
W

( x

t

)
exp

(
i
x2

2t
− iλ

∣∣∣W ( x

t

)∣∣∣2
log t − iΦ

( x

t

))
+ρ(t , x),

with

∥ρ(t )∥L2 ⩽Cε′t−α+C (ε′)2
, ∥ρ(t )∥L∞ ⩽Cε′t−1/2−α+C (ε′)2

.

In [15], the time decay in (5.2) is raised to the power 2/3, because the setting is more general
and includes the case of dimension three. We explain below why this power can be discarded in
the above statement. The asymptotic state u+ is naturally given by

u+ =F−1 (
W e−iΦ)

.

Sketch of the proof. As announced above, we recall the main steps from [15], and slightly im-
prove some estimates in terms of the powers of ε′.

As evoked before in the case of (4.1), (the proof of) [15, Theorem 1.1] provides global estimates
for u (proven in [15, Lemmas 3.2 and 3.3], see also [20]):

∥u(t )∥L∞ ≲
ε′

〈t〉1/2
, ∥U (−t )u(t )∥Σ≲ ε′ 〈t〉C (ε′)2

. (5.3)

Denote

v(t ) =U (−t )u(t ), ŵ = v̂ exp

(
iλ

∫ t

1
|v̂(τ)|2 dτ

τ

)
︸ ︷︷ ︸

=:B(t )

.

Then (1.1) is recasted as

i∂t ŵ = λ

t
B(t ) (I1 + I2) , (5.4)

where

I1(t ) =F (M(−t )−1)F−1
(
|àM(t )v |2àM(t )v

)
, I2(t ) =

∣∣∣àM(t )v
∣∣∣2 àM(t )v −|v̂ |2v̂ .

These source terms are controlled as follows, for t ⩾ 1:

∥I1(t )∥L2∩L∞ +∥I2(t )∥L2∩L∞ ≲
∥v∥3

Σ

tα
,

provided that α< 1/2. In view of (5.3) and the definition of v , this entails

∥I1(t )∥L2∩L∞ +∥I2(t )∥L2∩L∞ ≲ (ε′)3t−α+3C (ε′)2
.
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Renaming 3C to C , and integrating (5.4), we readily find that there exists W ∈ L2 ∩L∞ such that

∥ŵ(t )−W ∥L2∩L∞ ≲ (ε′)3t−α+C (ε′)2
, (5.5)

thus proving (5.1), since

|v̂(t ,ξ)| = |F (U (−t )u(t )) (ξ)| =
∣∣∣∣e−it ξ

2

2 û(t ,ξ)

∣∣∣∣= |û(t ,ξ)|.
The phase corrector Φ is obtained by introducing the function

Ψ(t ) =λ
∫ t

1

(|ŵ(τ)|2 −|ŵ(t )|2) dτ

τ
. (5.6)

We have, for t > s > 2,

Ψ(t )−Ψ(s) =λ
∫ t

s

(|ŵ(τ)|2 −|ŵ(t )|2) dτ

τ
+λ(|ŵ(t )|2 −|ŵ(s)|2) log s.

In view of the above estimates, for t2 > t1 > 2,∣∣|ŵ(t2)|2 −|ŵ(t1)|2∣∣≲ (|ŵ(t2)|+ |ŵ(t1)|) |ŵ(t2)− ŵ(t1)|
≲ (|ŵ(t2)|+ |ŵ(t1)|) (ε′)3t−α+C (ε′)2

1 .

On the other hand, we have

|ŵ(t )|≲ ε′,

from (5.5). Therefore, ∣∣|ŵ(t2)|2 −|ŵ(t1)|2∣∣≲ (ε′)4t−α+C (ε′)2

1 , t2 > t1 > 2, (5.7)

and so
|Ψ(t )−Ψ(s)|≲ (ε′)4s−α+C (ε′)2

log s.

In particular, there exists Φ ∈ L∞ such that, for t > 2,

|Φ−Ψ(t )|≲ (ε′)4t−α+C (ε′)2
log t . (5.8)

The estimate (5.2) then follows from the identity

λ

∫ t

1
|ŵ(τ)|2 dτ

τ
=λ|W |2 log t +Φ+Ψ(t )−Φ+λ(|ŵ(t )|2 −|W |2) log t ,

using (5.5) and (5.8), possibly modifying the constant C , and using the fact that the condition on
α in Theorem 13 is open.

In view of (5.1) and (5.2), we find

F (U (−t )u(t )) =W e−iλ|W |2 log t−iΦ+r (t ),

where
∥r (t )∥L2∩L∞ ≲ (ε′)3t−α+C (ε′)2

.

Writing

1 =U (t )U (−t ) = M(t )D(t )F M(t )U (−t ) = M(t )D(t )FU (−t )+R(t )FU (−t ),

we infer
u(t , x) = M(t )D(t )FU (−t )u(t )+ρ1(t , x),

with, in view of Lemma 5,

∥ρ1(t )∥L2 ≲
ε′p

t
∥FU (−t )u(t )∥L2 ≲

ε′p
t

,

and, since α< 1/4, using the first point of Lemma 5 with θ =α and s = 1−2α,

∥ρ1(t )∥L∞ ≲
ε′

t 1/2+α ∥FU (−t )u(t )∥H 1 ≲ ε′t−1/2−α+C (ε′)2
.
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We conclude thanks to the estimates

∥M(t )D(t )r (t )∥L2 = ∥r (t )∥L2 ≲ (ε′)3t−α+C (ε′)2
,

∥M(t )D(t )r (t )∥L∞ = 1p
t
∥r (t )∥L∞ ≲ (ε′)3t−1/2−α+C (ε′)2

,

since u(t ) = M(t )D(t )
(
W e−iλ|W |2 log t−iΦ

)+M(t )D(t )r (t )+ρ1(t ). □

5.2. Modified scattering operator: leading order behavior near the origin

In view of Theorem 13, the asymptotic state that we consider is uε+ = F−1
(
W ε e−iΦε

)
, with uε

0 =
uε
|t=0. The main remark at this stage is that the reduction presented in the proof of Theorem 13

boils down the analysis of the asymptotic behavior of uε+ as ε → 0 to a regular asymptotic
expansion. In order to treat the last two cases of Theorem 2, we suppose that, for 0 < η< 2,

uε
0 = εv0 +ε3w2 +O

(
ε5−η) ,

with v0, w2 ∈ Σ and the remainder term is (measured) in Σ. For the last point of Theorem 2, we
assume w2 = ρε = 0, while for the second point, v0 = v− and w2 = v2|t=0 as in the first point.

We keep the same notations as the proof of Theorem 13, with now ε instead of ε′. The
definition of ŵ , in particular the term B , requires as a first step the asymptotic description of
uε at time t = 1 instead of only t = 0.

In view of [15, Theorem 1.1], as in (5.3), we have

∥uε(t )∥L∞ ≲
ε

〈t〉1/2
, ∥U (−t )uε(t )∥Σ≲ ε〈t〉Cε2

.

In view of the proof of (5.1) and (5.2), we directly know that

∥∂t ŵ∥L1([1,∞[,L2∩L∞) ≲ ε3,

and so

ŵ(t ) = ŵ(1)+O (ε3) in L∞([1,∞[,L2 ∩L∞).

By definition, ŵ(1) = v̂(1) =F (U (−1)uε(1)) = εv̂0 +O (ε3) in Σ.
Regarding Φ, the definition (5.6), and (5.7), yield

∥Φ∥L∞ ⩽ ∥Φ−Ψ(t )∥L∞ +∥Ψ(t )∥L∞ ≲ ε4,

where the right hand side is estimated uniformly in t ⩾ 1. Therefore,

uε
+ =F−1 (

W e−iΦ)= εv0 +O (ε3) in L2.

Therefore, at leading order, we have

Smod(εv−) = εv−+O (ε3),
(
W mod

+
)−1

(εv0) = εv0 +O (ε3) in L2.

6. Higher order asymptotic expansion of the final state

The higher order asymptotic expansion for uε+, involving an ε3 term, requires more work, even at
the formal level. We first show how to derive this term, then, in a final subsection, prove the error
estimates announced in Theorem 2.
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6.1. Derivation of the first corrector

We first examine the value of uε at time t = 1, in view of future connections with Theorem 13. The
idea is the same as in Section 4.2: for finite time, since we consider small data, the asymptotic
expansion is given by Picard’s scheme, and we have directly from Section 4,

uε
|t=1 = εU (1)v0 +ε3w̃2 +ε5−ηρ̂ε,

with

w̃2 =U (1)w2 − iλ
∫ 1

0
U (1− s)

(|U (s)v0|2U (s)v0
)

ds,

and ∥ρε∥Σ≲ 1 as ε→ 0.

To derive the first corrector, we plug the asymptotic expansion

ŵ(t ) = εv̂0 +ε3ν̂2(t )+ε5−ηr̂ ε(t )

into (5.4), with r ε = O (1) in some topology we shall precise. We first proceed formally, and then
check that the above ansatz indeed provides a corrector of uε+ in L2. We compute successively

|v̂ |2 = |ŵ |2 = ε2|v̂0|2 +O (ε4),

hence, for bounded t ,

B(t ) = eiλ
∫ t

1 |v̂(τ)|2 dτ
τ = 1+ iλε2|v̂0|2 log t +O (ε4),

and
v̂ = ŵB = εv̂0 +ε3 (

ν̂2 − iλ|v̂0|2v̂0 log t
)+O (ε5−η).

We then expand the factor I ε1 and I ε2 from (5.4):

I ε1 (t ) = ε3F (M(−t )−1)F−1
(∣∣∣áM(t )v0

∣∣∣2 áM(t )v0

)
+O (ε5),

I ε2 (t ) = ε3
(∣∣∣áM(t )v0

∣∣∣2 áM(t )v0 −|v̂0|2v̂0

)
+O (ε5).

Therefore, the natural candidate for ν2 satisfies:

∂t ν̂2 = λ

t
(J1 + J2),

where

J1 =F (M(−t )−1)F−1
(∣∣∣áM(t )v0

∣∣∣2 áM(t )v0

)
,

J2 =
∣∣∣áM(t )v0

∣∣∣2 áM(t )v0 −|v̂0|2v̂0.

The Cauchy datum for ν2 is given at t = 1: on the one hand, the above asymptotic expansion
implies

v̂ |t=1 = εv̂0 +ε3ν̂2|t=1 +O (ε5−η),

while on the other hand, the analysis of Section 4 yields

U (−t )uε(t )|t=1 = εv0 +ε3U (−1)w̃2 +O (ε5−η),

so we infer

ν2|t=1 =U (−1)w̃2 = w2 − iλ
∫ 1

0
U (−s)

(|U (s)v0|2U (s)v0
)

ds.

As v0 ∈Σ, the proof of Theorem 13 readily yields 1
t (J1+J2) ∈ L1([1,∞[ ;L2∩L∞). SinceΣ is a Banach

algebra, invariant under the Fourier transform, and such that Σ ,→ L1 ∩L∞, we have ν2|t=1 ∈ Σ,
and so ν2 ∈ L∞([1,∞[ ;L2 ∩L∞) and

ν̂2(t ) −→
t→∞ ν̂2|t=1 +λ

∫ ∞

1

(
J1(τ)+ J2(τ)

)dτ

τ
in L2 ∩L∞.
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However, in the asymptotic expansion of B , I1 and I2, the more precise information that we
need is that the remainder term is O (ε5) together with some algebraic decay in time, so we obtain
an asymptotic expansion for ŵ in L2. This requires more effort, and the proof is presented in the
next subsection.

6.2. Justification of the second order asymptotic expansion

As a first step, we analyze the regularity of the corrector ν2. To do so, we introduce an extra
function space: for 0 < γ< 1, set

Σγ = Hγ∩F (Hγ) = { f ∈ Hγ(R), ∥ f ∥Σγ := ∥ f ∥Hγ +∥〈x〉γ f ∥L2 <∞}.

We note that like Σ, Σγ is invariant under the Fourier transform, as well as the action of U (t ), and,
when γ> 1/2, it is an algebra embedded into L1 ∩L∞.

Lemma 14. Let v0, w2 ∈Σ. Recall that the first corrector is defined by

ν̂2(t ) = ŵ2 − iλ
∫ 1

0
FU (−s)

(|U (s)v0|2U (s)v0
)

ds +λ
∫ t

1
(J1(τ)+ J2(τ))

dτ

τ
,

where J1 and J2 are defined by

J1(t ) =F (M(−t )−1)F−1
(∣∣∣áM(t )v0

∣∣∣2 áM(t )v0

)
,

J2(t ) =
∣∣∣áM(t )v0

∣∣∣2 áM(t )v0 −|v̂0|2v̂0.

Then J1, J2 ∈ L∞([1,∞[,Σ), with

sup
t⩾1

∥J1(t )∥Σ+ sup
t⩾1

∥J2(t )∥Σ≲ ∥v0∥3
Σ,

and, for any 1/2 < γ< 1,

∥J1(t )∥Σγ +∥J2(t )∥Σγ ≲
∥v0∥3

Σ

t (1−γ)/2
,

and therefore ν2 ∈ L∞
loc([1,∞[,Σ)∩L∞([1,∞[,Σγ). Finally, ν̂2(t ) → ν̂∞2 in Σγ as t →∞, where

ν̂∞2 = ŵ2 − iλ
∫ 1

0
FU (−s)

(|U (s)v0|2U (s)v0
)

ds +λ
∫ ∞

1

(
J1(τ)+ J2(τ)

)dτ

τ
.

Proof of Lemma 14. Since w2, v0 ∈ Σ, the first two terms defining ν̂2 belong to Σ (as it is an
algebra). For any (fixed) t , J1, J2 ∈Σ, and ν2(t ) ∈Σ: the uniform bound in time is straightforward,
but to get some time decay, we pay a little regularity. Let 0 < γ< 1: like in the proof of Lemma 5,
write, for t ⩾ 1,

∥J1(t )∥Σγ =
∥∥∥∥(M(−t )−1)F−1

(∣∣∣áM(t )v0

∣∣∣2 áM(t )v0

)∥∥∥∥
Σγ

≲
1

t (1−γ)/2

∥∥∥∥|x|1−γF−1
(∣∣∣áM(t )v0

∣∣∣2 áM(t )v0

)∥∥∥∥
Σγ

≲
1

t (1−γ)/2

∥∥∥∥F−1
(∣∣∣áM(t )v0

∣∣∣2 áM(t )v0

)∥∥∥∥
Σ

≲
∥v0∥3

Σ

t (1−γ)/2
,

since Σ is an algebra. The assumption γ> 1/2 simplifies the computations in the case of J2, as Σγ

is an algebra, and the first inequality below is straightforward:

∥J2(t )∥Σγ ≲
(∥M(t )v0∥2

Σγ +∥v0∥2
Σγ

)∥(M(t )−1)v0∥Σγ

≲ ∥v0∥2
Σ

1

t (1−γ)/2
∥|x|1−γv0∥Σγ ≲

∥v0∥3
Σ

t (1−γ)/2
.

The lemma follows, since the extra decay in time, t (γ−1)/2, ensures the convergence of the integral
in the last term defining ν̂2. □
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We recall two uniform estimates which will be of constant use in the course of the proof:

∥v̂(t )∥L∞ +
∥∥∥àM(t )v

∥∥∥
L∞ ≲ ε. (6.1)

The first quantity is estimated in the proof of Theorem 13, thanks to (5.5). The second one is
controlled thanks to (5.3), since, using (2.5),∥∥∥àM(t )v

∥∥∥
L∞ = ∥F M(t )U (−t )u(t )∥L∞ =

∥∥∥∥D

(
1

t

)
M(−t )u(t )

∥∥∥∥
L∞

=p
t ∥u(t )∥L∞ .

The justification of the formal asymptotic expansion derived in the previous subsection relies
on a Gronwall type argument. The error that we want to control is ŵ −εv̂0 −ε3ν̂2, which solves,
by construction (keeping in mind that v0 does not depend on time),

∂t
(
ŵ −εv̂0 −ε3ν̂2

)= λ

t
B(I ε1 + I ε2 )− λ

t
ε3(J1 + J2).

We rewrite the right hand side as

λ

t
B

(
I ε1 + I ε2 −ε3 J1 −ε3 J2

)+ λ

t
(B −1)ε3(J1 + J2),

and the last term will be considered as a source term. Indeed, from the definition

B(t ) = eiλ
∫ t

1 |v̂(τ)|2 dτ
τ = eiλ

∫ t
1 |ŵ(τ)|2 dτ

τ ,

so from (6.1),
∥B(t )−1∥L∞ ≲ ε2 log t , (6.2)

and Lemma 14 yields ∥∥ε3(B −1)(J1 + J2)
∥∥

L2 ≲ ε5 log t

t (1−γ)/2
, (6.3)

for any 1/2 < γ< 1.
We now focus on the term B(I ε1 +I ε2 −ε3 J1−ε3 J2), to estimate it in L2, and examine successively

B(I ε1 −ε3 J1) and B(I ε2 −ε3 J2). First, by definition,

I ε1 −ε3 J1 =F (M(−t )−1)F−1
(∣∣∣àM(t )v

∣∣∣2 àM(t )v −ε3
∣∣∣áM(t )v0

∣∣∣2 áM(t )v0

)
,

so the term v −εv0 is naturally factored out, and we must relate it to the left hand side, involving
w −εv0 −ε3ν2. Since BB = 1, we can write

ρ̂ := ŵ −εv̂0 −ε3ν̂2 = B v̂ −εv̂0 −ε3ν̂2 = B
(
v̂ −εB v̂0 −ε3B ν̂2

)
,

so we have
v̂ −εv̂0 = B

(
ŵ −εv̂0 −ε3ν̂2

)+ε(B −1)v̂0 +ε3B ν̂2. (6.4)

The first term on the right hand side will be treated differently from the last two terms, which will
be considered as source terms. Using the formula

|z2|2z2 −|z1|2z1 = |z2|2(z2 − z1)+ z1 Re(z2 − z1)(z2 + z1),

with z2 =F (M v) and z1 = εF (M v0), as well as (6.4), yielding

F (M(v −εv0)) =F MF−1
(
B

(
ŵ −εv̂0 −ε3ν̂2

)+ε(B −1)v̂0 +ε3B ν̂2

)
, (6.5)

we write
∥I ε1 −ε3 J1∥L2 ⩽ ∥G1∥L2 +∥S1∥L2 +∥S2∥L2 ,

where, simplifying the algebraic structure for the sake of presentation,

G1 =F
(
M−1 −1

)
F−1

((|F (M v)|2 +ε2|F (M v0)|2)F MF−1
(
B ρ̂

))
,

S1 = εF
(
M−1 −1

)
F−1

((|F (M v)|2 +ε2|F (M v0)|2)F MF−1
(
(B −1)v̂0

))
,

S2 = ε3F
(
M−1 −1

)
F−1

((|F (M v)|2 +ε2|F (M v0)|2)F MF−1
(
B ν̂2

))
.
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We have left out the time variable in the expression of M in order to lighten the notation, and do so
below for the same reason. The Gronwall term G1 is estimated by merely using the boundedness
on L2 of F

(
M−1 −1

)
F−1, and the unitarity of F MF−1, and we write

∥G1∥L2 ≲
(∥F (M v)∥2

L∞ +ε2∥F (M v0)∥2
L∞

)∥ρ̂∥L2 ≲ ε2∥ρ̂∥L2 ,

by using (6.1). For the source term S1 and S2, we invoke the same arguments as in the proof of
Lemma 5, and the fact that F MF−1 is unitary on H s for any s ⩾ 0:

∥S1∥L2 ≲
εp

t

∥∥∥(|F (M v)|2 +ε2|F (M v0)|2)F MF−1
(
(B −1)v̂0

)∥∥∥
H 1

≲
εp

t

(
∥v∥2

F (H 1) +ε2∥v0∥2
F (H 1)

)
∥(B −1)v̂0∥H 1

≲
ε3

p
t

t 2Cε2∥(B −1)v̂0∥H 1 ,

where we have used (5.3) for the last inequality. The last term is controlled by

∥(B −1)v̂0∥H 1 ⩽ ∥B −1∥L∞∥v0∥Σ+∥v̂0∂x B∥L2 ≲ ε2 log t +∥v̂0∂x B∥L2 ,

in view of (6.2). Writing

v̂0∂x B =−2iλv̂0

∫ t

1
Re

(
v̂∂x v̂

) dτ

τ
,

(5.3) now yields

∥v̂0∂x B∥L2 ≲ ∥v0∥L2

∫ t

1
∥v̂(τ)∥L∞∥∂x v̂(τ)∥L2

dτ

τ
≲ ε2

∫ t

1

dτ

τ1−Cε2 ≲ ε2tCε2
.

The estimate for S2 is rather similar:

∥S2∥L2 ≲
ε3

t 1/2

∥∥∥(|F (M v)|2 +ε2|F (M v0)|2)F MF−1
(
B ν̂2

)∥∥∥
H 1

≲
ε3

t 1/2

(∥F (M v)∥2
H 1 +ε2∥F (M v0)∥2

H 1

)∥B ν̂2∥H 1 ≲
ε5

t 1/2−2Cε2 ∥B ν̂2∥H 1 .

The last term is controlled via Leibniz formula, invoking Lemma 14,

∥B ν̂2∥H 1 ⩽ ∥ν̂2∥H 1 +∥ν̂2∂x B∥L2 ≲ log t +ε2tCε2
,

and the source terms are estimated by

∥S1∥L2 +∥S2∥L2 ≲ ε5 log t

t 1/2−3Cε2 .

We now turn to the L2 estimate of I ε2 −ε3 J2, and proceed along the same spirit.

I ε2 −ε3 J2 =
∣∣∣àM(t )v

∣∣∣2 àM(t )v −|v̂ |2v̂ −ε3
∣∣∣áM(t )v0

∣∣∣2 áM(t )v0 +ε3|v̂0|2v̂0.

We distinguish
∣∣àM(t )v

∣∣2àM(t )v −ε3
∣∣áM(t )v0

∣∣2áM(t )v0 and |v̂ |2v̂ −ε3|v̂0|2v̂0. Discarding the precise
algebraic structure like before,∣∣∣àM(t )v

∣∣∣2 àM(t )v −ε3
∣∣∣áM(t )v0

∣∣∣2 áM(t )v0 ≈
(∣∣∣àM(t )v

∣∣∣2 +ε2
∣∣∣áM(t )v0

∣∣∣2
)
F M(v −εv0).

The last factor is again rewritten thanks to (6.5), and we estimate I ε2 −ε3 J2 as

∥I ε2 −ε3 J2∥L2 ⩽ ∥G2∥L2 +∥S3∥L2 +∥S4∥L2 ,
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where

G2 =
(∣∣∣àM(t )v

∣∣∣2 +ε2
∣∣∣áM(t )v0

∣∣∣2
)
F MF−1

(
B

(
ŵ −εv̂0 −ε3ν̂2

))− (|v̂ |2 +ε2 |v̂0|2
)

B
(
ŵ −εv̂0 −ε3ν̂2

)
,

S3 = ε
(∣∣∣àM(t )v

∣∣∣2 +ε2
∣∣∣áM(t )v0

∣∣∣2
)
F MF−1

((
B −1

)
v̂0

)
−ε(|v̂ |2 +ε2 |v̂0|2

)(
B −1

)
v̂0,

S4 = ε3
(∣∣∣àM(t )v

∣∣∣2 +ε2
∣∣∣áM(t )v0

∣∣∣2
)
F MF−1ν̂2 −ε3 (|v̂ |2 +ε2 |v̂0|2

)
ν̂2.

For the Gronwall term G2, we proceed like for G1, and write

∥G2∥L2 ≲ ε2∥ŵ −εv̂0 −ε3ν̂2∥L2 = ε2∥ρ̂∥L2 .

The source terms S3 and S4 are readily of size O (ε5); we recover some decay in time by making
the quantity M −1 appear systematically. In the case of S3, we write

S3 = ε
(∣∣∣àM(t )v

∣∣∣2 +ε2
∣∣∣áM(t )v0

∣∣∣2
)
F MF−1

((
B −1

)
v̂0

)
−ε(|v̂ |2 +ε2 |v̂0|2

)(
B −1

)
v̂0 ±ε

(∣∣∣àM(t )v
∣∣∣2 +ε2

∣∣∣áM(t )v0

∣∣∣2
)(

B −1
)

v̂0,

and estimate as follows:

∥S3∥L2 ≲ ε3∥(M −1)F−1
((

B −1
)

v̂0

)
∥L2 +∥

(
B −1

)
v̂0∥L∞∥(M −1)v̂∥L2

(∥M̂ v∥L∞ +∥v̂∥L∞
)

≲
ε3

p
t
∥xF−1

((
B −1

)
v̂0

)
∥L2 +ε5 log tp

t
×∥xv̂∥L2 ,

where we have used (6.1) and (6.2). We have already estimated the H 1-norm of
(
B −1

)
v̂0,

∥
(
B −1

)
v̂0∥H 1 ≲ ε2

(
log t + tCε2

)
,

and therefore

∥S3∥L2 ≲ ε5 log t

t 1/2−Cε2 .

The term S4 is controlled similarly, by using the same ideas as above, and we come up with:

d

dt
∥ρ̂∥L2 ≲

ε2

t
∥ρ̂∥L2 +ε5 log t

t 3/2−3Cε2 .

Gronwall lemma then implies, provided that ε> 0 is sufficiently small:

Proposition 15. Suppose that uε solves (1.1), with uε
|t=0 = uε

0 ∈Σ such that

uε
0 = εv0 +ε3w2 +O

(
ε5−η) ,

for v0, w2 ∈Σ, and some 0 < η< 2. Then we have

sup
t⩾1

∥ŵ(t )−εv̂0 −ε3ν̂2(t )∥L2 ≲ ε5−η,

where ν2 is defined in Lemma 14.

In particular, letting t go to infinity, we infer

W = εv̂0 +ε3ν̂∞2 +O
(
ε5−η) in L2.

As uε+ =F−1
(
W e−iΦ

)
, and we have seen at the end of Section 5 that ∥Φ∥L∞ =O (ε4), we infer

uε
+ = εv0 +ε3ν2 +O

(
ε5−η) in L2,

thus completing the proof of Theorem 2.
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