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Abstract. The symmedian point of a triangle enjoys several geometric and optimality properties, which also
serve to define it. We develop a new dynamical coordinatization of the symmedian, which naturally gen-
eralizes to other ideal hyperbolic polygons beyond triangles. We prove that in general this point still satis-
fies analogous geometric and optimality properties to those of the symmedian, making it into a hyperbolic
barycenter. We initiate a study of moduli spaces of ideal polygons with fixed hyperbolic barycenter, and of
some additional optimality properties of this point for harmonic (and sufficiently regular) ideal polygons.

Résumé. Le point symédiane d’un triangle possède plusieurs propriétés géométriques d’optimalité, qui
peuvent servir à la définir. Nous développons une nouvelle définition dynamique du point symédiane, qui se
généralise naturellement à d’autres polygones idéaux hyperboliques, au-delà des triangles. Nous prouvons
que, de manière générale, ce point satisfait toujours des propriétés géométriques d’optimalité analogues à
celles du point symédiane, qui en font un barycentre hyperbolique. Nous entamons une étude des espaces
de modules des polygones idéaux dont le barycentre hyperbolique est fixe, ainsi que de certaines propriétés
d’optimalité supplémentaires pour les polygones idéaux harmoniques (et suffisamment réguliers).
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1. Introduction

The symmedian point of a triangle (also called its Lemoine point or its Grebe point) has been aptly
called “one of the crown jewels of modern geometry” in [12, Section 7.1]. Let us recall one way to
construct it (cf. [12, Section 7.4(iii)]). Let O denote the circumcircle of ∆(ABC ). Denote by A∗ the
intersection of the tangents to O at the vertices B and C , and define B∗ and C∗ analogously. Then
the lines A A∗, BB∗ and CC∗ are concurrent at the symmedian point S of the triangle ABC .

Among very many other properties enjoyed by the symmedian point S, there is the following
optimization property, which is included as Exercise 7.3 in [12], and has been known (and
reproved multiple times) since at least 1804 (cf. [14, p. 94]).
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Theorem 1. The symmedian point S of a triangle minimizes the sum of the squares of the distances
from S to the sides of the triangle.

The construction of the symmedian point of a triangle described in Figure 1 is particularly
suggestive to the hyperbolic geometer. In the Beltrami–Cayley–Klein model, the hyperbolic plane
H is identified with the interior of the unit disc in R2. Geodesics are represented by straight lines,
but the hyperbolic angles between geodesics do not in general agree with the corresponding
Euclidean angles. The unit circle boundary of this disc, called the absolute, represents “ideal
points” at infinite hyperbolic distance from any given point in H. If we interpret the circle O
in Figure 1 as the absolute in the Beltrami–Cayley–Klein model, we can interpret the Euclidean
triangle ∆(ABC ) as an ideal hyperbolic triangle with “the same” vertices — we emphasize that
the idea of “hyperbolizing” Euclidean geometric objects is not new, see e.g. [2, 8]. The point A∗

is called the polar to the line BC with respect to O, and any geodesic through A∗ intersects BC
orthogonally in H. Therefore, the symmedian point of ∆(ABC ) is the point of intersection of its
hyperbolic altitudes, i.e., its hyperbolic orthocenter.

Figure 1. Construction of the symmedian point S of the triangle ∆(ABC ).

This simple observation readily provides another minimality property of the symmedian point
S, complementary to Theorem 1 but this time hyperbolic, as follows. For any triangle ∆(ABC )
and a given point X , consider the Cevian triangle ∆(A′B ′C ′), where A′ is the intersection of the
geodesic AX with the side BC , and the points B ′ and C ′ are defined similarly.

Theorem 2. The symmedian point of ∆(ABC ) minimizes the hyperbolic perimeter of its Cevian
triangle.

Proof. This follows from the classic reflection argument about Fargano’s orbit: under sequential
hyperbolic reflections of the triangle ABC in its sides, the sides of the triangle A′B ′C ′ form a
geodesic interval (see Figure 2). □

Our main goal is to introduce a generalization of the symmedian point S of a triangle to in-
scribed polygons (or what is “the same”, ideal hyperbolic polygons), which we call the hyperbolic
barycenter, and initiate a study of its properties. This point is uniquely defined in three different
ways: by explicit coordinates (3.3), by an optimality property (see Theorem 5), and by a collection
of geometric constructions (see Section 4), all directly analogous to those identifying the symme-
dian point of a triangle. We have the sense of having opened some long-forgotten Pandora’s box,
and we have now more questions than answers. We have striven to make this work as accessi-
ble as possible so that other researchers (including students!) may better address the questions
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Figure 2. Another minimality property of the Symmedian point, from both the Beltrami–
Cayley–Klein (left) and the Poincaré (right) points of view.

that we leave unanswered. We hope that the more sophisticated reader will not begrudge us our
choice to keep the exposition, constructions, and proofs as elementary as we knew how.

Let us briefly describe the contents of this work in some more detail. In Section 2, we
recall some basic facts from hyperbolic geometry, and fix some conventions that will help us
navigate as needed between the hyperboloid model, which leads to very natural proofs of our
main theoretical results, and the Beltrami–Cayley–Klein model mentioned above, which begs the
interplay between Euclidean and hyperbolic geometry, and is also more amenable to pictures. In
Section 3 we introduce a dynamical coordinatization of this S, in terms of certain Hamiltonians
introduced in [4] for the study of cross-ratio dynamics on ideal polygons, and use it to prove
another minimality property in Theorem 5, which makes S into a hyperbolic barycenter. We then
introduce the hyperbolic barycenters of general ideal hyperbolic polygons, and prove several
interesting and useful properties that, in particular, allow for their several concurrent geometric
(straightedge and compass) constructions. In Section 4 we illustrate some of these geometric
constructions for the first few ideal hyperbolic n-gons beyond triangles, with n = 4,6,10,5, and
begin to see how the hyperbolic barycenter serves as the epicenter of a dizzying cascade of
concurrences, which triangles are too small to let us see. In Section 5 we initiate the study of
the moduli spaces of ideal hyperbolic n-gons with a fixed common hyperbolic barycenter, and
describe it explicitly for the smallest values of n = 3,4 in terms of Poncelet conics. In Section 6
we show that the classical Theorem 1 is the first instance of a more general Theorem 33 that
holds uniformly for all harmonic ideal hyperbolic polygons, and we prove a partial converse in
Theorem 35 for ideal hyperbolic quadrilaterals. We conclude in Section 7 with some remaining
questions concerning hyperbolic barycenters, which we submit deserve further exploration.

2. Elements of hyperbolic geometry

There are many models of the same hyperbolic plane H besides the Beltrami–Cayley–Klein
model discussed above. Although the latter conveniently superimposes hyperbolic geometry and
(inscribed) Euclidean geometry, and thus served as the initial motivation for this work, it is not
the most advantageous model for some of our purposes.

Let us now briefly describe the hyperboloid model of the hyperbolic plane, and fix some
notation and conventions along the way – we refer to [15] and the references therein for a more
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systematic treatment. We work within the ambient Minkowski space R2,1, whose set of points
x = (x0, x1, x2) is endowed with the Minkowski bilinear form〈

x , y
〉

:=−x0 y0 +x1 y1 +x2 y2. (2.1)

and its associated Minkowski (squared) norm ∥x∥ := 〈x , x〉 = −x2
0 + x2

1 + x2
2 . The level sets of the

Minkowski norm foliate R2,1 into three kinds of (possibly degenerate; possibly one-sheeted or
two-sheeted) hyperboloids, according to whether the norm is zero, positive, or negative. We shall
identify the hyperbolic plane with the upper sheet of the two-sheeted hyperboloid of points with
Minkowski norm −1:

H := {
x = (x0, x1, x2) ∈R2,1 ∣∣ ∥x∥ =−1 and x0 > 0

}
. (2.2)

We shall also refer to the light cone L, consisting of points with vanishing Minkowski norm, and
to the de Sitter space S, consisting of points with Minkowski norm 1:

L := {
x ∈R2,1 ∣∣ ∥x∥ = 0

}
and S := {

x ∈R2,1 ∣∣ ∥x∥ = 1
}

. (2.3)

For any set V of vectors in Minkowski space R2,1 we write RV for their R-linear span, except in the
case of a singleton where we simply write Rx or [x0 : x1 : x2] instead of R{x}.

Figure 3. The Beltrami–Cayley–Klein model and the hyperboloid model embedded in R2,1.

In the hyperboloid model, the role of the absolute O is played by the lines of R2,1 contained in
the light cone L. This absolute is identified stereographically with R∪ {∞} ≃ RP1 (see e.g. [7]), by
associating with ∞ the line [1,−1,0] ⊂ L, and with ∞ ̸= p ∈RP1 the line in L given by

ℓ(p) := [
1+p2 : 1−p2 : 2p

]
. (2.4)

Writing p = tan(ϕ/2) yields the usual parametrization [1 : cosϕ : sinϕ] of the pencil of lines in L.
The geodesic lines ξ in H are precisely the intersections of hyperplanes through the origin

in R2,1 having non-empty intersection with H, or equivalently, such that their perpendicular
complements (Rξ)⊥ (with respect to the Minkowski inner product) have non-empty intersection
with de Sitter space S. Note that in this case we always have (Rξ)⊥ ∩S = {±ξ∗}, a pair of
antipodal points in S called the polars of ξ, and choosing one principal polar ξ∗ over the other
is tantamount to endowing the hyperplane (Rξ∗)⊥ =Rξ⊂R2,1 with an orientation. An equivalent
way to specify the non-oriented geodesic line ξ is by the set of lines Rξ∩L = {ℓ(p1),ℓ(p2)}, with
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notation as in (2.4). We shall distinguish between the two possible choices of orientation by
writing ξ(p1, p2) for the oriented geodesic line whose principal polar is

ξ∗(p1, p2) :=
(

1+p1p2

p1 −p2
,

1−p1p2

p1 −p2
,

p1 +p2

p1 −p2

)
∈S;

so that ξ(p1, p2) = {
x ∈H ∣∣ 〈

x ,ξ∗(p1, p2)
〉= 0

}
.

(2.5)

Thus, although ξ(p1, p2) and ξ(p2, p1) coincide as subsets of H, their principal polars form an
antipodal pair in S, i.e., ξ∗(p1, p2) =−ξ∗(p2, p1).

The hyperbolic distance between two points x , y ∈H is defined by

d(x , y) := cosh−1 (−〈
x , y

〉)
, (2.6)

where cosh(t ) := 1
2

(
e t +e−t

)
denotes the hyperbolic cosine. The hyperbolic distance between a

point x ∈H and a geodesic line ξ⊂H, defined as inf{d(x , y) | y ∈ ξ}, can be seen to coincide with

d(x ,ξ) = cosh−1
√

1+〈x ,ξ∗〉2, (2.7)

for ξ∗ ∈S any polar of ξ. Indeed, the closest point in ξ to x is R{x ,ξ∗}∩ξ= {y}, which is given by

y =
(
1+〈

x ,ξ∗
〉2

)− 1
2 · (x −〈

x ,ξ∗
〉
ξ∗

)
,

whence (2.7) follows directly from (2.6).

Remark 3. The Beltrami–Cayley–Klein model can now be considered as embedded in Minkowski
space R2,1 within the x0 = 1 plane, and is connected to the hyperboloid model by drawing lines
trough the origin in R2,1. More precisely, for x = (x0, x1, x2) ∈H as in (2.2) we can consider

X = (x1/x0, x2/x0) =: qx .

This is called the gnomonic projection of the hyperboloidH. Conversely, given a point X = (x1, x2)
in the Beltrami–Cayley–Klein model of the hyperbolic plane we can consider the corresponding
point on the hyperboloid model

x = (
1−x2

1 −x2
2

)− 1
2 · (1, x1, x2) =: X̂ .

Similar formulas relate antipodal pairs of points in de Sitter space S with the points in
the exterior of the unit circle (together with a circle at infinity) which correspond to polars of
geodesics in the Beltrami–Cayley–Klein model. Finally, points on the absolute in the Beltrami–
Cayley–Klein model correspond to lines in the light cone L.

3. Coordinates and hyperbolic properties of the symmedian

Suppose p1, . . . , pn ∈RP1 are sequentially distinct, meaning that pt ̸= pt+1, where we understand
indices modulo n, that is, with pn+1 := p1. We denote by P = (p1, . . . , pn) the ideal hyperbolic
polygon P whose ideal vertices lie on ℓ(pt ) ∈ L as in (2.4) and whose sides are given by (2.5). We
insist that this notation and description, like hyperbolic geometry, does not actually privilege any
of the models of H embedded in Minkowski space R2,1. Whenever we wish to restrict ourselves
to working within the Beltrami–Cayley–Klein model (resp., in the hyperboloid model), we shall
emphasize this by writing qP (resp., P̂), to make this clear and unambiguous. Whenever we need
to assume that P is convex, we shall always state this explicitly. Note that a non-convex ideal
hyperbolic polygon is necessarily self-intersecting.

An ideal polygon P = (p1, . . . , pn) being given, we shall write from now on, for the sake of
brevity,

It = 1

pt −pt+1
, Jt = 1

2

pt +pt+1

pt −pt+1
, Kt = pt pt+1

pt −pt+1
. (3.1)



1748 Maxim Arnold and Carlos E. Arreche

Note that here the arithmetic operations from R are extended to R∪ {∞} ≃ RP1 in the usual way,
as is already implicit in (2.5). Thus the coordinates of the principal polars (2.5) are given by
ξ∗(pt , pt+1) = (It +Kt , It −Kt ,2Jt ). The following quantities were introduced in [4, Section 6.2],
where they were shown to be Hamiltonians for the infinitesimal diagonal action of the Möbius
group:

IP =
n∑

t=1
It , JP =

n∑
t=1

Jt , KP =
n∑

t=1
Kt . (3.2)

Theorem 4. The symmedian point qSP of qP = (p1, p2, p3) is

qSP =
(

IP −KP

IP +KP
,

2JP

IP +KP

)
. (3.3)

Proof. It is an elementary computation that qSP is the intersection of the three planes through
ℓ(pt ) and ξ∗pt−1,pt+1

for t = 1,2,3 with the Beltrami–Cayley–Klein hyperbolic plane at x0 = 1. □

We can now show another minimality property of the symmedian point, which makes it into
a kind of “hyperbolic barycenter”. We find it convenient to state this next result in a format that
does not privilege either of our particular models ofH in R2,1.

Theorem 5. If P is convex, then the point SP :=H∩ [
IP +KP : IP −KP : 2JP

]
as in (3.3) minimizes

the sum of the hyperbolic sines of the hyperbolic distances to the sides of P.

Proof. The convexity of P ensures that the sought minimizer lies in the (closed) interior of
P, for the reflection of an exterior point with respect to the side to which it is closest results
in a new point that is strictly closer to each of the remaining sides. The identity cosh−1(t ) =
sinh−1(pt 2 −1

)
together with (2.7) yield, for the hyperbolic distance d(x ,ξt ) from a point x =

(x0, x1, x2) ∈H to the side ξt := ξ(pt , pt+1), with principal polar ξ∗t := ξ∗(pt , pt+1) as in (2.5), that

qt (x) := sinh
(
d(x ,ξt )

)= ∣∣〈x ,ξ∗t 〉
∣∣. (3.4)

We then see that
∑

t qt (x) = ∣∣〈x ,
∑

t ξ
∗
t 〉

∣∣ for any x in the interior of P, and therefore the minimum
is achieved at H∩R∑

t ξ
∗
t . We see from (2.5) and (3.2) that

∑
t ξ

∗
t = (

IP +KP, IP −KP,2JP
)
. The

non-obvious and necessary fact that
[
IP+KP, IP−KP,2JP

]
indeed intersectsH in the interior of P

follows from Theorem 4 in the case of triangles, and is proved for general convex P in Corollary 15
below. □

Remark 6. It is easy to see that IP +KP ̸= 0, not just generically, but always when P is convex.
Parameterizing pt = tan(ϕt /2), each It +Kt = 1+pt pt+1

pt−pt+1
= cot

(ϕt−ϕt+1
2

)
. At most one It +Kt has

different sign from the others (only in case |ϕt −ϕt+1| ≥ π). Even in this exceptional case, since
|ϕt ′ −ϕt ′+1| < 2π−|ϕt −ϕt+1| for any other t ′ ̸= t , we obtain immediately that |It ′ +Kt ′ | > |It +Kt |.

The convexity of P is what ensures that the signs of the 〈x ,ξ∗〉 in (3.4) are all the same, since
in this case the interior of P is precisely the intersection of H with all the half-spaces defined
by 〈•,ξ∗t 〉 ≥ 0 (resp., ≤ 0) in case the ideal vertices of P are oriented counterclockwise (resp.,
clockwise). We discuss the role of convexity in more detail in Section 7. Even when P is not
necessarily convex, we keep using the notation SP to denote the point defined in the statement
of Theorem 5, if and when it exists. We find it natural to call this SP the hyperbolic barycenter of P.

As in [4, Section 2.1], we say that two ideal polygons P and Q are α-related if the cross-ratio
[pt , qt , pt+1, qt+1] =α for each t , with the convention that the polygons have mutually orthogonal
sides when α = −1. Note that P and Q are α-related (for some α) if and only if the hyperbolic
angles between the corresponding sides of P and Q are all equal.

Theorem 7. If two ideal polygons P and Q are α-related for some α ∈R, then SP = SQ.

Proof. By [4, Thm. 16], the values of I , J ,K in (3.2) coincide for α-related polygons. □
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Remark 8. Theorem 7 can also be seen in [4] from a complementary point of view. The
barycenter of an ideal hyperbolic polygon is defined in [4, Section 6.2.1] to be the limit as ε→ 0 of
the fixed point of the composition L1+ε(P) of infinitesimal rotations along the sides of the polygon
P – let us temporarily denote this point S̃P. As explained in [4, Remark 6.9], the Möbius invariance
of I K − J 2 (cf. [4, Lemma 6.6]) implies S̃P = S̃Q for α-related P and Q. Then in [4, Lemma 6.10] it
is shown that S̃P has the same minimization property as the SP in Theorem 5, thus a posteriori
S̃P = SP.

In the Euclidean setting, there is an analogous notion to the cross-ratio dynamics considered
in [4], called bicycle correspondence, which also has a fixed point called circumcenter of mass
(cf. [18, Section 1, Theorem 5, Remark. 3.3]). The next property of the hyperbolic barycenter
SP resembles the similar Archimedian property of the Euclidean circumcenter of mass [19,
Theorem 1].

Lemma 9 (Archimedean property). If the ideal polygon P is partitioned along any of its diagonals
into ideal polygons Q1 and Q2 , then

qSP = IQ1 +KQ1

IP +KP

qSQ1 +
IQ2 +KQ2

IP +KP

qSQ2 . (3.5)

Proof. Indeed, letting Q1 = (p1, . . . , pr ) and Q2 = (p1, pr , . . . , pn), we have

IP =
(

r−1∑
t=1

1

pt −pt+1
+ 1

pr −p1

)
+

(
1

p1 −pr
+

n∑
t=r

1

pt −pt+1

)
= IQ1 + IQ2 .

Similarly, JP = JQ1 + JQ2 and KP = KQ1 +KQ2 , and (3.5) follows from (3.3). □

The basic computation in the proof of the above Lemma 9 admits the following dynamical
interpretation (cf. Remark 8). Since the infinitesimal rotation along the (oriented) side ξ(pt , pt+1)
is given by the Minkowski cross-product with the principal polar ξ∗t , and the principal polars
ξ∗(p1, pr ) and ξ∗(pr , p1) have opposite signs, the corresponding inputs in the composition of
such infinitesimal rotations cancel each other. Moreover, Lemma 9 admits also the following
useful geometric consequence.

Corollary 10. With notation as in Lemma 9, the hyperbolic barycenters SP, SQ1 , and SQ2 lie on a
common geodesic.

Proof. qSP is a weighted sum of qSQ1 and qSQ2 with weights summing to 1, so they are collinear. □

Remark 11. Relative to the hyperboloid model, (3.5) in Lemma 9 becomes

ŜP =
√√√√ IQ1 KQ1 − J 2

Q1

IPKP − J 2
P

· ŜQ1 +
√√√√ IQ2 KQ2 − J 2

Q2

IPKP − J 2
P

· ŜQ2 . (3.6)

The expression IPKP − J 2
P plays a prominent role in the study of cross-ratio dynamics of general

ideal polygons (see in particular [4, Section 6]). We presume it should be possible to show within
that framework that this Casimir function is always strictly positive, at least for convex P. How-
ever, having now established the theoretical foundation of our study of hyperbolic barycenters
with Theorem 5, we find it more convenient to work from now on in the Beltrami–Cayley–Klein
model, in which our remaining considerations become simpler to state and prove (see also Re-
mark 12 below).

Corollary 10 leads immediately to the recursive geometric construction of the hyperbolic
barycenters of arbitrary convex ideal hyperbolic polygons, starting from symmedian points of
triangles by Theorem 4 and the classical construction in Figure 1 (see the next Section 4).
There is another method to construct hyperbolic barycenters geometrically. Motivated by the
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dynamical interpretation of the point SP of Theorem 5 as the fixed point inH of the composition
of infinitesimal rotations along all the sides of P, we may consider more generally the fixed point
of the composition of those infinitesimal rotations along any sequence of sides of P, as follows.

For Ξ= {ξt1 , . . . ,ξtk } a non-empty set of (not necessarily contiguous) sides of P, with principal
polars ξ∗t = (It +Kt , It −Kt ,2Jt ) as in (2.5) and (3.1), let us write analogously as in (3.2) and (3.3):

IΞ := ∑
ξt∈Ξ

It ; JΞ := ∑
ξt∈Ξ

Jt ; KΞ := ∑
ξt∈Ξ

Kt ; and qSΞ :=
(

IΞ−KΞ
IΞ+KΞ

,
2JΞ

IΞ+KΞ

)
. (3.7)

Remark 12. The point SΞ need not be in H. For example, qS{ξ} is the polar qξ∗ to ξ, which is

outside of the unit disk, and qS{ξ1,ξ2} =
(

1−p2
2

1+p2
2

, 2p2

1+p2
2

)
=: qP 2 is the common ideal vertex of the sides

ξ1 = ξ(p1, p2) and ξ2 = ξ(p2, p3), which lies on the absolute O. Mainly on account of these two
basic examples, we prefer to work with the gnomonic projections qSΞ to the Beltrami–Cayley–
Klein plane x0 = 1 than in the wider ambient Minkowski space R2,1.

We set aside a more systematic discussion of the geometric meaning of qSΞ for arbitrary Ξ, in
favor of focusing on the most immediately relevant configuration properties of the points SΞ for
different interrelated choices of Ξ, after introducing some useful notation. For Ξ= {Ξ1, . . . ,Ξν} a
finite collection of non-empty sets Ξs of sides of P as above, and given a side ξt of P, we denote
by µΞ(ξt ) the multiplicity of ξt in the multiset sum of the Ξs ∈Ξ.

Lemma 13 (Interpolation Lemma). Let Ξ= {Ξ1, . . . ,Ξν}, where the Ξs are non-empty sets of sides
of P, such that IΞ+KΞ :=∑ν

s=1(IΞs +KΞs ) ̸= 0, with notation as in (3.7). Denote

qSΞ :=
ν∑

s=1

IΞs +KΞs

IΞ+KΞ
· qSΞs . (3.8)

If all the multiplicities µΞ(ξt ) = m, for some m ∈N independent of t = 1, . . . ,n, then qSΞ = qSP.

Proof. We see from (3.7) that each (IΞs + KΞs ) · qSΞs = (IΞs − KΞs ,2JΞs ) – this is so even in the
exceptional case where IΞs +KΞs = 0, but then only by convention. Thus

ν∑
s=1

(IΞs +KΞs ) · qSΞs = m · (IP +KP) · qSP,

and similarly IΞ+KΞ = m · (IP +KP), whence our result is immediate. □

Lemma 13 will be one of the main tools that allows for the geometric construction of hyper-
bolic barycenters (see the next Section 4), mainly through the following immediate consequence.

Corollary 14. If P is convex and Ξ= {Ξ1, . . . ,Ξν}, where the Ξs are sets of sides of P with |Ξs | ≥ 2
and such that IΞ+KΞ ̸= 0, then SΞ as in (3.8) lies in the convex hull of the SΞs .

Proof. The weights
IΞs +KΞs
IΞ+KΞ

are all positive (cf. Remark 6) and sum to 1. □

It is educational to begin to see these results in action in some trivial cases. For any ideal
n-gon P, we can take Ξ = {Ξ1, . . . ,Ξn}, where Ξt = {ξt−1,ξt }, the two sides that meet at the ideal
vertex on ℓ(pt ), which is precisely qSΞt (cf. Remark 12). We see from the computation in the
proof of Lemma 13 that the hypothesis that IΞ +KΞ = m · (IP +KP) ̸= 0 is redundant in case P
is convex, by Remark 6. In this case we also witness algebraically that qSΞ = qSP lies in the interior
of P by Corollary 14, which is neither surprising nor immediately apparent from the algebraic
expression (3.3), as we formally record in the following result.

Corollary 15. If P is convex then SP lies in the interior of P.
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In the tired case of triangles P = (p1, p2, p3), fix t ∈ {1,2,3} and letΞ1 = {ξt } andΞ2 = {ξt−1,ξt+1}.
Then qSΞ1 is the polar qξ∗t to ξt , and qSΞ2 is the ideal vertex qP t on ℓ(pt ) (cf. (2.4)) where the other
two sides meet (cf. Remark 12). Thus Corollary 14 says in this case that qSP = qS{Ξ1,Ξ2} lies on
the hyperbolic altitude from qP t , as expected (cf. Theorem 2). A first non-trivial consequence
of Corollary 14 is that this argument works all the same even if the first and third sides do not
meet to form a triangle, as formalized in the following result.

Lemma 16. LetΞ= {ξt−1,ξt ,ξt+1} be any set of three consecutive sides. Then SΞ is the intersection
of the two hyperbolic altitudes, from qP t to qξ∗t+1, and from qP t+1 to qξ∗t−1.

Proof. Partition Ξ in two different ways: Ξ1 = {Ξ11,Ξ12} and Ξ2 = {Ξ21,Ξ22}, where Ξ11 = {ξt−1}
and Ξ12 = {ξt ,ξt+1}, and Ξ21 = {ξt+1} and Ξ22 = {ξt−1,ξt }. Then an analogous computation
to that in the proof of Lemma 13 yields immediately that qSΞ1 = qSΞ = qSΞ2 , whence qSΞ lies on
both geodesic segments qSΞ11

qSΞ12 and qSΞ21
qSΞ22 by Corollary 14. To conclude, we observe as in

Remark 12 that qSΞ11 = qξ∗t−1 and qSΞ12 = qP t+1, and qSΞ21 = qξ∗t+1 and qSΞ22 = qP t . □

Remark 17. Lemma 16 is the third in a recursive series of constructions initiated in Remark 12.
For Ξ = {ξ0, . . . ,ξt } a set of t + 1 consecutive sides, we find that qSΞ is the intersection of the
geodesic segments qξ∗0 qSΞ0 and qSΞt

qξ∗t , where Ξs :=Ξ− {ξs }. More generally, the geodesic segments
qS{ξ0,...,ξs−1} qS{ξs ,...,ξt } for s = 1, . . . , t are all concurrent at qSΞ. Moreover, if we further assume that
these are sides of a convex ideal polygon, then the same computation as in Theorem 5 yields that
this qSΞ also minimizes the sum of the hyperbolic sines of the hyperbolic distances to the sides
in Ξ.

4. Case studies: small-gons

Lemma 9, Lemma 13, and their corollaries established in Section 3, are especially useful for
geometrically constructing the hyperbolic barycenters of ideal hyperbolic n-gons recursively.
Since we have already extensively addressed the particular case of triangles, let us now illustrate
these constructions in the next few particular cases of n = 4,5,6,10, where we begin to glimpse
a cascade of concurrences culminating at the hyperbolic barycenter. In order to be better able
to illustrate our contructions with figures, we shall work exclusively within the Beltrami–Cayley–
Klein model from now on, and drop the notation qS introduced in Remark 3, whose purpose was
to help disambiguate between this and the hyperboloid model.

4.1. Case study: Quadrilaterals

A first construction of the hyperbolic barycenter of an ideal quadrilateral P (and in general, of
an ideal polygon) is achieved via the Archimedian Property recursively from the case of triangles
(and in general, from the case of smaller-gons). Let St be the symmedian point of the triangle
∆(Pt−1Pt Pt+1). Then by Corollary 10 SP lies on S1S3 and on S2S4 (see Figure 4).

Surprisingly, an alternative construction makes it easier to construct hyperbolic barycenters
of ideal quadrilaterals than those of ideal triangles, as we see in the next result.

Theorem 18. The hyperbolic barycenter of an ideal quadrilateral P lies on its diagonals.

Proof. LetΞt := {ξt−1,ξt } denote the set of sides meeting at the ideal vertex Pt , where as usual we
take indices modulo n = 4. With notation as in (3.7), we see that each SΞt = Pt (cf. Remark 12).
Letting also Ξo := {Ξ1,Ξ3} and Ξe := {Ξ2,Ξ4}, we obtain from Lemma 13 that SΞo = SP = SΞe .
Finally, it follows from Corollary 14 that SΞo = SP lies on the geodesic segment SΞ1 SΞ3 = P1P3,
and similarly SΞe = SP lies on the geodesic segment SΞ2 SΞ4 = P2P4. □
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Figure 4. The hyperbolic barycenter of an ideal quadrilateral is the intersection point of its
diagonals as well as the intersection of the segments connecting symmedians of opposite
triangles in each triangulation.

Corollary 19. The hyperbolic barycenter of an ideal quadrilateral P is the intersection of the
diagonals ξ∗1ξ

∗
3 and ξ∗2ξ

∗
4 , of the quadrilateral formed by the polars to the sides.

Proof. This is an immediate consequence of Theorem 18 and the well-known (Euclidean!)
fact [3, Section 11.1.7] that the diagonals of a circumscribed quadrilateral intersect at the same
point as the diagonals of the inscribed quadrilateral whose vertices are the points of tangency. □

The trivial observation in Corollary 19 has the non-trivial consequence in Lemma 20 below.

Lemma 20. The hyperbolic barycenter of an ideal quadrilateral simultaneously and indepen-
dently minimizes the sum of hyperbolic sines of hyperbolic distances to each pair of opposite sides.

Proof. Let Ξo := {ξ1,ξ3} and Ξe := {ξ2,ξ4}. The same computation as in the proof of Theorem 5
shows that SΞo (resp., SΞe ) minimizes the sum of the hyperbolic sines of the hyperbolic distances
to ξ1 and ξ3 (resp., ξ2 and ξ4). Writing Ξodd = {{ξ1}, {ξ3}} and Ξeven = {{ξ2}, {ξ4}}, we see as in
Lemma 13 that SΞodd = SΞo and SΞeven = SΞe , whence by Corollary 14 SΞo lies on ξ∗1ξ

∗
3 and SΞe lies

on ξ∗2ξ
∗
4 (cf. Remark 12). LettingΞtot = {Ξo ,Ξe }, then SΞtot = SP again by Lemma 13, whence again

by Corollary 14 SP lies on the geodesic segment SΞo SΞe . Since SP is the intersection of ξ∗1ξ
∗
3 and

ξ∗2ξ
∗
4 by Corollary 19, this forces SΞo to also lie on ξ∗2ξ

∗
4 and SΞe to also lie on ξ∗1ξ

∗
3 . □

Remark 21. The anonymous referee has made the interesting observation that many of the
concurrences that we have seen so far are limiting cases of the infamous Brianchon Theorem [3,
Section 11.1.5]. First, the original construction of the symmedian point of a triangle in Figure 1
is the Brianchon concurrence for the degenerate “hexagon” AB∗C A∗BC∗. Next, the Euclidean
fact [3, Section 11.1.7] used in the proof of Corollary 19 is similarly obtained from the two
degenerate “hexagons” containing the four polars and one pair of opposite vertices of the ideal
quadrilateral.

Besides the two constructions of the hyperbolic barycenter SP of an ideal quadrilateral P, we
witness in Figure 4 many additional concurrences at SP, some more of which can be seen as
limiting cases of Brianchon’s Theorem, which we leave unaddressed as exercises for the interested
reader.
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4.2. Case study: Pentagons

Our first construction of the hyperbolic barycenter of an ideal pentagon P is obtained from the
Archimedian Property. Let St be the symmedian point of the triangle ∆(Pt−1Pt Pt+1), and let
Tt be the intersection of the two diagonals not containing Pt : Pt−1Pt+2 and Pt+1Pt−2. Then
by Theorem 18, Tt is the hyperbolic barycenter of the quadrilateral Pt−2Pt−1Pt+1Pt+2. Thus by
Corollary 10, the five geodesic segments St Tt are concurrent at SP. On the other hand, we can use
the Interpolation Lemma to provide an alternative construction of the hyperbolic barycenter SP.

Lemma 22. Let P be a convex ideal hyperbolic pentagon. Let Rt be the intersection of the two
hyperbolic altitudes, from the vertex Pt+2 to the side Pt−2Pt−1, and from the vertex Pt−2 to the side
Pt+1Pt+2, i.e., Rt lies on Pt+2ξ

∗
t+3 and on Pt+3ξ

∗
t+1. Then the hyperbolic barycenter SP lies on the

geodesic segment Pt Rt .

Proof. By Corollary 14 applied to Ξ = {Ξ1,Ξ2}, with Ξ1 = {ξt−1,ξt } and Ξ2 = {ξt+1,ξt+2,ξt+3},
SΞ = SP lies on SΞ1 SΞ2 . Now SΞ1 = Pt (cf. Remark 12), and SΞ2 = Rt by Lemma 16. □

We witness in Figure 5 that in the case of ideal pentagons also, as in the case of ideal
quadrilaterals, the hyperbolic barycenter is at the epicenter of several kinds of concurrences.

Figure 5. Constructions of the hyperbolic barycenter of an ideal pentagon. Left: via the
Archimedian property. Right: via the Interpolation Lemma.

4.3. Case study: Hexagons

Surprisingly, it is relatively easier to construct the hyperbolic barycenter of an ideal hexagon than
that of an ideal pentagon. In fact, the construction of the former arises from one of the variants
of the Brianchon Theorem (see [3, Section 11.1.9] and Figure 6; see also Remark 21).

Theorem 23. Let Q be the hexagon inHwhose sides lie on the short diagonals of the ideal hexagon
P. Then the long diagonals of Q all intersect at SP.

Proof. For each t , consider the ideal quadrilateral (pt−1, pt , pt+1, pt+2), and let Qt be its hyper-
bolic barycenter. By Theorem 18, Qt is the intersection point of Pt Pt+2 and Pt−1Pt+1, and by
Corollary 9, SP lies on the geodesic segment Qt Qt+3. □

Another construction of the hyperbolic barycenter of an ideal hexagon is obtained from the
Interpolation Lemma, as follows. Let Rt be the intersection of Pt P∗

t+1 and Pt+1P∗
t−1. Then

Rt = SΞt for Ξt := {ξt−1,ξt ,ξt+1} by Lemma 16. Applying Corollary 14 to Ξ = {Ξt ,Ξt+3}, we find
that SP lies on each geodesic segment Rt Rt+3.
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Figure 6. Constructions of the hyperbolic barycenter of an ideal hexagon. Left: via the
Archimedian property. Right: via the Interpolation Lemma.

4.4. Case study: (2m +2)-gons

The (initially surprising) relative simplicity in the construction of hyperbolic barycenters for ideal
hexagons versus ideal pentagons is part of a general phenomenon, which leads to a layered family
of interesting concurrences arising from the Archimedian Property. We can subdivide an ideal
(2m +2)-gon P along any of its 2m−1 +1 long diagonals into two (2m−1 +2)-gons Q1 and Q2, and
conclude by Corollary 10 that SP lies on SQ1 SQ2 . This gives a concurrence of 2m−1 +1 lines, each
of whose endpoints is itself a concurrence of 2m−2 + 1 lines, each of whose endpoints is itself
a concurrence . . . , etc. This recursively reduces the construction of SP to any one of the many
equivalent constructions of the hyperbolic barycenter of an ideal quadrilateral in Section 4.1 (see
Figure 4). In Figure 7 we depict the next case m = 3 of this construction, to obtain the hyperbolic
barycenter of an ideal decagon as the point of concurrence of the five line segments connecting
opposite hyperbolic barycenters of ideal hexagons constructed according to Theorem 23.

5. Moduli of ideal polygons with fixed hyperbolic barycenter

Let us denote by Mn(S) =Mn(α,β) the moduli space of ideal n-gons having a fixed S = (α,β) ∈H
as their hyperbolic barycenter. We immediately see from the coordinatization of SP in (3.3) that{

IP −KP =α · (IP +KP);

2JP =β · (IP +KP)
(5.1)

defines a subspace of codimension at most 2 in the moduli space Pn of ideal hyperbolic n-gons.
We would like to have a more geometrically meaningful description of Mn(S) than merely the
algebraic conditions in (5.1). Here we accomplish this only for the smallest values of n = 3,4.

5.1. Moduli of ideal triangles with fixed hyperbolic barycenter

The space P3 of all ideal hyperbolic triangles is three-dimensional, hence the subspaces M3(S)
are expected to be one-dimensional. It is clear from the minimality property of SP in Theorem 5
that all the triangles obtained from P by a hyperbolic rotation about SP share the same hyperbolic
barycenter, yielding a one-dimensional family, as expected. It is easy to see that this is indeed all
of M3(SP), as we show next.
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Figure 7. Recursive construction of the hyperbolic barycenter of an ideal decagon.

Lemma 24. Two ideal triangles P1 and P2 share the same hyperbolic barycenter SP1 = S = SP2 if
and only if they are obtained from one another by a hyperbolic rotation about S.

Proof. It suffices to show that if an ideal triangle P = (p1, p2, p3) has SP = (0,0) then it is regular.
This follows from a simple algebraic computation. If we rotate such a triangle so that one of its
vertices is at 0 ∈RP1, say p3 = 0, then 2JP = 0 if and only if p1 +p2 = 0, and IP −KP = 0 if and only
if p2

1p2
2 −p1p2 − (p1 −p2)2 = 0, which together imply {p1, p2} = {±p3}, as required. □

An alternative construction of M3(S) is as follows. Given an ideal hyperbolic triangle P,
consider the ideal hyperbolic triangle P̃, whose ideal vertex P̃ t is the hyperbolic reflection of Pt

with respect to its opposite side ξt+1 = Pt+1Pt+2. Then the points Pt , P̃ t , and ξ∗t+1 are collinear by
construction. Since SP is the hyperbolic orthocenter of P, it also lies on Ptξ

∗
t+1, and by symmetry

(since ˜̃P = P) we see that ξ̃∗t+1 is also on this line. Hence SP is the hyperbolic orthocenter of P̃.

Lemma 25. The six polars ξ∗1 ,ξ∗2 ,ξ∗3 , ξ̃∗1 , ξ̃∗2 , ξ̃∗3 all lie on the same conic ΓP.

Proof. Consider the unique conic Γ passing through the first five of these points, except possibly
ξ̃∗3 . Then we see that ξ∗1 ,ξ∗2 ,ξ∗3 form a 3-periodic Poncelet trajectory on Γ circumscribed about O.
By the Poncelet Theorem [9, Theorem. 2.14], the Poncelet trajectory on Γ containing ξ̃∗1 and ξ̃∗2 is
also 3-periodic, whence ξ̃∗3 also lies on Γ. □

Theorem 26. The moduli space M3(SP) consists of the ideal triangles whose ideal vertices are the
tangency points of polar triangles circuminscribed in the 3-periodic Poncelet pair (ΓP,O), where ΓP

is the conic associated in Lemma 25 with P. The conicΓP = Γ(SP) depends only on SP, and not on P.

Proof. After applying an isometry sending S to (0,0), it suffices to prove this for the special case
S = (0,0), which is an immediate consequence of Lemma 24. □

In order to find Γ(S) explicitly it suffices to find Γ(r,0) for 0 ≤ r < 1, and then rotate by θ

to reach any desired S = (r cosθ,r sinθ) ∈ H. There are two special triangles P and P̃ such that
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SP = SP̃ = (r,0) with p3 = 0 and p̃3 =∞, respectively. We find p1 +p2 = 0 = p̃1 + p̃2 (from J = 0),

and then that p1 = ±
√

3 1−r
1+r and p̃1 = −p1

3 (from I − J = r (I + J )). We then compute from (2.5)
(projected down to the Beltrami–Cayley–Klein model) that

ξ∗1 =
(

r −2

1−2r
,0

)
; ξ∗2 = (1,−p1); ξ∗3 = (1, p1); ξ̃∗1 =

(
r +2

2r +1
,0

)
; ξ̃∗2 = (−1,3p−1

1 ); ξ̃∗3 = (−1,−3p−1
1 ).

It is trivial to verify that

Γ(r,0) :
(
1−4r 2)x2

1 +6r x1 +
(
1− r 2)x2

2 + r 2 −4 = 0

is the unique (overdetermined!) conic passing through all six polars as in Lemma 25. The
following amusing observation is then immediate.

Corollary 27. The Poncelet conic Γ(S) is an ellipse (resp., a parabola; resp., a hyperbola) if and
only if |S| < 1/2 (resp., |S| = 1/2; resp., |S| > 1/2), where |S| denotes the Euclidean norm of S.

Figure 8. Left: Poncelet conic of all ideal triangles with a common hyperbolic barycenter.
Right: one representative of the pencil of Poncelet conics of ideal quadrilaterals with a
common hyperbolic barycenter.

5.2. Moduli of ideal quadrilaterals with fixed hyperbolic barycenter

The space P4 of all ideal hyperbolic quadrilaterals is four-dimensional, hence the subspaces
M4(S) are expected to be two-dimensional. Theorem 18 immediately yields a compact and
satisfying description of M4(S): choose any two distinct hyperbolic lines δ1 and δ2 intersecting
at S to be the diagonals of the arbitrary ideal quadrilateral P with SP. This construction exhausts
all of M4(S), and is roughly analogous to our first description of M3(S) in terms of rotations
about S in Lemma 24. Inspired by the description of M3(S) in terms of Poncelet conics afforded
by Theorem 26, we seek a similar description of M4(S).

Given an ideal hyperbolic quadrilateral P, its four polars ξ∗t determine a pencil ΓP of conics
passing through these four points. For a generic fifth point Q, let ΓP(Q) be the unique conic
on this pencil that also passes through Q. Then (ΓP(Q),O) forms a 4-periodic Poncelet pair,
whence by the Poncelet Theorem [9, Theorem 2.14] Q = ξ̃∗1 is polar to the side of a unique ideal
quadrilateral P̃ all of whose polars ξ̃∗t are also on ΓP(Q). It is not obvious (and for us, not even
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expected) that we should always have SP̃ = SP as apparently depicted in Figure 8. In the next
result we show that this is indeed the case, and that this construction exhausts all of M4(SP).

Theorem 28. The moduli space M4(SP) consists of the ideal quadrilaterals whose ideal vertices are
the tangency points of polar quadrilaterals circuminscribed in a 4-periodic Poncelet pair (Γ,O), for
some conic Γ in the pencil ΓP.

Proof. After applying an isometry sending S to (0,0), it suffices to prove this for the special case
S = (0,0). By Corollary 19, it suffices to prove the claim that for any P ∈M4(0,0), any Γ in ΓP, and
any Q∗ circuminscribed in (Γ,O), the diagonals of Q∗ intersect at the origin.

To prove the claim, first note that SP = (0,0) if and only if P is a rectangle, which after a harmless
rotation about the origin may be assumed to have its sides parallel to the coordinate axes.
Then the polar quadrilateral P∗ = ξ∗1ξ

∗
2ξ

∗
3ξ

∗
4 is a rhombus whose vertices lie on the coordinate

axes. By comparing the general form of a conic evaluated at each pair ξ∗t and ξ∗t+2, we discover
immediately that every (non-degenerate) Γ in the pencil ΓP must be a central ellipse. Our claim
follows immediately from the following general Lemma 29. □

We have severed the following configuration result from the rest of the proof of Theorem 28
due to its independent interest. We provide a short conceptual proof because we have not found
a reference for it in the literature, even though it is surely well-known to the experts.

Lemma 29. If Γ is a central ellipse such that (Γ,O) forms a 4-periodic Poncelet pair then every
circuminscribed polygon in (Γ,O) is a rhombus centered at the origin.

Proof. Let us first show this in the special case where our circuminscribed Q has one of its
vertices, call it Q1, on a vertex of Γ. Begin constructing the Poncelet orbit in both directions
starting from Q1, to obtain Q2 and Q4. By symmetry, these are both the next vertices of the ellipse
(as we claim), or both in the hemisphere containing Q1, or both in the hemisphere containing
−Q1. We see again by symmetry that the latter two impossibilities would contradict the 4-
periodicity of the Poncelet pair (Γ,O).

We can assume without loss of generality that the axes of Γ coincide with the coordinate axes.
We ignore from now on the special case already established above. Let us label the vertices of
any other Q circuminscribed in (Γ,O) such that Qt lies on the t-th quadrant. For any other such
Q̃ ̸= Q circuminscribed in (Γ,O), the vertex Q̃ t in the t-th quadrant lies before (resp., after) Qt ,
relative to the standard counterclockwise orientation of Γ, for all t simultaneously. Suppose that
Q3 lies before (resp., after) −Q1 for some Q, contrary to our contention. Then every vertex of Q
lies before (resp., after) every vertex of −Q. But this would imply, by symmetry, that every vertex
of −Q must lie before (resp., after) every vertex of −(−Q) = Q, which is absurd. □

Remark 30. We see from Theorem 28 that for any two ideal quadrilaterals P ̸= Q such that
SP = SQ, the eight distinct polars of P and Q belong to the same conic, which is in fact the unique
common conic to both pencils ΓP and ΓQ.

In the case of triangles, M3(SP) is triply covered by the conic ΓP traced out by the polars of
the triangles obtained by rotating P about SP. This exceptional phenomenon does not occur in
general for ideal quadrilaterals P, with an important exception. After an isometry sending SP to
the origin, we see that the polars of the rotations of P about SP in general trace out two disjoint
conics corresponding to pairs of opposite sides. These two conics coincide precisely when P is
harmonic, which case we begin to study systematically in the next section.

6. Least-squares points and harmonic polygons

Thus far we have been mainly concerned with entities and phenomena occurring within hyper-
bolic geometry. In Theorem 5, the hyperbolic barycenter SP of an ideal triangle P is uniquely
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defined by the property that it minimizes the sum of hyperbolic sines of hyperbolic distances to
the sides. Now the classical Theorem 1 states that this same SP happens to coincide with the
least-squares point LP, uniquely defined by the property that it minimizes the sum of squares
of Euclidean distances to the sides. This strange and unexpected coincidence begs the natural
question, for which other ideal polygons it might happen that SP = LP.

An inscribed Euclidean (resp., ideal hyperbolic) polygon P is harmonic if it is obtained from
a regular polygon by a projective transformation (resp., hyperbolic isometry) preserving O and
its interior. These Euclidean and hyperbolic notions define “the same” inscribed/ideal polygons.
Harmonic polygons have been extensively studied since the late 1800s – see for example [6, 17,
20], and the recent [10].

In this section we keep considering “the same” convex P intermittently as an ideal hyperbolic
polygon and as an inscribed Euclidean polygon. To avoid cumbersome notation, we keep using
the same symbol P, making it clear from context or explicitly each time within which geometry
we are working.

As mentioned in the introduction, one of our initial motivations for this work was to find an
explanation for the classical but strange Theorem 1. Our main goal in this section is to provide a
simple proof of Theorem 33: for every harmonic polygon P, the hyperbolic barycenter SP and the
least-squares point LP coincide. From this we propose the provocative explanation: SP = LP for
all triangles P only because all triangles are harmonic.

Denoting by |X | =
√

x2
1 +x2

2 the Euclidean norm of a point X = (x1, x2), and by dt (X ) the
Euclidean distance from X to the line ξt , we compute that

dt (X ) = 1

|ξ∗t |
(
1∓ξ∗t ·X

)
, (6.1)

where the sign depends on whether X and ξ∗t are on opposite sides or on the same side of ξt ,
respectively. For X in the interior of P, we then compute the gradient

∇
(∑

t
d 2

t (X )

)
= 2

∑
t

(
ξ∗t ·X −1

|ξ∗t |2
)
ξ∗t . (6.2)

From now on we denote by σt the Euclidean length of ξt .
For the following basic result we include an (unnecessary, but short) argument in the spirit of

some of our other computations, to ensure non-circularity.

Lemma 31. The locus of points X satisfying the Euclidean proportionality condition

[dt−1(X ) :σt−1] = [dt (X ) :σt ], (6.3)

and contained in the interior of the sector ∠Pt−1Pt Pt+1, is the hyperbolic altitude from Pt to its
short diagonal Pt−1Pt+1.

Proof. This is an elementary fact about any triangle P1P2P3. Under the parametrization of
Section 2, each |ξ∗t | = sec

(ϕt−ϕt+1
2

)
and σt = 2sin

( |ϕt−ϕt+1|
2

)
. The relation d1(X )σ2 = d2(X )σ1

restricted to our sector defines a line by (6.1) (using the minus signs). Obviously, P2 is on this
line. That ξ∗3 is also on this line is reduced by (6.1) and (2.5) (see also Remark 12) to the short
computation that

(I1 +K1)(I3 +K3)− (I1 −K1)(I3 −K3)−4J1 J3 = 1 = (I2 +K2)(I3 +K3)− (I2 −K2)(I3 −K3)−4J2 J3. □

Theorem 32. A polygon P is harmonic if and only the hyperbolic altitudes from the vertices to
their short diagonals are all concurrent. In this case, the point of concurrence is SP.

Proof. One direction is obvious: if P is harmonic then all the hyperbolic altitudes from its
vertices to their short diagonals are concurrent at SP, since these entities are all preserved by
any hyperbolic isometry.
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To prove the opposite implication, suppose the hyperbolic altitudes from the vertices to the
short diagonals of the n-gon P are concurrent at some S. After a hyperbolic isometry we can
assume without loss of generality that S = (0,0) and Pt = (

cos
( 2πt

n

)
, sin

( 2πt
n

))
for t = 1,2. The

remaining vertices are now recursively determined: having already fixed Pt−1 and Pt , the short
diagonal Pt−1Pt+1 is uniquely determined by its polar, which lies on the tangent line to O at Pt−1

and on SPt . The vertices of the regular n-gon satisfy the same recurrence and initial conditions,
so P is harmonic. □

Our Euclidean definition of harmonicity, taken from [20, Section 4], is not the same as the one
given in [6, Section VI] and [17, Section 1], which asks for the existence of a point whose distances
to the sides are proportional to the side lengths, called the symmedian of P in [6, Section VI].
Mediated by Lemma 31, Theorem 32 essentially states, from a hyperbolic barycentric perspective,
that the two definitions of harmonicity agree. This is not a new result. The first implication in the
above proof is essentially already contained in [20, Theorem 4]. A different proof of the opposite
implication is given in [17, Section 27] and attributed to Neuberg. Of course, these earlier results
simply state that one of the definitions of harmonicity implies the other, and do not refer to
hyperbolic altitudes at all. Theorem 32 allows us to eponymously interpret all symmedians as
hyperbolic barycenters. The former are defined only for harmonic polygons, whereas the latter
are defined in (3.3) for all (convex) ideal hyperbolic polygons.

Theorem 33. If P is harmonic then SP = LP.

Proof. Let σ := (σ1, . . . ,σn) denote the vector of Euclidean side-lengths of P. For any X , let
d(X ) := (d1(X ), . . . ,dn(X )) denote the vector of Euclidean distances from X to the sides of P. Then
d(X ) ·σ = 2A, twice the Euclidean area of P, provided that X is in the interior of P. Now let
σ⊥(X ) := d(X )− 2A

|σ|2σ denote the orthogonal projection of d(X ) onto the orthogonal complement

of Rσ. Then |d(X )|2 = 4A2|σ|−2 +|σ⊥(X )|2. Therefore LP, which is by definition the minimizer of
|d(X )|2, is also the minimizer of |σ⊥(X )|2.

In case P is harmonic, Theorem 32 and Lemma 31 together imply that dt−1(SP)
σt−1

= dt (SP)
σt

for each

t . Therefore d(SP) is a scalar multiple of σ, whence |σ⊥(SP)|2 = 0 and SP = LP. □

Remark 34. The coordinates of the symmedian S of a triangle have been obtained explicitly
in [5], in terms of the equations of the lines formed by the sides of the triangle, using the
optimality property in Theorem 1 as a defining property of S. In principle, the coordinatization
of [5] and ours in (3.3) could be deduced directly from one another by a series of presumably
unenlightening algebraic manipulations. Theorem 33, which contains Theorem 1 as its first
special case, can be understood as a more conceptual explanation for the agreement of the two
coordinatizations.

We see from the proof of Theorem 33 that LP is equivalently characterized as the minimizer of
|σ⊥(X )|, which achieves 0 as its minimum value precisely when P is harmonic, by Theorem 32. In
principle, one can express LP algebraically in terms of p1, . . . , pn by setting the right-hand side
of (6.2) to zero. The condition SP = LP defines a subspace of codimension at most 2 in the
space Pn of all ideal n-gons (cf. Section 5). On the other hand, the subspace of Pn consisting
of harmonic n-gons is three-dimensional, and therefore the space of n-gons for which SP = LP

must strictly contain the space of harmonic n-gons for n > 5. This can maybe be understood as
some kind of “regularity condition” on P, which is in general strictly weaker than harmonicity.
And yet, according to the following result, harmonicity is (nearly) equivalent to having SP = LP in
the next case n = 4.

Theorem 35. If P is a quadrilateral, then SP = LP if and only if either P is harmonic or else
SP = (0,0).
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Proof.
(⇐). It follows from Theorem 18 that SP = (0,0) if and only if the Euclidean polygon P is a
rectangle, in which case it is clear that LP = (0,0). If P is harmonic then SP = LP by Theorem 33.

(⇒). Setting to zero the evaluation of (6.2) at X = SP, after some algebraic manipulation, we
conclude that either IP −KP = 0 = JP, or else the cross-ratio [p1, p2, p3, p4] = 1. These conditions
are equivalent to having SP = (0,0) and to P being harmonic, respectively. □

The conclusion of Theorem 35 may seem strange, because the origin is only special from the
Euclidean point of view, but hyperbolically unremarkable. But the origin remains meaningful
when comparing the two geometries, since the endofunctions of the unit disc which are simulta-
neously hyperbolic and Euclidean isometries are precisely the rotations about the origin.

7. Remaining questions

In this section we gather some questions concerning hyperbolic barycenters, which arose during
the preparation of this manuscript and for which we do not yet have definitive answers and which
we believe deserve further study.

7.1. The role of convexity

The minimality result in Theorem 5 holds only for convex ideal hyperbolic polygons. In the case
of non-convex ideal hyperbolic polygons, what happens is that Q(x) := ∑

t sinh
(
d(x ,ξt )

)
and

L+(x) := ∣∣〈x ,
∑

t ξ
∗
t 〉

∣∣ only agree on the region of H consisting of points x that are all on the same
side of each ξt relative to each principal polar ξ∗t . For convex polygons, we showed that Q could
only be minimized in the interior of P, where Q and L+ do agree, and in this case we were even
able to show as a consequence of Corollary 14 that SP lies in the interior of P, whence a posteriori
the vector

∑
t ξ

∗
t lies in the interior of the light cone L.

None of this is guaranteed in the non-convex case. For each signature β : {1, . . . ,n} → {+,−},
let us consider the corresponding (possibly empty) regionHβ := {

x ∈H ∣∣ 〈x ,ξ∗t 〉 ∈Rβ(t )
}
, where R+

(resp., R−) denotes the non-negative (resp., non-positive) real numbers. Then Q(x) restricted to
Hβ agrees precisely with Lβ(x) := ∣∣〈x ,

∑
t β(t )ξ∗t 〉

∣∣. But we cannot conclude that the minimizer of
H of the latter function is a scalar multiple of

∑
t β(t )ξ∗t , because we do not even know in general

why this vector should be in the interior of the light cone, and even if it is, it is not obvious that its
normalization belongs to the correct regionHβ.

Another intriguing and complementary possibility would be to replace the hyperbolic dis-

tances d(x ,ξt ) occurring in Q(x) with the signed distances
〈x ,ξ∗t 〉
|〈x ,ξ∗t 〉|d(x ,ξt ), which would have the

practical effect of essentially replacing Q(x) with L+(x) as the function to be optimized, and
yield the normalization of

∑
t ξ

∗
t as a critical point. Or, as we already mentioned in Remark 8, one

could instead follow [4] in defining the hyperbolic barycenter dynamically as the fixed point of
the composition of the infinitesimal rotations along the sides of P. One can show that the axis is
still spanned by

∑
t ξ

∗
t , but there is again no guarantee that this vector is timelike. So, it is a pri-

ori possible that the “hyperbolic barycenter” of a non-convex ideal polygon may be outside ofH,
possibly in de Sitter space S , or even possibly somewhere on the light cone L.

7.2. Comparison with other polygonal centers

Let us briefly compare the hyperbolic barycenter SP with other centers defined by integrable
polygonal dynamics, optimality conditions, and least-action principles.
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As we already mentioned in Section 3, the cross-ratio dynamics of [4] form a kind of ideal
hyperbolic analogue of the bicycle correspondence of [18], making the hyperbolic barycenter of
an ideal hyperbolic polygon analogous to the circumcenter of mass of a Euclidean polygon. When
we consider an ideal hyperbolic polygon (in the Beltrami–Cayley–Klein model) as a Euclidean
polygon, it is evidently inscribed in the absolute, whence its circumcenter of mass trivially
coincides with the origin. Thus the hyperbolic barycenter can be considered also as a meaningful
analogue of the circumcenter of mass, for an inscribed Euclidean polygon. Indeed, it would be
interesting to characterise the circumcenter of mass, analogously with our Theorem 5, by means
of some least-action principle, i.e., as a kind of barycenter. One promising such characterisation
might come from the fact that the circumcenter of the triangle is the point minimizing the area
of its contact triangle (i.e. the triangle formed by the feet of the perpendiculars from the point to
the sides).

As discussed in Section 6, the hyperbolic barycenter SP of a harmonic ideal hyperbolic n-gon
agrees with the least-squares point LP of the corresponding Euclidean polygon. Thus asking for
these points to agree can be understood as a kind of weakening of harmonicity, as we saw in
Theorem 35. We expect that a similar algebraic analysis should yield the following case n = 5. One
subtlety in this case is that the regular pentagram P still satisfies the proportionality condition
σ⊥(SP) = 0, and therefore so do all of its images under hyperbolic isometry. Although this P is not
“harmonic” in our sense, the subspace of P5 defined by SP = LP does not consist only of convex
polygons. Allowing for this subtlety, we still optimistically hope for the best possible result.

Conjecture 36. If P = (p1, . . . , p5) is a pentagon, then SP = LP if and only if either the five cross-
ratios [pt , pt+1, pt+2, pt+3] are all the same or SP = (0,0).

Yet another infamous polygonal center is the fixed point of the pentagram map, which was
discovered in [16] and coordinatized in [11]. In [1, Section 1] it is suggested that this point may
be the limit point as ε→ 0 of an eigenvector for the infinitesimal monodromy of a deformation
into twisted polygons P1+ε of a closed polygon P1 (cf. Remark 8). And yet, it remains unknown
whether the circumcenter of mass or the fixed point of the pentagram map is defined by an
optimality property analogous to that of the hyperbolic barycenter in Theorem 5. We refer to [13]
for a systematic discussion of polygonal centers defined by optimality conditions and least-action
principles.

7.3. Moduli spaces

In Section 5 we were able to find interesting algebro-geometric descriptions of the moduli spaces
Mn(S) of ideal hyperbolic n-gons with fixed barycenter S ∈H for the smallest values of n = 3,4. It
is tempting to try to continue this story for higher values of n.

The five polars of an ideal pentagon P define a unique conic Γ, which again by the Poncelet
porism yields a one-parameter family of pentagons circuminscribed in (Γ,O). Though it might
seem natural to hope for all these pentagons to share the same hyperbolic barycenter SP, we
have verified experimentally that they do not. We leave open the tantalizing question of how
to parameterize, in a similarly algebro-geometric manner as we have done for triangles in
Theorem 26 and for quadrilaterals in Theorem 28, the corresponding moduli spaces for ideal
hyperbolic n-gons for n ≥ 5, beyond the obvious algebraic conditions (5.1).
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