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1. Introduction

Although the interest of functional analysts in the nonlinear theory of Banach spaces has in-
creased significantly in the past few decades (e.g. [1, 15, 18, 23]), researchers have only recently
started to develop the nonlinear theory of their noncommutative counterpart, i.e., of operator
spaces (see [5–8]). As of now, this study was restricted to constructing a large scale geometry for
such spaces. The goal of the current article is to initiate the treatment of the small scale geometry
of operator spaces.

Before describing our main results, we start this introduction with a paragraph recalling the
basics for the non-expert: an operator space is a Banach subspace of the space of bounded
operators on a given Hilbert space H , which we denote by B(H). Given n ∈ N and a set X , we
denote the space of n-by-n matrices with entries in X by Mn(X ) — if X is either a vector space
or an algebra, Mn(X ) inherits a canonical vector space or algebra structure, respectively. Since
Mn(B(H)) is canonically isomorphic to B(H⊕n) (where H⊕n denotes the Hilbert sum of n copies
of H), each Mn(B(H)) is endowed with the canonical norm given by this isomorphism. Given an
operator space X ⊆B(H), the inclusions Mn(X ) ⊆ Mn(B(H)) then induce norms on each Mn(X ).
The n-amplification of a map f : X → Y between operator spaces is the map fn : Mn(X ) → Mn(Y )
given by

fn([xi j ]) = [ f (xi j )] for all [xi j ] ∈ Mn(X ).

If f is linear, so is each fn and ∥ fn∥n denotes its operator norm. The completely bounded norm of
f , abbreviated as the cb-norm of f , is given by

∥ f ∥cb = sup
n∈N

∥ fn∥

and f is called completely bounded if ∥ f ∥cb < ∞. Completely bounded maps play the role
bounded maps play in Banach space theory and are used to define complete isomorphisms
between operator spaces.

Our approach to study the small scale geometry of operator spaces comes from a strengthen-
ing of the main result of [6]; which, as the reader will see below, is something in between the large
and the small scale geometry of operator spaces. We start recalling the concept of coarse maps in
the category of operator spaces:

Definition 1. Let X and Y be operator spaces and B ⊆ X . A map f : B → Y is called completely
coarse if for all r > 0 there is s > 0 such that

∥[xi j ]− [yi j ]∥Mn (X ) ≤ r implies ∥ fn([xi j ])− fn([yi j ])∥Mn (Y ) ≤ s

for all n ∈N and all [xi j ], [yi j ] ∈ Mn(B).1

The main result of [6] showed that, despite its nonlinear definition, completely coarse maps
are essentially already linear. Precisely, the following version of the Mazur–Ulam theorem holds
for completely coarse maps between operator spaces:

Theorem 2 ([6, Theorem 1.1]). Let X and Y be operator spaces. Any completely coarse map
f : X → Y with f (0) = 0 must be R-linear.

In this paper, we take the techniques developed in [6] further and show that a much stronger
result remains valid. Throughout these notes, if X is a Banach space, BX denotes its closed unit
ball.

Theorem 3. Let X and Y be operator spaces. Any completely coarse map f : BX → Y with f (0) = 0
must be the restriction of an R-linear map.

1In classic coarse geometry, a map is called coarse if this holds for n = 1.
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The previous result exhausts any possible attempt to build a large scale nonlinear theory for
operator spaces in the “naive” way: ideally, if we were to merge operator space theory with the
nonlinear theory for Banach spaces, there could be an interesting theory which would capture
aspects of the large scale geometry of operator spaces by simply considering maps f : X → Y , or
at least maps f : BX → Y , and their amplifications. However, this does not mean that it is not
possible to obtain a nontrivial large scale geometry of operator spaces. Indeed, as shown in [5,
7, 8], there are several interesting things to be said if one takes a more sophisticated approach:
for instance, instead of considering a single map f from either X or BX to Y , one can consider
sequences of maps ( f n : X → Y )n or even of maps ( f n : n ·BX → Y )n .

Motivated by Theorem 3, we start the study of the small scale structure of operator spaces. For
that, we want to take into consideration not only the behavior of maps on sets of small diameter,
but also their amplifications on such sets. Notice that this is not dealt with in Theorem 3 since
limn→∞ diam(Mn(BX )) =∞.2 For this reason, we will restrict our maps to the unit balls of Mn(X )
in order to guarantee the diameters of the sets are uniformly bounded. Before presenting our
main findings, we start by recalling the definition of the modulus of uniform continuity of a map.
Let (X ,d) and (Y ,∂) be metric spaces, and f : X → Y be a map. The modulus of uniform continuity
of f is the map ω f : [0,∞) → [0,∞] given by

ω f (t ) = sup
{
∂( f (x), f (y)) | d(x, y) ≤ t

}
.

Definition 4. Let X and Y be operator spaces, and f : BX → Y be a map.

(1) The small scale modulus of uniform continuity of f is the map ωss
f : [0,∞) → [0,∞]

given by

ωss
f (t ) = sup

n∈N
ω fn↾BMn (X ) (t ) for all t ≥ 0.

(2) We say that f is completely Lipschitz in small scale if there is L > 0 such that

ωss
f (t ) ≤ Lt for all t ≥ 0.

In contrast with Theorem 3, the next result shows that the property of a map being completely
Lipschitz in small scale does not force the map to be the restriction of an R-linear map. In fact,
the next theorem provides a large class of non-R-linear maps which are completely Lipschitz in
small scale.

Theorem 5. Any polynomial p in one complex variable is completely Lipschitz in small scale as a
map BC → C. More generally, if A ⊆ B(H) is an operator algebra (with its induced operator space
structure) then p : B A → A is completely Lipschitz in small scale.

Theorem 5 can be further generalized since it is obtained by looking at the compositions of
m-linear maps with completely bounded maps. For brevity, we refer the reader to Section 3 and
Theorem 16 for further details.

Knowing that there are plenty of interesting non-R-linear maps which are completely Lipschitz
in small scale, we then turn to study what the existence of such maps can tell us about the
operator spaces involved. For that, we need the embedding notion given by maps which are
completely Lipschitz in small scale. Recall, if f : (X ,d) → (Y ,∂) is a map between metric spaces,
then the compression modulus of f is the map ρ f : [0,∞) → [0,∞] given by

ρ f (t ) = inf
{
∂( f (x), f (y)) | d(x, y) ≥ t

}
.

2This is why we say Theorem 3 is somewhat in between the scope of large and small scale geometric analysis.
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Definition 6. Let X and Y be operator spaces, and f : BX → Y be a map.

(1) The small scale compression modulus ρss
f : [0,∞) → [0,∞] is given by

ρss
f (t ) = inf

n∈N
ρ fn↾BMn (X ) (t ) for all t ≥ 0.

(2) We say that f is a completely Lipschitz in small scale embedding if it is completely
Lipschitz in small scale and there is L ≥ 1 such that

ρss
f (t ) ≥ 1

L
t for all t ≥ 0.

With our notion of nonlinear small scale embeddability being established, we now describe a
linear property which is preserved under such notion. Recall that an operator space X is called
Hilbertian if it is (linearly) isometric to a Hilbert space and homogeneous if for every linear map
u : X → X we have ∥u∥cb = ∥u∥. Then, if X is a homogeneous Hilbertian operator space with
dim(E) ≥ n, we can unambiguously define

κn(X ) =

∥∥∥∥∥∥∥∥∥∥


e1 0 . . . 0
e2 0 . . . 0
...

...
. . .

...
en 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

Mn (X )

.

where {e1, . . . ,en} is an arbitrary orthonormal set in X . Our main results about rigidity of operator
spaces with respect to nonlinear embeddings will be based on the asymptotic behavior of κn(X ).
If (an)n and (bn)n are positive real numbers we use the common notation that an ≃ bn meaning
that there is L ≥ 1 such that an/L ≤ bn ≤ Lan for all n ∈N.

The following is our main theorem about the preservation of the linear geometry of operator
spaces by completely Lipschitz in small scale embeddings.

Theorem 7. Let X and Y be homogeneous Hilbertian operator spaces. If there is a completely
Lipschitz in small scale embedding BX → Y , then κn(X ) ≃ κn(Y ).

Theorem 7 is obtained in two stages, one giving the lower estimate and other the upper (see
Theorems 32 and 35, respectively). For each of these weaker results, the hypotheses are also much
weaker.

In order to obtain applications of Theorem 7, it is important to compute, or at least estimate,
κn(X ) for some operator spaces. Our main source of examples comes from interpolating operator
spaces. We refer the reader to Section 4 and the references therein for precise definitions. Here,
we simply mention that if X and Y are homogeneous Hilbertian operator spaces and θ ∈ [0,1],
(X ,Y )θ denotes the θ-interpolation operator space of X and Y . We compute the following (R and
C denote the row and the column operator spaces, respectively, see Section 4):

• κn((R,C )θ) = nθ/2 (Corollary 25),
• κn((min(ℓ2),max(ℓ2))θ) = nθ/2 (Corollary 25),
• κn((R ∩C ,R +C )θ) = nθ/2 (Corollary 26), and
• κn(Φ) ≃p

n, whereΦ is the Fermionic operator space (Proposition 27).

In particular, the computations above allow us to conclude the following:

Corollary 8. Let θ,γ ∈ [0,1],

• X ∈ {(R,C )θ, (min(ℓ2),max(ℓ2))θ , (R ∩C ,R +C )θ}, and
• Y ∈ {(R,C )γ, (min(ℓ2),max(ℓ2))γ, (R ∩C ,R +C )γ}.

If there is a completely Lipschitz in small scale embedding f : BX → Y , then θ = γ.
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Note that due to the very definition of κn , Theorems 7, 32, and 35 deal exclusively with maps
BX → Y where X and Y are homogeneous Hilbertian operator spaces. In Section 6, we use local
techniques to push things beyond the Hilbertian setting and prove a result similar to the lower
bound in Theorem 7 in the case where X is not Hilbertian (see Theorem 38). We defer the detailed
statement to Section 6 to avoid introducing various technical definitions here, and for the
moment we only state a corollary of it to illustrate the kind of results we obtain. Recall that from
Dvoretzky’s theorem for operator spaces (see [25, Corollary 1.5]), for any infinite-dimensional
operator space X there is an infinite-dimensional homogeneous Hilbertian operator space Z
which is completely isometric to a subspace of an ultrapower of X (see [27, Section 2.8] for more
details on ultraproducts of operator spaces). We call such a space a Dvoretzky space for X .

Corollary 9. Let X be an infinite-dimensional operator space, and let Z be a Dvoretzky space for
X . Let Y be a homogeneous Hilbertian operator space such that κn(Y )≳ nc for some c ∈ [0,1/2]. If
there is a completely Lipschitz in small scale embedding BX → Y , then κn(Z )≳ nc/(1+2c).

The conclusion in Corollary 9 is weaker than the lower bound in Theorem 7, which is not sur-
prising since the assumption on Z is weaker. Moreover, let us emphasize that it is significantly
weaker: while the finite-dimensional subspaces of Z are uniformly isomorphic to subspaces of
X because ultrapowers of a Banach space are finitely representable in the original space [17,
Proposition 6.1], in the operator space setting the corresponding statement with complete iso-
morphisms does not hold [13, p. 88].

2. Revisiting completely coarse maps

In this section, we prove Theorem 3. The next lemma gives a sufficient condition for a map
BX → Y to be the restriction of an R-linear map.

Lemma 10. Let X and Y be normed R-vector spaces, and let f : BX → Y be a bounded function
such that f (0) = 0 and

f

(
1

2
(x + z)

)
= 1

2

(
f (x)+ f (z)

)
for all x, z ∈ BX . Then f is the restriction of an R-linear function X → Y .

Proof. Firstly, for computational reasons, it will be useful to assume that f is defined on 2 ·BX .
This is not an issue since, replacing f with f ( ·

2 ), we can assume that f is defined on the whole
2·BX and it still satisfies the assumptions of the lemma for all x, z ∈ 2·BX . Moreover, since f (0) = 0,
we must have

f

(
1

2
x

)
= 1

2
f (x) for all x ∈ 2 ·BX . (1)

Therefore, in order to show that f : 2·BX → Y is the restriction of anR-linear function, it is enough
that f ↾BX is so.

Claim 11. For all x1, . . . , xn ∈ BX , we have

f
( x1 +·· ·+xn

n

)
= 1

n

(
f (x1)+·· ·+ f (xn)

)
.

Proof. This follows from induction on n. For n = 1, the result is trivial; suppose then it holds for
some n ∈N. By (1), we have

f
( x + z

2

)
= 1

2
f (x)+ 1

2
f (z) = f

( x

2

)
+ f

( z

2

)
(2)
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for all x, z ∈ 2 ·BX . Analogously, the induction hypothesis also implies that

f
( x1 +·· ·+xn

n

)
= f

( x1

n

)
+·· ·+ f

( xn

n

)
(3)

for all x1, . . . , xn ∈ BX (notice that the induction hypothesis does not allow us to conclude this
holds for all elements in 2 ·BX though).

Notice that if x1, . . . , xn+1 ∈ BX , then

2x1

n +1
∈ BX and

2(x2 +·· ·+xn+1)

n +1
∈ 2 ·BX .

Therefore, by (2) and (3), we have

f
( x1 +·· ·+xn+1

n +1

)
= f

(
2x1/(n +1)+2(x2 +·· ·+xn+1)/(n +1)

2

)
(4)

= f
( x1

n +1

)
+ f

( x2 +·· ·+xn+1

n +1

)
= f

( x1

n +1

)
+ f

(
nx2/(n +1)+·· ·+nxn+1/(n +1)

n

)
= f

( x1

n +1

)
+ f

( x2

n +1

)
+·· ·+ f

( xn+1

n +1

)
for all x1, . . . , xn+1 ∈ BX . In particular, if all x1, . . . , xn+1 are the same, say x = xi for all i ∈ {1, . . . ,n},
this shows that

f
( x

n +1

)
= 1

n +1
f (x) for all x ∈ BX .

Revisiting (4) with this extra information, we conclude that

f
( x1 +·· ·+xn+1

n +1

)
= 1

n +1

(
f (x1)+·· ·+ f (xn+1)

)
for all x1, . . . , xn+1 ∈ BX as desired. □

The previous claim together with the fact that f (0) = 0 gives

f (qx) = q f (x) for all q ∈ [0,1]∩Q and all x ∈ BX , (5)

which also implies that

f (qx) = q f (x) for all q ∈ [0,∞)∩Q and all x ∈ BX with qx ∈ BX . (6)

For each x ∈ X \ {0}, pick rx ∈ [2,3) such that ∥rx x∥X ∈Q. Define a map F : X → Y by letting

F (x) =
{

rx∥x∥X f
(

x
rx∥x∥X

)
, x ̸= 0,

0, x = 0.
(7)

It follows immediately from (6) that F is an extension of f ↾ BX . We are left to notice that F is
R-linear. For additivity, notice that if x, z ∈ 1

2 ·BX , then x + z ∈ BX and, by (6), we must have

f (x + z) = f
(
2

x + z

2

)
= 2 f

( x + z

2

)
= f (x)+ f (z). (8)

Fix x, z ∈ X and pick M > 1 large enough so that

x

Mrx+z∥x + z∥X
,

z

Mrx+z∥x + z∥X
∈ 1

2
·BX

and
rx∥x∥)X

Mrx+z∥x + z∥X
,

rz∥z∥X

Mrx+z∥x + z∥X
≤ 1.
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Then, (5) and (8) together imply

1

M
·F (x + z) = rx+z∥x + z∥X

M
f

(
x + z

rx+z∥x + z∥X

)
= rx+z∥x + z∥X f

(
x + z

Mrx+z∥x + z∥X

)
= rx+z∥x + z∥X

(
f

(
x

Mrx+z∥x + z∥X

)
+ f

(
z

Mrx+z∥x + z∥X

))
= 1

M
(F (x)+F (z)).

So, F is additive.
We now show that F (t x) = tF (x) for all t ≥ 0 and x ∈ X . For that, fix x ∈ X and define a map

gx : R→ X by letting
gx = F (t x)− tF (x) for all t ∈R.

As f is bounded, gx is bounded on bounded sets. On the other hand, since F is additive, we have

gx (t +1) = F (t x +x)− (t +1)F (x) = F (t x)− tF (x) = g (t )

for all t ∈R, i.e., gx is 1-periodic. Therefore, gx must be bounded. However, as F is additive, so is
gx . Since a bounded additive function must be zero, the result follows. □

The following is elementary and it is the operator space version of [20, Lemma 1.4]. This will
be used in the proof of Theorem 3 below.

Proposition 12. Let X and Y be operator spaces and K ⊆ X be convex. Then a map f : K → Y is
completely coarse if and only if there is C > 0 so that

∥ f ([xi j ])− f ([yi j ])∥Mn (Y ) ≤C∥[xi j ]− [yi j ]∥Mn (X ) +C

for all n ∈N and all [xi j ] ∈ Mn(K ). □

Before presenting the proof of Theorem 3, we recall the concept of Hadamard matrices: a
Hadamard matrix is a square matrix whose entries are either 1 or−1 and whose rows are mutually
orthogonal. To notice that Hadamard matrices of arbitrarily large size exist, we define matrices
A2k ∈ M2k (C) inductively by letting

A2 =
(
1 1
1 −1

)
and A2k+1 =

(
A2k A2k

A2k −A2k

)
for all k > 1.

Proof of Theorem 3. Our goal to conclude that f : BX → Y is the restriction of an R-linear map is
to use Lemma 10. Hence, we fix distinct x, z ∈ BX and show that

f

(
1

2
(x + z)

)
= 1

2

(
f (x)+ f (z)

)
.

For convenience, let

x0 = x + z

2
and h = x − z

2
.

so x0, h, x0 +h, and x0 −h are still in BX , and we are left to show that

f (x0) = 1

2

(
f (x0 +h)+ f (x0 −h)

)
. (9)

As x ̸= z, h ̸= 0 and we can use Hahn–Banach to pick ϕ ∈ X ∗ with ϕ(h) = 1. We then set

y0 = f (x0 −h)− f (x0 +h)

2
and define a map g : X → Y by letting

g (x) = f (x)+ϕ(x)y0 for all x ∈ BX .
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Since f andϕ are completely coarse, so is g . By Proposition 12, there exists a constant C > 0 such
that for any n ∈N and [xi j ]i j , [yi j ]i j ∈ Mn(BX ), we have∥∥∥[

g (xi j )− g (yi j )
]

i j

∥∥∥
Mn (Y )

≤C
∥∥[xi j − yi j ]i j

∥∥
Mn (X ) +C . (10)

Let (A2k )∞k=1 be the Hadamard matrices and, for each k ∈N, write A2k = [ak
i , j ]2k

i , j=1. Since each

ak
i . j is either 1 or −1, we have that each x0 +hak

i j belongs to BX . In particular, if 12k denotes the

2k ×2k scalar matrix whose entries are all 1,

12k ⊗x0 + A2k ⊗h =
[

x0 +hak
i j

]2k

i , j=1
∈ M2k (BX )

and

12k ⊗x0 = [x0]2k

i , j=1 ∈ M2k (BX )

for all k ∈N. Hence, by (10),∥∥∥[
g (x0 +hak

i j )− g (x0)
]2k

i , j=1

∥∥∥
M

2k (Y )
≤C

∥∥A2k ⊗h
∥∥

M
2k (X ) +C .

Notice that, by the formula of g , g (x0 +h) = g (x0 −h). Therefore∥∥g (x0 +h)− g (x0)
∥∥

Y ·∥∥12k

∥∥
M

2k
≤C · ∥h∥X ·∥∥A2k

∥∥
M

2k
+C ,

which yields ∥∥g (x0 +h)− g (x0)
∥∥

Y 2k ≤C ∥h∥X

√
2k +C .

Letting k tend to infinity, we can conclude that g (x0 + h) = g (x0). Unfolding definitions, this
means that

f (x0)+ϕ(x0)y0 = f (x0 +h)+ϕ(x0 +h)y0,

which, rearranging the terms and using thatϕ(h) = 1, give f (x0) = f (x0+h)+y0. By the definition
of y0, this implies

f (x0) = f (x0 +h)+ f (x0 −h)− f (x0 +h)

2
= 1

2

(
f (x0 +h)+ f (x0 −h)

)
.

This shows that (9) holds and we are done. □

Remark 13. The results of [6] are stated for both real and complex operator spaces. Since we
make heavy use of complex interpolation in the present work, for simplicity we have written the
whole paper in terms of complex operator spaces. Nevertheless, note that the proof of Theorem 3
yields the same result for real operator spaces.

3. Nonlinear small scale maps

In this section, we produce examples of maps BX → Y which are completely Lipschitz in small
scale but are not the restriction of R-linear maps. This culminates in Theorem 5 and, more
generally, in Theorem 16.

We start recalling some standard notation. Given m ∈ N and Banach spaces X1, . . . , Xm , the
sum

⊕m
k=1 Xk will always denote the Banach space obtained by considering the vector space⊕m

k=1 Xk endowed with the ℓ∞-sum. If moreover each Xk is an operator space, then
⊕m

k=1 Xk

is also an operator space endowed with the ℓ∞-sum operator space structure. Since m-linear
maps will play an important role in what follows, we quickly recall some basic terminology. Given
Banach spaces X1, . . . , Xm ,Y , the norm of an m-linear map Q :

⊕m
k=1 Xk → Y is the infimum of all

L > 0 such that ∥∥Q(x(1), . . . , x(m))
∥∥

Y ≤ L∥x(1)∥X1 · · · · · ∥x(m)∥Xm
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for all (x(1), . . . , x(m)) ∈ ⊕m
k=1 Xk . This infimum is denoted by ∥Q∥ and we say that Q is a bounded

m-linear map if ∥Q∥ <∞. Notice that, if X1, . . . , Xm ,Y are moreover operator spaces, then each
n-amplification Qn :

⊕m
k=1 Mn(Xk ) → Mn(Y ) is also m-linear and hence ∥Qn∥ is well defined.

Definition 14. Let m ∈N, X1, . . . , Xm ,Y be operator spaces, and Q :
⊕m

k=1 Xk → Y be an m-linear
map. We say that Q is completely controlled if3

∥Q∥cc = sup
n

∥Qn∥ <∞.

Proposition 15. Let m ∈N, H be a Hilbert space, and X1, . . . , Xm ⊆B(H) be operator spaces. The
product map P :

⊕m
k=1 Xk →B(H) given by

P (x(1), . . . , x(m)) = x(1) · · · · ·x(m) for all (x(1), . . . , x(m)) ∈
m⊕

k=1
Xk

is a completely controlled m-linear map with ∥P∥cc ≤ 1.

Proof. The m-linearity of P is straightforward. To notice that P is completely controlled, the
crucial tool is the following generalization of Schur’s inequality [30, Satz III] which follows from [9,
Theorem 2.3]: if n ∈N and [xi j ], [zi j ] ∈ Mn(B(H)), then

∥[xi j zi j ]∥Mn (B(H)) ≤ ∥[xi j ]∥Mn (B(H))∥[zi j ]∥Mn (B(H)).

By a straightforward induction, this implies that∥∥∥Pn([x(1)
i j ], . . . , [x(m)

i j ])
∥∥∥

Mn (B(H))
=

∥∥∥[x(1)
i j · · · · ·x(m)

i j ]
∥∥∥

Mn (B(H))

≤
∥∥∥[x(1)

i j ]
∥∥∥

Mn (X1)
· · · · ·

∥∥∥[x(m)
i j ]

∥∥∥
Mn (Xm )

for all n ∈N and all ([x(1)
i j ], . . . , [x(m)

i j ]) ∈⊕m
k=1 Mn(Xk ). This shows that ∥P∥cc ≤ 1. □

The following is our main result to construct nontrivial examples of non-R-linear maps which
are completely Lipschitz in small scale.

Theorem 16. Let m ∈ N, X , X1, . . . , Xm ,Y be operator spaces, T : X → ⊕m
k=1 Xk be a completely

bounded operator, and Q :
⊕m

k=1 Xk → Y be a completely controlled m-linear map. Then Q ◦
T : BX → Y is completely Lipschitz in small scale.

We start with a lemma about small scale behavior of m-linear maps on Banach spaces.

Lemma 17. Let m ∈ N, X1, . . . , Xm ,Y be Banach spaces, and Q :
⊕m

k=1 Xk → Y be a bounded m-
linear map. Then, for all (x(1), . . . , x(m)), (z(1), . . . , z(m)) ∈ B⊕m

k=1 Xk
, we have∥∥Q(x(1), . . . , x(m))−Q(z(1), . . . , z(m))

∥∥
Y ≤ m∥Q∥∥∥(x(1), . . . , x(m))− (z(1), . . . , z(m))

∥∥⊕m
k=1 Xk

.

Proof. We proceed by induction on m ∈N. If m = 1, Q is a bounded linear operator and the result
is immediate. Suppose it holds for m −1, with m ≥ 2, and let us show it is also valid for m. Fix
x(1), . . . , x(m), z(1), . . . , z(m) in B⊕m

k=1 Xk
. Then, as Q is m-linear and as each x(k) has norm at most 1,

it follows that∥∥Q(x(1), . . . , x(m−1), x(m))−Q(x(1), . . . , x(m−1), z(m))
∥∥

Y = ∥∥Q(x(1), . . . , x(m−1), x(m) − z(m))
∥∥

Y

≤ ∥Q∥∥∥x(m) − z(m)∥∥
Xm

.

Let B :
⊕m−1

k=1 Xk → Y be given by

B(w (1), . . . , w (m−1)) =Q(w (1), . . . , w (m−1), z(m))

3We chose to control (no pun intended) the automatic instinct of calling such m-linear map completely bounded since
this definition already exists for m-linear maps and it is not the one given above (see, for instance, [9]).
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for all (w (1), . . . , w (m−1)) ∈⊕m−1
k=1 Xk . So, B is an (m −1)-linear map and, as ∥z(m)∥Xm ≤ 1, we have

∥B∥ ≤ ∥Q∥. Therefore, the induction hypothesis gives that∥∥B(x(1), . . . , x(m−1))−B(z(1), . . . , z(m−1))
∥∥

Y

≤ (m −1)∥Q∥∥∥(x(1), . . . , x(m−1))− (z(1), . . . , z(m−1))
∥∥⊕m−1

k=1 Xk
.

The lemma then follows by the triangle inequality. □

Proof of Theorem 16. Since each amplification Qn is an m-linear map with norm at most ∥Q∥cc,
Lemma 17 gives that∥∥∥Qn([x(1)

i j ], . . . , [x(m)
i j ])−Qn([z(1)

i j ], . . . , [z(m)
i j ])

∥∥∥
Mn (Y )

≤ m∥Q∥cc

∥∥∥([x(1)
i j ], . . . , [x(m)

i j ])− ([z(1)
i j ], . . . , [z(m)

i j ])
∥∥∥⊕m

k=1 Mn (Xk )

for all n ∈N and all ([x(1)
i j ], . . . , [x(m)

i j ]), ([z(1)
i j ], . . . , [z(m)

i j ]) ∈ B⊕m
k=1 Mn (Xk ). By the m-linearity of Qn , if

([x(1)
i j ], . . . , [x(m)

i j ]) and ([z(1)
i j ], . . . , [z(m)

i j ]) have norm at most ∥T ∥cb instead, we obtain the a similar
inequality with the factor ∥T ∥m

cb added to it on the right-hand side. Therefore, we conclude that∥∥(Q ◦T )n([xi j ])− (Q ◦T )n([zi j ])
∥∥

Mn (Y ) =
∥∥Qn(Tn([xi j ]))−Qn(Tn([zi j ]))

∥∥
Mn (Y )

≤ m∥Q∥cc∥T ∥m
cb

∥∥[T (xi j )]− [T (zi j )]
∥∥⊕m

k=1 Mn (Xk )

≤ m∥Q∥cc∥T ∥m+1
cb

∥∥[xi j ]− [zi j ]
∥∥

Mn (X )

for all n ∈N and all [xi j ], [zi j ] ∈ BMn (X ). So,

ωss
Q◦T (t ) ≤ m∥Q∥cc∥T ∥m+1

cb t

for all t ≥ 0. □

Proof of Theorem 5. Let m ∈N and let pm be the complex polynomial given by pm(x) = xm for
all x ∈C. Let A be an operator algebra. Then, by Proposition 15, the map (a1, . . . , am) ∈⊕m

k=1 A 7→
a1 · · ·am ∈ A is completely controlled. Since the map a ∈ A 7→ (a, . . . , a) ∈ ⊕m

k=1 A is completely
bounded, it follows from Theorem 16 that pm is completely Lipschitz in small scale. As any
polynomial is a linear combination of polynomials of the form pm , m ∈N, the result follows. □

The reader familiar with m-linear maps on operator spaces knows that other notions of
“complete boundedness” are also frequently studied. More precisely, if Q :

⊕m
k=1 Xk → Y is an

m-linear map between operator spaces, Q may be completely bounded or jointly completely
bounded. Those are technical definitions which, for brevity, we chose to omit here, see [10, p. 281]
and [2, Section 1.5.11] for the precise definitions of each of them, respectively.4 We finish this
section briefly relating these notions.

Proposition 18. Let m ∈ N, X1, . . . , Xm ,Y be operator spaces, and Q :
⊕m

k=1 Xk → Y be a jointly
completely bounded m-linear map. Then Q is completely controlled with ∥Q∥cc ≤ ∥Q∥jcb, where
∥Q∥jcb denotes the norm of joint complete boundedness of Q (see [2, Section 1.5.11]).

Proof. For simplicity we will write the proof in the case m = 2, the general case is analogous. Let
n ∈ N. Since Q is jointly completely bounded, for every [x(1)

i j ] ∈ Mn(X1) and [x(2)
i j ] ∈ Mn(X2) we

have ∥∥∥[
Q

(
x(1)

i j , x(2)
kl

)]∥∥∥
Mn2 (Y )

≤ ∥Q∥jcb

∥∥∥[
x(1)

i j

]∥∥∥
Mn (X1)

∥∥∥[
x(2)

i j

]∥∥∥
Mn (X2)

4The reader should be warned that some references such as [14] use the terminology completely bounded (resp.
multiplicatively bounded) for the multilinear mappings that are nowadays generally called jointly completely bounded
(resp. completely bounded).
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The desired conclusion now follows from Ruan’s axioms by observing that [Q(x(1)
i j , x(2)

i j )] is an n×n

principal submatrix of the n2 ×n2 matrix [Q(x(1)
i j , x(2)

kl )], that is, there exists a coordinate partial

isometry P ∈ Mn,n2 (C) such that [Q(x(1)
i j , x(2)

i j )] = P [Q(x(1)
i j , x(2)

kl )]P∗. □

Since completely bounded m-linear maps are jointly completely bounded, Proposition 18
shows that many of the multilinear maps that have previously been studied in operator space
theory are completely controlled. Also, in the case of maximal operator spaces there is an
abundance of completely controlled maps (see [27, Chapter 3] for the definition of the minimal
and maximal operator space structures).

Corollary 19. Let m ∈ N, X1, . . . , Xm be Banach spaces, and Y be an operator space. Then any
bounded m-linear map Q :

⊕m
k=1 Xk → Y is completely controlled as a map

⊕m
k=1 max(Xk ) → Y .

Proof. By Proposition 18, it suffices to show that Q is jointly completely bounded. Since jointly
completely bounded m-linear maps correspond to completely bounded linear maps on the pro-
jective operator space tensor product (see [14, Proposition 7.1.2]), and max(X1)⊗̂ · · · ⊗̂max(Xm) =
max(X1⊗̂π · · · ⊗̂πXm), where ⊗π is the Banach space projective tensor product (see [2, Proposi-
tion 1.5.12]), the conclusion follows from the fact that bounded linear maps whose domain is a
maximal operator space are automatically completely bounded. □

The reader familiar with the theory of polynomials on vector spaces will already have rec-
ognized that in the situation of Theorem 16, if X = X1 = ·· · = Xm and T is the diagonal map
T (x) = (x, x, . . . , x), the composition Q ◦T is precisely a polynomial on X . Therefore, one would
expect that the available literature on polynomials on operator spaces might already provide us
with more examples of maps which are completely Lipschitz in small scale. However, this is a
subject that has not yet been developed much: the only significant works in this regard appear to
be [11, 12]. Corollary 19 is closely related to [11, Proposition 9.3], and we next list other examples
of completely Lipschitz in small scale maps that follow from the aforementioned two papers.

Corollary 20. Let m ∈ N and Y an operator space. Then any bounded m-linear map
Q :

⊕m
k=1ℓ∞ → Y is completely controlled.

Proof. This follows from [11, Proposition 9.5], since the Schur multilinear mappings defined in
that paper are easily seen to be completely controlled and thus Theorem 16 yields the desired
result. □

For our last example, the operator space OH mentioned in it is the Hilbert operator space of
G. Pisier, see [27, Chapter 7] for its definition.

Corollary 21. Let (e j )∞j=1 be an orthonormal basis for OH, Y an operator space, and (y j )∞j=1 a
norm null sequence in Y . Let m ≥ 2 be a natural number and define P : OH → Y by

P

( ∞∑
n=1

x j e j

)
=

∞∑
n=1

xm
j y j .

Then P is completely Lipschitz in small scale.

Proof. This follows from [12, Proposition 4.1], since the completely bounded polynomials de-
fined in that paper are constructed as restrictions to the diagonal of jointly completely bounded
multilinear maps. Thus, Proposition 18 and Theorem 16 yield the desired result. □

4. Basics about κn(X ) and examples

In this section, we prove basic properties about the κn ’s and compute κn(X ) for many homoge-
neous Hilbertian operator spaces X . For its definition, see Section 1.
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We start recalling the definition of the row and column operator spaces. Given i , j ∈N, we let
ei , j denote the operator on ℓ2 whose matrix representation has 1 in the (i , j )-th entry and zero
elsewhere. The row and the column operator spaces are then defined to be

R = span{e1, j | j ∈N} and C = span{ei ,1 | i ∈N}.

In particular, both R and C are homogeneous Hilbertian operator spaces.

Example 22. If R and C are the row and column operator spaces, respectively, then κn(R) = 1
and κn(C ) = p

n for all n ∈ N. Moreover, it is clear that these spaces minimize and maximize
κn , respectively, i.e., for any operator space E we have 1 ≤ κn(E) ≤ p

n for all n ∈ N. The lower
bound is obvious since each of the canonical projections Mn(E) → E is completely contractive
and the upper bound follows equally as easily by considering some representation E ⊆B(H) and
computing b(x), where b is the n-by-n E-valued matrix in the definition of κn(E) and x is an
arbitrary normalized vector in H⊕n .

Proposition 23. For any homogeneous Hilbertian operator space X and any n ∈ N, we have
κn(X )κn(X ∗) ≥p

n.

Proof. Let {e j }n
j=1 be an arbitrary orthonormal set in X and {e∗k }n

k=1 be an orthonormal set in X ∗

which is biorthogonal to {e j }n
j=1. Then the product κn(X )κn(X ∗) dominates the norm in Mn2 of

the matrix pairing between 
e1 0 . . . 0
e2 0 . . . 0
...

...
. . .

...
en 0 . . . 0

 and


e∗1 0 . . . 0
e∗2 0 . . . 0
...

...
. . .

...
e∗n 0 . . . 0

 ,

which is exactly
p

n since, as a matrix in Mn2 , it has n entries equal to 1 in the first column and all
other entries 0. □

Interpolation spaces will provide a good source of examples of operator spaces whose κn ’s can
be estimated. For simplicity, we now set some notation: if X0 and X1 are homogeneous Hilbertian
operator spaces and θ ∈ [0,1], we let

Xθ = (X0, X1)θ,

where the interpolation above is taken with respect to some isometric identification X0 ≃ X1

(since both spaces are homogeneous Hilbertian, the specific identification is irrelevant). Due to
its technical definition, we refer the reader to [27, Section 2.7] for the definition of interpolation
operator spaces.

Proposition 24. Consider the interpolation spaces (Xθ)θ∈[0,1] of a given pair (X0, X1) of infinite
dimensional homogeneous Hilbertian operator spaces. The following holds.

(1) κn(Xθ) ≤ κn(X0)1−θκn(X1)θ for all θ ∈ [0,1] and all n ∈N.
(2) If X ∗

0 ≡ X1, then κn(Xθ) ≥p
n/(κn(X1)1−θκn(X0)θ).

Proof.
(1). It is standard in interpolation theory that

∥b∥Mn (Xθ) ≤ ∥b∥1−θ
Mn (X0)∥b∥θMn (X1)

for any b ∈ Mn(Xθ) (see [2, Section 1.2.30]). So, the inequality is immediate.

(2). Since X0 is reflexive and using that X ∗
0 = X1, we have that

X ∗
θ = (X0, X1)∗θ ≡ (X ∗

0 , X ∗
1 )θ ≡ (X1, X0)θ ≡ (X0, X1)1−θ (11)

([27, Theorem 2.7.4]). It then follows from (2) that κn(X ∗
θ

) ≤ κn(X0)θκn(X1)1−θ . Therefore, since
Proposition 23 gives κn(Xθ)κn(X ∗

θ
) ≥p

n, the result follows. □
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Corollary 25. The following holds for θ ∈ [0,1] and n ∈N.

(1) κn((R,C )θ) = nθ/2.
(2) κn((min(ℓ2),max(ℓ2))θ) = nθ/2.

Proof.
(1). It is immediate that κn(R) = 1 and κn(C ) = p

n (Example 22). Therefore, since R∗ ≡ C ([27,
p. 41]), the upper and lower bounds given by Proposition 24 imply that κn((R,C )θ) = nθ/2.

(2). Since the identity R → min(ℓ2) is completely contractive and κn(R) = 1, this im-
plies κn(min(ℓ2)) = 1. Similarly, since the identity max(ℓ2) → C is completely contractive,
κn(max(ℓ2)) ≥ p

n and equality must then hold as κn(max(ℓ2)) ≤ p
n (Example 22). Therefore,

as min(ℓ2)∗ = max(ℓ2) ([27, p. 72]) and as max(ℓ2) is completely isometric to max(ℓ2), the result
then follows from Proposition 24 again. □

As our next result shows, Corollary 25(2) can be considerably generalized. Recall that, if X is
a homogeneous Hilbertian operator space, then Riesz representation gives us a linear isometry
X → X ∗ and this allows us to construct the interpolation spaces (X , X ∗)θ . In order to present a
consequence of this generalization, we recall the definitions of R ∩C and R +C . Let r : ℓ2 → R
and c : ℓ2 →C be canonical isometries. The operator space R ∩C is the Banach space ℓ2 together
with the operator space structure given by the isometric inclusion

x ∈ ℓ2 7−→ (r (x),c(x)) ∈ R ⊕C ⊆B(ℓ2)⊕B(ℓ2).

The operator space R+C is the quotient (R⊕1C )/∆, where∆= {(r (x),−c(x)) | x ∈ ℓ2} ([27, p. 194]).

Corollary 26. Let X be a homogeneous Hilbertian space such that the identity R → X has cb-
norm 1. Then, κn((X , X ∗)θ) = nθ/2 for all θ ∈ [0,1] and all n ∈N. In particular, κn((R∩C ,R+C )θ) =
nθ/2 for all θ ∈ [0,1] and all n ∈N.

Proof. Since the identity R → X has cb-norm 1, its adjoint X ∗ → C also has cb-norm 1. So, the
proof follows exactly as the one of Proposition 25(2). The last statement follows since the identity
R → R ∩C is clearly completely contractive and (R ∩C )∗ ≡ R +C ([27, p. 194]). □

For our next example, we recall the definition of Fermionic operator spaces. Let H be a Hilbert
space and (vi )i∈I be a family of operators in B(H) such that

vi v j + v j vi = 0 and vi v∗
j + v∗

j vi = δi , j IdH

for all i , j ∈ I , where (δi , j )i , j∈I are the Kronecker deltas. Then, the Fermionic operator space
associated to I is

Φ(I ) = span{vi | i ∈ I }.

It turns out the space above does not depend on (vi )i∈I per se but only on I . We refer to [27,
Theorem 9.3.1] for a proof of that. For shortness, if I = {1, . . . ,n}, we writeΦn forΦ({1, . . . ,n}).

Proposition 27. For any infinite set I , we have that κn(Φ(I )) ≃p
n.

Proof. The upper bound κn(Φ) ≤ p
n is immediate since it holds for any homogeneous Hilber-

tian operator space (Example 22). Let Cn denote ℓn
2 with the column operator space structure,

i.e., Cn = span{e1,i | i ∈ {1, . . . ,n}}. It is shown in [27, Equation (10.22)] that the identities Φn →Cn

have uniformly bounded cb-norms. Therefore, κn(Φ(I )) ≳ κn(C ). Since, κn(C ) = p
n, the result

follows. □

In the first version of this paper, based on the examples for which we have been able to
calculate κn(X ), we asked whether the inequality in Proposition 23 is always an equality, and
also asked about the possible growth rates for the sequence

(
κn(X )

)∞
n=1. We thank the referee

for providing us with the proofs of the following two propositions, which completely answer the
aforementioned questions.
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Proposition 28. For any homogeneous Hilbertian operator space X and any n ∈ N, we have
κn(X )κn(X ∗) =p

n.

Proof. Note that, using ⊗ to denote the injective tensor product of operator spaces, and letting
(ei )i be an orthonormal basis for X ,

κn(X ) =
∥∥∥∥∥ n∑

i=1
ei ,1 ⊗ei

∥∥∥∥∥
Mn (X )

=
∥∥∥∥∥ n∑

i=1
ei ,1 ⊗ei

∥∥∥∥∥
Cn⊗X

= ∥Id : Rn −→ Xn∥cb

where we have used the standard identification Cn ⊗ X ≡ CB(C∗
n , X ), and Id : Rn → Xn is the

canonical isometry sending an orthonormal basis of Rn to one of Xn . Therefore,

κn(X )κn(X ∗) = ∥Id : Rn −→ Xn∥cb ∥Id : Xn −→Cn∥cb .

On the other hand, by [27, Theorem 7.8], there exist u : Rn → Xn and v : Xn → Cn such that
vu = Id and ∥u∥cb ∥v∥cb = p

n. Next we use Zhang’s averaging technique [32, 33] (see also [27,
Proposition 10.1] for a very similar proof using this type of argument). By homogeneity and using
the singular value decomposition of an n×n matrix, we can assume that u is a diagonal operator
with diagonal entries λ1, . . . ,λn > 0. Thus v must also be diagonal, with reciprocal diagonal
entries. If S : Rn → Rn and T : Xn → Xn denote the “cyclical shift” isometries given by Se1,i = e1,i+1

and Tei = ei−1 (where the indices are taken modulo n), note that TuS is diagonal with diagonal
entries λ2, . . . ,λn ,λ1. Once again by homogeneity, ∥TuS∥cb = ∥u∥cb. It now follows from applying
similar arguments with higher powers of S and T , together with the triangle inequality, that

∥u∥cb ≥ 1

n

∥∥∥∥∥ n∑
i=1

T i uSi

∥∥∥∥∥
cb

= λ1 +·· ·+λn

n
∥Id : Rn −→ Xn∥cb ,

and analogously

∥v∥cb ≥ λ−1
1 +·· ·+λ−1

n

n
∥Id : Xn −→Cn∥cb .

Applying the Arithmetic Mean-Geometric Mean inequality we thus conclude
p

n = ∥u∥cb ∥v∥cb ≥ ∥Id : Rn −→ Xn∥cb ∥Id : Xn −→Cn∥cb ≥ ∥Id : Rn −→Cn∥cb =p
n,

yielding the desired conclusion. □

Proposition 29.
(1) Let X be a homogeneous Hilbertian operator space. Then the function n ∈ N 7→

n−1/2κn(X ) ∈R is decreasing.
(2) Let φ : N → R be an increasing function satisfying that φ(1) = 1 and n 7→ n−1/2φ(n) is

decreasing. Then there exists an (infinite dimensional) Hilbertian homogeneous operator
space X such that for every n ∈ N we have κn(X ) = φ(n). (Note that these conditions are
optimal, because of part (1) and the clear fact that the sequence of the κn ’s is increasing
and takes the value 1 at 1).

Proof.
(1). Let X ⊆B(H) be a completely isometric embedding. Then, once again denoting by (ei )i an
orthonormal basis for X ,

κn(X )2 =
∥∥∥∥∥ n∑

i=1
ei ,1 ⊗ei

∥∥∥∥∥
2

Mn (B(H))

=
∥∥∥∥∥ n∑

i , j=1
(e∗j ,1 ⊗e∗j )(ei ,1 ⊗ei )

∥∥∥∥∥
Mn (B(H))

=
∥∥∥∥∥ n∑

i=1
e∗i ei

∥∥∥∥∥
B(H)

. (12)

Therefore,

κn+1(X )2 =
∥∥∥∥∥n+1∑

i=1
e∗i ei

∥∥∥∥∥
B(H)

= 1

n

∥∥∥∥∥n+1∑
j=1

∑
i ̸= j

e∗i ei

∥∥∥∥∥
B(H)

≤ 1

n

n+1∑
j=1

∥∥∥∥∥∑
i ̸= j

e∗i ei

∥∥∥∥∥
B(H)

= n +1

n
κn(X )2,

from where it follows that (n +1)−1/2κn+1(X ) ≤ n−1/2κn(X ).
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(2). For each n ∈ N, let Cn be the set of all contractions of rank at most n on ℓ2. We define an
operator space X by setting, for each m ∈N and each x ∈ Mm(ℓ2),

∥x∥Mm (X ) = max
{
∥x∥Mm (R) , sup

n≥1
sup

P∈Cn

n−1/2φ(n)∥Pm x∥Mm (C )

}
.

It is clear that these are norms satisfying Ruan’s axioms, and that at level k = 1 the norm
agrees with the usual norm on ℓ2. The resulting operator space is also homogeneous, since
for a linear map u : ℓ2 → ℓ2 we have ∥um x∥Mm (R) ≤ ∥u∥∥x∥Mm (R) (by homogeneity of R) and
supP∈Cn

∥Pmum x∥Mm (C ) ≤ ∥u∥supQ∈Cn
∥Qm x∥Mm (C ) (because the rank of Pu is at most that of

P ). Recall that for y = ∑m
i=1 ei ,1 ⊗ ei we have

∥∥y
∥∥

Mm (R) = 1 and
∥∥y

∥∥
Mm (C ) = p

m. For any
contraction P on ℓ2, since Pm y = ∑m

i=1 ei ,1 ⊗Pei a calculation analogous to (12) together with
the triangle inequality shows that we have

∥∥Pm y
∥∥

Mm (C ) ≤
p

m, and therefore for n ≥ m we have
supP∈Cn

∥∥Pm y
∥∥

Mm (C ) =
p

m. In the case n < m, for any P ∈ Cn we have, using once again the
standard identification Cm ⊗Cm ≡ CB(C∗

m ,Cm)∥∥Pm y
∥∥

Mm (C ) =
∥∥∥∥∥ m∑

i=1
ei ,1 ⊗Pei ,1

∥∥∥∥∥
Mm⊗Cm

=
∥∥∥∥∥ m∑

i=1
ei ,1 ⊗Pei ,1

∥∥∥∥∥
Cm⊗Cm

= ∥P : Rm −→Cm∥cb = ∥P∥HS ≤
√

rank(P )∥P∥ ≤p
n,

where we have used that for a linear map Rm → Cm the completely bounded norm agrees with
the Hilbert–Schmidt norm [27, Equation (1.5)]. Moreover, the inequality above is achieved by
taking P to be the orthogonal projection onto a subspace generated by an n-element subset of
the canonical basis. Therefore, we conclude that

κm(X ) = ∥∥y
∥∥

Mm (X ) = sup
n≥1

n−1/2φ(n)
√

min{n,m} =φ(m)

as desired. □

5. Small scale rigidity of κn(E)

In this section, we now show how the κn ’s impact the existence of small scale Lipschitz maps
between operator spaces. The results herein will culminate in Theorem 7. For that, in order
to obtain the equivalence κn(X ) ≃ κn(Y ), we prove the inequalities ≲ and ≳ separately, see
Theorems 32 and 35, respectively. We emphasize this here since each of these partial results have
weaker hypotheses than Theorem 7.

We start with a lemma relating the κn ’s with a similar quantity computed with respect to
weakly null sequences instead of orthonormal sets.

Lemma 30. Let X be an infinite dimensional homogeneous Hilbertian operator space, b ≥ a > 0,
and let (xm)m be a weakly null sequence in X such that ∥xm∥ ∈ [a,b] for all m ∈ N. Then, for all
ε> 0, there is an infinite M⊆N such that

(a −ε)κn(X ) ≤

∥∥∥∥∥∥∥∥∥∥


xm1 0 . . . 0
xm2 0 . . . 0

...
...

. . .
...

xmn 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

Mn (X )

≤ (b +ε)κn(X ).

for all m1 < ·· · < mn ∈M.

Proof. Let (en)n be an orthonormal sequence in X and ε> 0, without loss of generality, assume
ε < a. By going to a subsequence if necessary, a standard gliding-hump argument allows us to
assume that the assignment xm 7→ em defines an isomorphism T : span{xm | m ∈N} → span{em |
m ∈N} such that ∥T ∥ ≤ 1/(a −ε) and ∥T −1∥ ≤ b +ε. As X is a homogeneous space, we must also
have ∥T ∥cb ≤ 1/(a −ε) and ∥T −1∥cb ≤ b +ε, so the result follows. □
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We say that a map f : BX → Y is completely bounded in small scale if there is M > 0 such that

∥ fn([xi j ])∥Mn (X ) ≤ M for all n ∈N and all [xi j ] ∈ BMn (X ).

In order to obtain restrictions for the existence of certain maps, we must also demand the
maps to satisfy some nontrivial lower estimates. The next definition is an “operator space/small
scale” version of the the compression exponent of a metric space X into another space Y
introduced in [16].

Definition 31. Let X and Y be operator spaces. We denote by αss
Y (X ) the infimum of all α≥ 1 for

which there is completely bounded in small scale f : BX → Y and L ≥ 1 such that

∥ f (x)− f (y)∥Y ≥ 1

L
∥x − y∥αX

for all x, y ∈ BX .5

Theorem 32. Given arbitrary homogeneous Hilbertian operator spaces X and Y , we have that
κn(X )α

ss
Y (X ) ≳ κn(Y ).

Proof. Let f : BX → Y be completely bounded in small scale. Suppose α,L ≥ 1 are such that

∥ f (x)− f (y)∥Y ≥ 1

L
∥x − y∥αX for all x, y ∈ BX . (13)

As f is completely bounded in small scale, fix M > 0 such that

∥ fn(a)∥ ≤ M for all a ∈ BMn (X ). (14)

Fix n ∈ N and let (e j ) j be an orthonormal sequence in X . Appealing to Rosenthal’s ℓ1-
theorem (see [29, The Main Theorem]), by going to a subsequence if necessary, we can assume
( f (e j /κn(X ))) j is weakly Cauchy. In particular, ( f (e2 j−1/κn(X ))− f (e2 j /κn(X ))) j is weakly null.
Moreover, (13) implies that ∥∥∥∥ f

(
e2 j−1

κn(X )

)
− f

(
e2 j

κn(X )

)∥∥∥∥
Y
≥ 1

Lκn(X )α

for all j ∈N. Hence, going to a further subsequence if necessary, Lemma 30 allows us to assume
that ∥∥∥∥∥∥∥∥∥∥


f (e1/κn(X ))− f (e2/κn(X )) 0 . . . 0
f (e3/κn(X ))− f (e4/κn(X )) 0 . . . 0

...
...

. . .
...

f (e2n−1/κn(X ))− f (e2n/κn(X )) 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

Mn (Y )

≥ κn(Y )

2Lκn(X )α
.

Let cn ∈ Mn(X ) be the operator in B(ℓ2) whose ( j ,1)-coordinate is e2 j−1/κn(X ), for all j ∈
{1, . . . ,n}, and all other coordinates are zero, and let dn ∈ Mn(X ) be the operator in B(ℓ2)
whose ( j ,1)-coordinate is e2 j /κn(X ), for all j ∈ {1, . . . ,n}, and all other coordinates are zero. So,
∥cn∥Mn (X ) = ∥dn∥Mn (X ) = 1 and (14) gives

∥ fn(cn)− fn(dn)∥Mn (Y ) ≤ 2M .

As

∥ fn(cn)− fn(dn)∥Mn (X ) =

∥∥∥∥∥∥∥∥∥∥


f (e1/κn(X ))− f (e2/κn(X )) 0 . . . 0
f (e3/κn(X ))− f (e4/κn(X )) 0 . . . 0

...
...

. . .
...

f (e2n−1/κn(X ))− f (e2n/κn(X )) 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

Mn (Y )

,

5We point out that the compression exponent of a metric space X into another space Y (see [16]) considers the
supremum of all α ≤ 1 for which a similar inequality holds. This difference comes from the fact that the compression
exponent deals with large scale geometry, while the exponent αss

Y (X ) is supposed to capture small scale behavior.
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the arbitrariness of n ∈N implies that

κn(Y )

2Lκn(X )α
≤ 2M for all n ∈N.

This finishes the proof. □

Corollary 33. Let θ,γ ∈ [0,1],

• X ∈ {(R,C )θ, (min(ℓ2),max(ℓ2))θ , (R ∩C ,R +C )θ}, and
• Y ∈ {(R,C )γ, (min(ℓ2),max(ℓ2))γ, (R ∩C ,R +C )γ}.

Then, αss
Y (X ) ≥ γ/θ.

Proof. Corollaries 25 and 26 show that κn(X ) = nθ/2 and κn(Y ) = nγ/2. Hence, Theorem 32
implies that nαss

Y (X )θ/2 ≳ nγ/2, so, αss
Y (X ) ≥ γ/θ. □

The next definition considers another approach to obtain lower bounds for the small scale
distortion of maps between operator spaces. Similar definitions have already been studied by
C. Rosendal and the first named author in the context of Banach spaces under the names of
uncollapsed and almost uncollapsed maps, see [4, 28].

Definition 34. Let X and Y be operator spaces. We call a map f : BX → Y completely almost
uncollapsed if there are ε> 0 and t ∈ (0,1) such that

∥[xi j ]− [zi j ]∥Mn (X ) = t implies ∥ fn([xi j ])− fn([zi j ])∥Mn (Y ) ≥ ε
for all n ∈N and all [xi j ], [zi j ] ∈ BMn (X ).

Theorem 35. Let X and Y be homogeneous Hilbertian operator spaces. If there is a Lipschitz map
f : BX → Y which is completely almost uncollapsed, then κn(X )≲ κn(Y ).

Proof. The proof resembles the one of Theorem 32 but with the arguments for the upper and
lower estimates replacing each other. For this reason, we start this proof letting X , Y , (cn)n and
(dn)n be as in there.

Since f is completely almost uncollapsed, fix t ∈ (0,1) and ε> 0 such that

∥[xi j ]− [zi j ]∥Mn (X ) = t implies ∥ fn([xi j ])− fn([zi j ])∥Mn (Y ) ≥ ε
for all n ∈N and all [xi j ], [zi j ] ∈ BMn (X ). Since X is a homogeneous Hilbertian space, it immedi-
ately follows that ∥cn −dn∥ =

p
2 for all n ∈ N. Therefore, replacing each of the cn ’s and dn ’s by

(t/
p

2)cn and (t/
p

2)dn , respectively, we can assume that

∥cn −dn∥ = t for all n ∈N.

Our choice of t and ε then give that

∥ fn(cn)− fn(dn)∥Mn (Y ) ≥ ε for all n ∈N. (15)

On the other hand, letting L = Lip( f ), we have∥∥∥∥ f

(
tp

2κn(X )
e2 j−1

)
− f

(
tp

2κn(X )
e2 j

)∥∥∥∥
Y

≤ L

κn(X )
for all j ,n ∈N.

Hence, proceeding as in the proof of Theorem 32 and passing to a subsequence if necessary,
Lemma 30 gives that

∥ fn(cn)− fn(dn)∥Mn (Y ) ≤ 2Lκn(Y )

κn(X )
for all n ∈N. (16)

Equations (15) and (16) together then imply that κn(X )≲ κn(Y ) as desired. □
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Corollary 36. Let θ,γ ∈ [0,1],

• X ∈ {(R,C )θ, (min(ℓ2),max(ℓ2))θ , (R ∩C ,R +C )θ}, and
• Y ∈ {(R,C )γ, (min(ℓ2),max(ℓ2))γ, (R ∩C ,R +C )γ}.

If there is a Lipschitz map f : BX → Y which is completely almost uncollapsed, then θ ≤ γ.

Proof. Corollaries 25 and 26 show that κn(X ) = nθ/2 and κn(Y ) = nγ/2. Hence, Theorem 35
implies that nθ/2 ≲ nγ/2, so, θ ≤ γ. □

Proof of Theorem 7. Suppose there is a completely Lipschitz in small scale map f : BX → Y
which is completely almost uncollapsed. In particular, f is completely bounded in small scale
andαss

Y (X ) = 1. Therefore, Theorem 32 gives that κn(Y )≲ κn(X ) . On the other hand, Theorem 35
implies κn(X )≲ κn(Y ). □

Proof of Corollary 8. This follows from Corollaries 33 and 36. □

6. A foray into the non Hilbertian setting

In this final section, we go beyond the homogeneous Hilbertian case and provide lower bounds
for compression exponents αss

Y (X ) for non-Hilbertian operator spaces X .
Theorem 38 below is in a sense a localized version of Theorem 32. The only significant

difference in its proof is that instead of using tools such as Rosenthal’s ℓ1-theorem to extract
a subsequence from an infinite sequence, we will extract a subsequence of a finite sequence
using the following slight generalization of the original Bourgain–Tzafriri restricted invertibility
theorem [3, Theorem 1.2] (we point out that the version below follows e.g. from [31, Theorem 2]).

Theorem 37. There exists a universal constant D > 0 such that whenever T : ℓn
2 → ℓn

2 is a linear
map with

∥∥Te j
∥∥≥ 1 for each 1 ≤ j ≤ n, where {e j }n

j=1 is the canonical basis of ℓn
2 , then there exists

a subset σ⊆ {1,2, . . . ,n} of cardinality |σ| ≥ Dn/∥T ∥2 such that for any choice of scalars {a j } j∈σ we
have ∥∥∥ ∑

j∈σ
a j Te j

∥∥∥≥ D
( ∑

j∈σ
|a j |2

)1/2
.

For a homogeneous Hilbertian operator space Z and n ∈N, we denote by Zn an n-dimensional
subspace of Z (they are all completely isometric by homogeneity, so there is no ambiguity).
Note that by Example 22, in the statement of the following theorem the interval [0,1/2] covers
all possible values of the constant c.

Theorem 38. Let Z and Y be homogeneous Hilbertian operator spaces. Suppose that κn(Y ) ≳ nc

for some c ∈ [0,1/2]. If X is an operator space for which there exist a constant A ≥ 1 and a sequence
of injective linear mapsϕn : Zn → X such that

∥∥(ϕn)n
∥∥·∥∥(ϕn)−1

∥∥≤ A, then κn(Z )α
ss
Y (X ) ≳ nc/(1+2c).

Proof. Without loss of generality, let us assume that for each n ∈ N we have
∥∥(ϕn)n

∥∥ = 1 and∥∥(ϕn)−1
∥∥ ≤ A. Suppose there is a map f : BX → Y which is completely bounded in small scale

and numbers α,L ≥ 1 such that

∥ f (x)− f (y)∥Y ≥ 1

L
∥x − y∥αX for all x, y ∈ BX . (17)

As f is completely bounded in small scale, fix M > 0 such that

∥ fn(a)∥Mn (Y ) ≤ M for all a ∈ BMn (X ). (18)
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Fix n ∈N and let (e j )2n
j=1 be an orthonormal basis for Z2n . For 1 ≤ j ≤ 2n, let ẽ j =ϕ2n(e j ), and

note that ∥ẽ j ∥ ≤
∥∥e j

∥∥= 1. Note that (17) implies that for 1 ≤ j ≤ n,∥∥∥∥ f

(
ẽ2 j−1

κn(Z )

)
− f

(
ẽ2 j

κn(Z )

)∥∥∥∥
Y
≥ 1

L

∥∥∥∥ ẽ2 j−1

κn(Z )
− ẽ2 j

κn(Z )

∥∥∥∥α
X
= 1

Lκn(Z )α
∥∥ẽ2 j−1 − ẽ2 j

∥∥α
X

≥ 1

Lκn(Z )αAα

∥∥e2 j−1 −e2 j
∥∥α

Z ≥ 1

Lκn(Z )αAα
.

Let cn ∈ Mn(X ) be the matrix whose ( j ,1)-entry is ẽ2 j−1/κn(Z ), for 1 ≤ j ≤ n, and all other
entries are zero, and let dn ∈ Mn(X ) be the matrix in Mn(X ) whose ( j ,1)-entry is ẽ2 j /κn(Z ), for all
1 ≤ j ≤ n, and all other entries are zero. Since

∥∥(ϕ2n)2n
∥∥= 1, note that ∥cn∥Mn (X ) ≤ κn(Z )/κn(Z ) =

1. Analogously, ∥dn∥Mn (X ) ≤ 1. Therefore, by (18), we conclude that

∥ fn(cn)− fn(dn)∥Mn (Y ) ≤ 2M .

Letting y j = f (ẽ2 j−1/κn(Z ))− f (ẽ2 j /κn(Z )) for 1 ≤ j ≤ n, the previous inequality means that∥∥∥∥∥∥∥∥∥∥


y1 0 . . . 0
y2 0 . . . 0
...

...
. . .

...
yn 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

Mn (Y )

≤ 2M . (19)

Now, for any λ1,λ2 . . . ,λn ∈C it follows from Ruan’s axioms that

∥∥∥∥∥ n∑
j=1

λ j y j

∥∥∥∥∥
Y

≤ ∥∥[
λ1 λ2 · · · λn

]∥∥
∥∥∥∥∥∥∥∥∥∥


y1 0 . . . 0
y2 0 . . . 0
...

...
. . .

...
yn 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

Mn (Y )

∥∥∥∥∥∥∥∥∥∥


1
0
...
0


∥∥∥∥∥∥∥∥∥∥
≤ 2M

(
n∑

j=1
|λ j |2

)1/2

,

that is, the operator T : Yn → Y which sends the j -th element of the canonical basis to y j has
norm at most 2M . Since

∥∥y j
∥∥

Y ≥ L−1κn(Z )−αA−α for each 1 ≤ j ≤ n, it follows from Theorem 37
that there is a universal constant D such that there is a subset σ = {σ1, . . . ,σm} ⊆ {1,2, . . . ,n} of
cardinality m ≥ Dn

4M 2 L−2κn(Z )−2αA−2α such that the operator T , when restricted to the coordinate
subspace corresponding toσ, is invertible and the norm of the inverse is at most D−1Lκn(Z )αAα.
By homogeneity, the cb-norm of the inverse of said restriction is also bounded by this same
number. Therefore, ∥∥∥∥∥∥∥∥∥∥


yσ1 0 . . . 0
yσ2 0 . . . 0

...
...

. . .
...

yσm 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

Mm (Y )

≥ DL−1κn(Z )−αA−ακm(Y ), (20)

and thus we have from (19) and (20) that

2M ≳
κm(Y )(
κn(Z )A

)α ≳
(n

(
κn(Z )A

)−2α)c(
κn(Z )A

)α = nc(
κn(Z )A

)α(1+2c)
,

where the implied constants are independent of both n and α. It then follows that(
κn(Z )A

)α(1+2c) ≳ nc , so
(
κn(Z )A

)α≳ nc/(1+2c) from where the desired result follows. □
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Remark 39. If the space Z in Theorem 38 satisfies κn(Z ) ≲ nd for some constant d , we get the
lower bound αss

Y (X ) ≥ c
d(1+2c) . However, this bound is trivial when d ≥ 1/4: since c ∈ [0,1/2] by

Example 22, we get 1 ≥ c
d(1+2c) . In particular, Theorem 38 gives no information when Z = OH =

(R,C )1/2.

Remark 40. By [22, Theorem 3.3], the sequence of maps ϕn : Zn → X in the hypotheses of
Theorem 38 is guaranteed to exist whenever X has weak cotype (2, Z∗): we even get the stronger
condition

∥∥ϕn
∥∥

cb

∥∥(ϕn)−1
∥∥ ≤ A for some constant A. Such maps are called complete semi-

isomorphisms in the literature, see [24, Section 3]. Since we will not need the aforementioned
notion of weak cotype in this paper, the reader is directed to [22, Section 2] for the definition.

As a first example of the consequences one can obtain from Theorem 38, we state one that
easily follows from our previous calculations of κn ’s in specific cases.

Corollary 41. Let θ,γ ∈ [0,1],

• Z ∈ {(R,C )θ, (min(ℓ2),max(ℓ2))θ , (R ∩C ,R +C )θ}, and
• Y ∈ {(R,C )γ, (min(ℓ2),max(ℓ2))γ, (R ∩C ,R +C )γ}.

If X is an operator space for which there exist a constant A ≥ 1 and a sequence of injective linear
maps ϕn : Zn → X such that

∥∥(ϕn)n
∥∥ ·∥∥(ϕn)−1

∥∥ ≤ A, (in particular, if X has weak cotype (2, Z∗)),
then αss

Y (X ) ≥ γ
(1+γ)θ .

Now we present an example for some specific operator spaces X , namely the Schatten classes
Sp . See [26, Chapter 1] for the definition of their operator space structure.

Corollary 42. Let 1 < p ≤ 2 and p ′ ∈ [2,∞) be such that 1/p +1/p ′ = 1. Let Y be a homogeneous

Hilbertian space such that κn(Y ) ≳ nc for some c ∈ [0,1/2]. Then αss
Y (Sp ) ≥ 2p ′c

(1+2c) . Moreover, if
p = 1 and c > 0, then αss

Y (S1) =∞.

Proof. By Item (1) of the first theorem in p. 222 of [21], Sp has cotype
(
2,(R ∩C ,R +C )1/p

)
, which

implies weak cotype
(
2,(R∩C ,R+C )1/p

)
. Note that (R∩C ,R+C )1/p = Z∗ for Z = (R∩C ,R+C )1/p ′

by (11), so by Remark 40 we can apply Theorem 38 to get κn(Z )α
ss
Y (Sp ) ≳ nc/(1+2c). But κn(Z ) =

n1/2p ′
by Corollary 26, yielding the conclusion. □

Furthermore, we next show that Theorem 38 can always be applied to non-Hilbertian operator
spaces.

Corollary 43. Let X be an infinite-dimensional operator space, and let Z be a Dvoretzky space for
X . Let Y be a homogeneous Hilbertian operator space such that κn(Y ) ≳ nc for some c ∈ [0,1/2].
Then κn(Z )α

ss
Y (X ) ≳ nc/(1+2c). In particular, if X is a minimal operator space and c > 0 then

αss
Y (X ) =∞.

Proof. By the definition of a Dvoretzky space, Z is contained in an ultrapower of X completely
isometrically. Therefore, approximating the finite dimensional pieces of this containment by
elements in X , it follows straightforwardly that, for all ε> 0 and all n ∈N, X contains a copy of the
n-dimensional subspaces of Z by maps whose n-amplifications are isomorphic embeddings with
distortion at most 1+ε. In particular, for any n ∈N and ε> 0, we can find an injective linear map
ϕn : Zn → X such that

∥∥(ϕn)−1
∥∥≤ 1 and

∥∥(ϕn)n
∥∥≤ 1+ε; here Zn ⊆ Z is a subspace of dimension

n. Therefore, the hypotheses of Theorem 38 are satisfied which yields the conclusion.
If X is minimal, since both ultraproducts and subspaces of minimal operator spaces are

also minimal, then the only possible (separable) Dvoretzky space for X is min(ℓ2). Since
κn(min(ℓ2)) = 1 by Corollary 25, we conclude αss

Y (X ) =∞. □

Proof of Corollary 9. Just as in the proof of Theorem 7, the existence of a completely Lipschitz
in small scale embedding BX → Y implies αss

Y (X ) = 1. Thus, the desired conclusion follows from
Corollary 43. □
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As we have seen in the proof of Corollary 43 above, for any infinite-dimensional operator
space X there is a homogeneous Hilbertian Z which satisfies the condition in Theorem 38. The
opposite is also true: for a given homogenous Hilbertian operator space Z , it is not difficult to find
nonhomogeneous and not Hilbertian operator spaces X satisfying the desired condition (and not
containing Z ). For example, take the ℓp -sum

(⊕∞
n=1 Zn

)
ℓp

for p ∈ (1,∞) \ {2}, which obviously
contains completely isometric copies of the Zn but is not homogeneous since it also contains a
completely 1-complemented copy of ℓp , which is not homogeneous [19, p. 137].
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