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Abstract. In this paper, we focus on the rigidity of C 2+-smooth codimension-one stable foliations of Anosov
diffeomorphisms. Specifically, we show that if the regularity of these foliations is slightly bigger than 2, then
they will have the same smoothness of the diffeomorphisms.

Résumé. Dans cet article, nous nous concentrons sur la rigidité des foliations stables de codimension un des
difféomorphismes d’Anosov en C 2+. Plus précisément, nous montrons que si la régularité de ces foliations
est légèrement supérieure à 2, alors elles auront la même régularité que les difféomorphismes.
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1. Introduction

Let f be a C r -smooth (r ≥ 1) Anosov diffeomorphism of a smooth closed Riemannian manifold
M , i.e, there exists a D f -invariant splitting T M = E s

f ⊕ E u
f such that D f is contracting on E s

f
and expanding on E u

f , uniformly. It is well known that the distributions E s
f and E u

f are Hölder
continuous and uniquely integrable to foliations F s

f and F u
f , respectively with C r -smooth leaves

varing continuously with respect to C r -topology. However, the regularity of these foliations may
not be C r . Indeed, if the diffeomorphism f is C r for r ≥ 2, the foliation F s

f (or symmetrically

F u
f ) is absolutely continuous and if we further assume that it is codimension-one, then it is C 1-

smooth [2, 7, 15] but could not be C 2 in general [2].
In 1991, Flaminio and Katok [3] proposed the following conjecture.
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Conjecture 1 ([3]). If the foliations F s
f and F u

f of a C k -smooth Anosov diffeomorphism f : M →
M are both C 2-smooth, then f is C max{2,k} conjugate to a hyperbolic automophism of an infra-
nilmainfold.

This conjecture can be divided into two parts which are still open. One is the famous conjec-
ture of Smale [20] which expects to classify the Anosov diffeomorphisms in the sense of topology,
i.e, every Anosov diffeomorphism is topologically conjugate to a hyperbolic automophism of an
infra-nilmainfold. The other one is a rigidity issue, i.e, whether the smooth foliation leads to a
higher regularity of the conjugacy or not, since the conjugacy between two Anosov diffeomor-
phisms is usually Hölder continuous only.

The topological classification conjecture has some evidences [4, 13, 14]. For instance, when
E s

f (or E u
f ) is codimension-one, then M is a torus. Moreover, under the assumption of M is

a nilmanifold, f is conjugate to a hyperbolic algebraic model. These are also why researches
of rigidity usually focus on the toral Anosov diffeomorphisms. The rigidity issue has been
extensively and deeply studied under some restriction of Lyapunov exponent [6, 12, 18]. However
we know few of the rigidity on smooth foliation. Indeed, as far as authors know, there are only
partial answer in [3, 5, 8, 12].

In [3], Flaminio and Katok proved that a volume-preserving Anosov diffeomorphism f of 2-
torus T2 with C r (r ≥ 2) stable and unstable foliations is C r conjugate to a linear one. Moreover,
they obtained a similar result for an Anosov diffeomorphism f of T4 preserving a symplectic
form with C∞-smooth stable and unstable foliations. However de la Llave [12, Theorem 6.3]
constructed a counterexample on Td (d ≥ 4), precisely, for any k ∈ N there exist hyperbolic
automorphism A :Td →Td , Anosov diffeomorphism f :Td →Td and a C k -conjugacy h between
f with A such that h is not C k+1-smooth.

As a corollary of [3], C 2-regularity of hyperbolic foliation on T2 implies higher-regularity of
itself. In a same sense of such bootstrap of foliation, Katok and Hurder [8] proved that for a
C r (r ⩾ 5) volume-preserving Anosov diffeomorphism f of T2, if distributions E s\u

f are C 1,ω, i.e,

the derivatives are respectively of class ω(s) = o(s| log(s)|), then F s/u
f are actually C r−3-smooth

and f is C r−3-conjugate to a toral hyperbolic automorphism. Similarly, Ghys [5] showed that for
a C r (r ≥ 2) Anosov diffeomorphism f of T2, if the stable foliation F s

f is C 1+Lip-smooth, then it is
actually C r -smooth.

Our aim in this paper is getting higher regularity of codimension-one hyperbolic foliations
under the assumption of more or less C 2-smoothness, see Theorem 2 and Theorem 6. In
particular, we get some rigidity results on T2. Let us give two notations. We denote by λu

f (x) the
sum of Lyapunov exponents (if it exists) of f on the unstable subbundle at the point x, namely,

λu
f (x) = lim

n→+∞
1

n
log

∣∣∣det
(
D f n |E u

f (x)
)∣∣∣.

For r > 1, let r∗ =
{

r −1+Lip, r ∈N
r, r ∉N or r =+∞.

Theorem 2. Let f : Td → Td (d ≥ 2) be a C r (r > 2) Anosov diffeomorphism with the (d − 1)-
dimensional C 2+ε-smooth (ε> 0) stable foliation F s

f . Then F s
f is C r∗-smooth and λu

f (p) ≡λu
A , for

all periodic points p of f , where A is the linearization of f .

Remark 3. Here we briefly explain why we just get C r∗-smoothness. In this paper, the regularity
of foliation is given by foliation chart, see Section 2 for precise definition. Instead of the regularity
of local chart, we will first prove that the foliation has C r -smooth holonomy. However, the
regularity of foliation may be lower than its holonomy, e.g., see [16, Section 6].
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In particular, we have the following corollary linking the regularity of foliation with Lyapunov
exponents of its transversal.

Corollary 4. Let f be a C r (r > 2) Anosov diffeomorphism of Td (d ≥ 2) with the (d − 1)-
dimensional stable foliation F s

f and linearization A : Td → Td . Then the followings are equiv-
alent:

(1) There exists small ε> 0 such that F s
f is C 2+ε-smooth;

(2) For all periodic points p of f , λu
f (p) ≡λu

A ;
(3) The foliation F s

f is C r∗-smooth.

Remark 5. By the same way of proving “(2) ⇒ (3)” in Corollary 4, one can get an interesting
result for non-invertible Anosov maps with codimension-one unstable foliations. Namely, these
are nearly as smooth as the corresponding map is. Concretely, for a C r (r > 1) non-invertible
Anosov endomorphism f :Td →Td with one-dimensional stable bundle, if there exists unstable
foliation F u

f of f , then F u
f is C r∗-smooth. Indeed, by [1], the existence of F u

f implies λs
f (p) =λs

A
for all p ∈ Per( f ). Then the proof of Corollary 4 leads to C r∗ regularity of F u

f .

We mention in advance that our method to prove Theorem 2 is different from that of [3, 5,
8]. Indeed, we will consider a circle diffeomorphism induced by the codimension-one foliation
and apply KAM theory (see Theorem 14) to it. Hence the regularity C 2+ε of foliation is in fact a
condition of the induced circle diffeomorphism for using KAM. Particularly, whenTd is restricted
to beT2, we can lower the regularity of our assumption to be C 1+AC, i.e, the derivative of foliation
charts are absolutely continuous.

Theorem 6. Let f :T2 →T2 be a C r (r ⩾ 2) Anosov diffeomorphism with the C 1+AC-smooth stable
foliation F s

f . Then F s
f is C r∗-smooth and λu

f (p) ≡ λu
A , for all periodic point p of f , where A is the

linearization of f .

By combining our result and a rigidity result of R. de la Llave [12] which says that constant
periodic Lyapunov exponents implies smooth conjugacy on T2, we have following two direct
corollaries.

Corollary 7. Let f be a C r (r ⩾ 2) Anosov diffeomorphism of T2. If the stable and unstable
foliations of f are both C 1+AC, then f is C r∗ conjugate to its linearization. In particular, f preserves
a smooth volume-measure.

Corollary 8. Let f be a C r (r ⩾ 2) volume-preserving Anosov diffeomorphism of T2. If the stable
foliation of f is C 1+AC, then f is C r∗ conjugate to its linearization.

2. Preliminaries

As usual, a foliation F with dimension l of a closed Riemannian manifold M = M d is C r -smooth,
if there exists a set of C r local charts {(φi ,Ui )}k

i=1 of M such that φi : D l ×Dd−l →Ui satisfies

φi
(
D l × {y}

)⊂F
(
φi (0, y)

)
, ∀y ∈ Dd−l ,

where D l and Dd−l are open disks with dimension l and d − l respectively. The chart (φi ,Ui ) is
called a C r foliation chart.

Let f be a C r -smooth Anosov diffeomorphism of a d-torus Td , i.e., there is a D f -invariant
splitting

TTd = E s
f ⊕E u

f ,

and constants C ,λ> 1, such that for all n > 0, x ∈Td and v s/u ∈ E s/u
f

∥Dx f n(v s )∥ ≤Cλ−n∥v s∥, and ∥Dx f n(vu)∥ ≥Cλn∥vu∥.
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Note that f∗ : π1(Td ) → π1(Td ) also induces a hyperbolic automorphism A :Td →Td [4] which is
called the linearization of f . Denote the A-invariant hyperbolic splitting by

TTd = E s
A ⊕E u

A .

Let i ∈ { f , A}. Denote the foliations tangent to E s
i and E u

i by F s
i and F u

i respectively. It is known
that the leaf Fσ

f (x) (σ= s,u) is an immersed C r submanifold of Td .

Since f and A are always conjugate [4], we denote the conjugacy by h :Td →Td , namely, h is
a homeomorphism such that

h ◦ f = A ◦h

By the topological character of (un)stable foliation, i.e.,

F s
f (x) = {

y ∈Td : d
(

f n(x), f n(y)
)−→ 0,n −→+∞}

,

h preserves the foliations, that is for all x ∈Td ,

h
(
F u

f (x)
)=F u

A

(
h(x)

)
, h

(
F s

f (x)
)=F s

A

(
h(x)

)
.

It is convenient to look at the foliations on the universal cover Rd . Let π : Rd → Td be the
natural projection. Denote by F, A and H : Rd → Rd the lifts of f , A and h :Td →Td respectively.
For convenience, we can assume that H(0) = 0. We denote the lift of Fσ

i (σ = s/u, i = f /A) on
Rd by F̃σ

i which are also the stable/unstable foliation of the lift F /A. Recall that H
(
F̃σ

f

) = F̃σ
A ,

σ= s/u and hence F̃ s
f and F̃ u

f admit the Global Product Structure just like F̃ s
A and F̃ u

A , i.e., each

pair of leaves F̃ s
f (x) and F̃ u

f (y) transversally intersects at exactly one point. Then we can define

the holonomy map Hols
i (i = f /A) induced by the foliation F̃ s

i as

Hols
i ,x,y : F̃ u

i (x) −→ F̃ u
i (y), Hols

i ,x,y (z) = F̃ s
i (z)∩F̃ u

i (y).

Note that the holonomy map Hols
f and foliation F̃ s

f are both absolutely continuous[15]. As
mentioned before, the regularity of foliation may be lower than one of its holonomy. However, we
still have the following lemma. We refer to [16, Section 6 ] for more details about the next lemma
and also the counterexample of foliations whose regularity is strictly lower than the holonomy.

Lemma 9 ([16]). Let f :Td →Td be a C r -smooth (r ≥ 1) Anosov diffeomorphisms. Then

(1) If the holonomy maps Hols
f of F̃ s

f are uniformly C r -smooth, i.e., for any x, y, z ∈ Rd the
holonomy map Hols

f ,x,y is C r and its derivatives (with respect to z) of order ≤ r vary
continuously with respect to (x, y, z), then the foliation F s

f is C r∗-smooth.

(2) If F s
f is a C k -smooth (k ≤ r ) foliation, then the holonomy maps Hols

f of F̃ s
f are uniformly

C k -smooth.

Remark 10. Note that the second item of Lemma 9 is trivial. And the first item is just an
application of Journé’s lemma [9] which asserts that the regularity of a diffeomorphism can
be obtained from the uniformly regularity of its restriction on two tranverse foliations with
uniformly smooth leaves. Indeed, considering a point x ∈ Rd and let α : D l → F̃ s

f (x) and

β : Dd−l → F̃ u
f (x) be two C r -parameterization such that x = (

α(0),β(0)
)
. Then

φ(a,b) := Hols
f ,α(0),α(a)

(
β(b)

)
gives us a foliation chart whose derivatives along D l and Dd−l are both C r . Hence by Journé’s
lemma, it is a C r∗-foliation chart.

On the other hand, the regularity of holonomy induced by F̃ s
f can be given by the smoothness

of the conjugacy H restricted on the transversal direction.
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Lemma 11. Assume that the conjugacy H : Rd → Rd is uniformly C r -smooth along the unstable
foliation F̃ u

f , then the holonomy Hols
f is uniformly C r -smooth.

Proof. For given x, y ∈Rd and z ∈ F̃ u
f (x), the holonomy map satisfies

Hols
f ,x,y (z) = H−1 ◦Hols

A,H(x),H(y) ◦H(z),

since H preserves the foliations. Note that the holonomies Hols
A induced by F̃ s

A are actually
translations. Therefore the holonomies Hols

f has the same regularity as H |F̃ u . □

Combining Lemma 9 and Lemma 11, we can get Theorem 2 and Theorem 6 by proving that H
is C r -smooth along the unstable leaves. Precisely, we will prove the following property.

Proposition 12. Let f : Td → Td be a C r -smooth Anosov diffeomorphism with the (d − 1)-
dimensional C k -smooth (k < r ) stable foliation F s

f . If one of the followings holds,

(1) r > 2 and k > 2;
(2) d = 2,r ≥ 2 and k = 1+AC.

Then the conjugacy H between lifts F and A is uniformly C r -smooth along each unstable leaf.

We will prove this proposition in Section 3. Before that, we note that to get C r -regularity of
H |F̃ u

f
, we can just prove a lower one. Indeed, by an enlightening work of de la Llave[12], one

can get the C r -smoothness from the absolute continuity, see [12, Lemma 4.1, Lemma 4.5 and
Lemma 4.6]. Here we state it for convenience.

Lemma 13 ([12]). Let f :Td →Td be a C r -smooth Anosov diffeomorphism with one-dimensional
unstable foliation F u

f . If one of the followings holds,

(1) The conjugaies H and H−1 are absolutely continuous restricted on the unstable foliation
F̃ u

f and F̃ u
A , respectively.

(2) For all periodic point p of f , λu
f (p) ≡λu

A ;

Then the restriction H |F̃ u
f

is uniformly C r -smooth.

Now we can finish the proof of our main theorems.

Proof of Theorem 2, Corollary 4 and Theorem 6. Let f satisfy the condition of Theorem 2 or
Theorem 6. By Proposition 12, H |F̃ u

f
is smooth, so is h|F u

f
. Hence λu

f (p) ≡ λu
A , for all periodic

point p of f . Combining with Lemma 9 and Lemma 11, we can get these two theorems
immediately.

Note that “(1) ⇒ (2)” of Corollary 4 is given by Theorem 6, “(2) ⇒ (3)” is guaranteed by the
case (2) of Lemma 13 and “(3) ⇒ (1)” is trivial. □

We will get the absolute continuity of H restricted on unstable leaves by applying following
KAM theory. Specifically, we need two linearization theorems of circle diffeomorphisms given by
Katznelson–Ornstein [10] and Khanin–Teplinsky [11]. For convenience, we state the condition
(K.O. condition) in the work of Katznelson–Ornstein [10] here. Let Rα : R→ R be the translation
on R such that Rα(x) = x +α, x ∈ R. Denote the induced rigid rotation on S1 by Rα. Let an be the
coefficients of the continued fraction expansion of α and qn be the denominators, so that

α= 1

a1 + 1
a2+···

and qn+1 = an qn +qn−1.

Let T : S1 → S1 be a C 1+AC diffeomorphism topologically conjugate to Rα. Let Kn = ∥logDT qn∥∞.
We say that the pair (T,α) satisfies the K.O. condition, if Σn≥1(anKn)2 <∞.
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Theorem 14 ([10, 11]). Let T be an orientation-preserving circle diffeomorphism with irrational
rotation number α which is algebraic. Then one has the following two properties

(1) If T is C 2+ϵ-smooth, then T is C 1+ϵ−δ-smoothly conjugate to Rα for any δ> 0.
(2) If the pair (T,α) satisfies the K.O. condition, then T is absolutely continuously conjugate to

Rα.

Remark 15. In particular, the conditions: T is C 1+AC, T ′′/T ′ ∈ Lp for some p > 1 and deg(α) = 2
imply the K.O. condition. Indeed, by [10, Theorem 3.1], the assumption T ′′/T ′ ∈ Lp (p > 1)
implies that Σn≥1(Kn)2 < ∞. Combining this with the fact [19] that deg(α) = 2 if and only if α
has a periodic simple continued fraction expansion, we get the K.O. condition.

3. Absolutely continuous rotation induced by smooth foliation

In this section, we will obtain our main result Proposition 12. To prove it, as mentioned before, we
can consider the circle diffeomorphism induced by the codimenison-one foliation F̃ s

f and show

it is smooth conjugate to a rigid rotation given by F̃ s
A . We use the same notations as Section 2.

For reducing the action of F̃ s
f on F̃ u

f (0) to action on S1, one can apply the Zd -actions. By the

Global Product Structure, the following map T i
n is well defined. For n ∈Zd and i ∈ { f , A},

T n
i : F̃ u

i (0) −→ F̃ u
i (0),

T n
i (x) = F̃ u

i (0)∩F̃ s
i (x +n), ∀x ∈ F̃ u

i (0).

Note that for each n ∈Zd , T n
i (x) = Hols

i ,n,0 ◦Rn(x) where Rn(x) = x +n.

Proposition 16. Assume that F s
f is a C k -smooth foliation. Then for each n ∈Zd , T n

i is C k -smooth,
i ∈ { f , A}. Moreover, one has:

(1) T n
i ◦T m

i = T n+m
i for all n,m ∈Zd ;

(2) H ◦T n
f = T n

A ◦H for all n ∈Zd .

Proof. The regularity of T n
i = Hols

i ,n,0 ◦Rn(x) is directly from the C k -holonomy, since the holo-
nomy is smoother than the foliation (see Lemma 9). And {T n

i }n∈Zd is commutative by the fact
that the holonomy maps are commutative with the Zd -actions on Rd , i.e.,

Rm ◦Hols
i ,x,y (z) = Hols

i ,Rm (x),Rm (y) ◦Rm , ∀m ∈Zd ,∀x, y ∈Rd and ∀z ∈ F̃ u
i (x),

since F̃ s/u
i (x +m) = F̃ s/u

i (x)+m for all x ∈Rd and m ∈Zd . Hence

T n
i ◦T i

m = Hols
i ,n,0 ◦Rn ◦Hols

i ,m,0 ◦Rm

= Hols
i ,n,0 ◦Hols

i ,n+m,n ◦Rn+m = Hols
i ,n+m,0 ◦Rn+m = T n+m

i .

Recall that we can assume H(0) = 0. Note that H preserves the foliation and satisfies H ◦Rm =
Rm ◦H , for all m ∈Zd . Hence

H ◦T n
f = H ◦Hols

f ,n,0 ◦Rn = Hols
A,n,0 ◦H ◦Rn = Hols

A,n,0 ◦Rn ◦H = T n
A ◦H .

This completes the proof of proposition. □

Now we are going to prove Proposition 12. Let {ei }d
i=1 be an orthonormal basis of Rd . We

will reduce a pair of conjugate Zd -actions, for instance (T e1
f ,T e1

A ), to be a pair of conjugate circle
diffeomorphisms and show the conjugacy is absolutely continuous by applying the KAM theory
(Theorem 14). This method has a similar spirit with one used by Rodriguez Hertz, F. in [17].
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Proof of Proposition 12. We pick two unit vector of the normal orthogonal basis, for example
e1,ed . Assume that F s

f is a C k -smooth codimension-one foliation, where k satisfies the condition

of proposition. Firstly, we use T e1
f to construct a C k circle diffeomorphism. We still denote the

translation on R by Rα(x) = x +α and the natural projection by π :R→ S1 for short.

Claim 17. There exists a C k diffeomorphism h f :R→ F̃ u
f (0) satisfying the followings

(1) h f ◦R1 = T ed
f ◦h f ;

(2) T f ◦R1 = R1 ◦T f , where T f ≜ h−1
f ◦T e1

f ◦h f :R→R.

Consequently, T e1
f induces a C k diffeomorphism T f on S1 such that π◦T f = T f ◦π.

Proof of Claim 17. We would like to define the conjugacy h f locally and extend it to R by T ed
f .

More specifically, let γ : (−ε,ε) → F̃ u
f (0) be a C r diffeomorphism onto the image and ε be small

enough such that T ed
f

(
γ(−ε,ε)

)∩γ(−ε,ε) =;. This can be done by the C r leaf F̃ u
f (0) and the C k

diffeomorphism T ed
f |F̃ u

f (0) with T ed
f (0) ̸= 0.

Then, we can define a C k diffeomorphism onto the image, h0 : (−ϵ,1] → F̃ u
f (0) such that

h0(x) =


γ(x), x ∈ (−ε,ε);

T ed
f ◦γ(x −1), x ∈ (1−ϵ,1];

ϕ(x), x ∈ [ε,1−ε].

(1)

where ϕ is a C k diffeomorphism onto the image and can be chosen arbitrarily. Let

h f :R−→ F̃ u
f (0),

h f (x)≜ (T ed
f )[x] ◦h0(x − [x]), ∀x ∈R.

where [x] stands for the integer part of x. By the construction, one can verify that h f and T f are
both C k diffeomorphisms and h f ◦R1 = T ed

f ◦h f directly. And T f ◦R1 = R1 ◦T f is guaranteed by
the commutativity of T n

f , see Proposition16. Indeed,

T f ◦R1 = h−1
f ◦T e1

f ◦h f ◦R1 = h−1
f ◦T e1

f ◦T ed
f ◦h f

= h−1
f ◦T ed

f ◦T e1
f ◦h f = (h−1

f ◦T ed
f ◦h f )◦ (h−1

f ◦T e1
f ◦h f ) = R1 ◦T f .

Then we obtain the desired diffeomorphism h f and hence a C k diffeomorphism T f : S1 → S1. □

Claim 18. There exists a C∞ diffeomorphism hA :R→ F̃ u
A(0) satisfying the following

(1) hA ◦R1 = T ed
A ◦hA ;

(2) Rα = h−1
A ◦T e1

A ◦hA , where α is an irrational algebraic number.

In particular, Rα induces a rotation Rα on S1. Moreover if d = 2 (the T2 case), one has deg(α) = 2.

Proof of Claim 18. Let hA : R→ F̃ u
A(0) be the linear map such that hA(0) = 0 ∈ Rd and hA(1) =

T ed
A (0). Then, h−1

A ◦T e1
A ◦hA is actually a translation Rα(x) = x +α, x ∈R. By elementary calculate,

α= x1/xd where v⃗ = (x1, . . . , xd ) (given under the an orthonormal basis {ei }d
i=1) is an eigenvector

of A in F̃ s
A(0). Then α is an irrational algebraic number. Indeed, the irrational eigenvectors of A

implie that there is at least a pair of irrationally related coordinates (xi , x j ), (i ̸= j ) of v⃗ which we
may assume that is (x1, xd ) and by the fact that the set of algebraic numbers is a field. Moreover,
α= x1/xd is a quadratic irrational in the case of d = 2. □
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Since H ◦T e1
f = T e1

A ◦H (see Proposition 16), H also induces a conjugacy H : S1 → S1 from T f to

Rα. Indeed, let Ĥ ≜ h−1
A ◦H ◦h f :R→R. Then by Proposition 16, Claim 17 and Claim 18, one has

(1) Ĥ ◦R1 = R1 ◦ Ĥ ;
(2) Rα ◦ Ĥ = Ĥ ◦T f .

In particular, Ĥ :R→R induces H : S1 → S1 with π◦Ĥ = H ◦π. Moreover, H ◦T f = Rα◦H . Namely,
we have the following commutative diagram:

F u
f (0)

h−1
f //

H

��

T
e1
f

��
R

π //

Ĥ

��

T f

��
S1

H

��

T f

��

F u
A (0)

h−1
A

//

T
e1
A

UU
R

π
//

Rα

ZZ S1

Rα

YY

By Theorem14 and Remark 15, H±1 is absolutely continuous, so is Ĥ±1 :R→R. Note that in the
case ofT2 and k = 1+AC, one has that both T f ,T −1

f are C 1+AC-smooth. It follows that there is C > 1

such that |T ′′
f (x)| <C and |T ′

f (x)| > 1
C for Lebesgue-almost everywhere x ∈ S1. Hence T

′′
f /T ′

f ∈ L2.

Thus H = hA ◦ Ĥ ◦h−1
f and H−1 are also absolutely continuous along unstable leaves. Finally,

by Lemma 13, H is C r -smooth restricted on unstable leaves. □
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