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Abstract. Using Douglas theorem on factorization and range inclusion of bounded linear operators, we give
the factorization of Hankel operators, range inclusion of Hankel and Toeplitz operators defined on vector-
valued Hardy spaces.

Résumé. En utilisant le théoreme de Douglas sur la factorisation impliquée par I'inclusion des images de
deux opérateurs linéaires bornés, nous donnons la factorisation des opérateurs de Hankel quand il y a
inclusion des images de deux opérateurs de Hankel ou de Toeplitz définis sur des espaces de Hardy a valeur
vectorielle.
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1. Introduction and Preliminaries
Let & be a Hilbert space (here all Hilbert spaces are separable and over C) and T be a bounded

linear operator on & (T € 28(&) in short). The subspaces Z(T) ={Tx:xe€&}and A/ (T) ={x€&:
Tx = 0} denotes the range space and the null space, respectively. A linear operator T € %(8) is
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said to be bounded below if there exists a constant M = 0 such that | Tx|| = M | x|| for every x € &,
T € %B(&) is said to normal if T* T = TT*, hyponormal if TT* < T* T, and isometry if T*T = I.

Let D be the open unit disc in C, and let & be a Hilbert space. The &-valued Hardy space H2 (D)
(H?(D) if & = C) over D is the Hilbert space of all &-valued analytic functions f(z) = X oanz",
a, € &, z€ D such that

1l = (f ||an||2); <oo.

Let &, be another Hilbert space. Then denote by H gg(éﬂg )(ID) (H%f(g) (D) if &« = &) the set of
AB(&,8,)-valued bounded analytic functions on D which is a Banach space with the norm
defined by

1Olleo = supil®(2)l : 12| < 1}.

An operator-valued analytic function © € Hg . (D) is said to be inner if O(2)*O(z) = Ig a.e.
z€eT.

1.1. Toeplitz and Hankel Operators

In this section we give definitions of Toeplitz and Hankel operators and their basic properties. Let
& be any Hilbert space. Let Lé (T), where T denotes the unit circle in the complex plane, denote
the Hilbert space of all square &-valued Lebesgue integrable functions on T, that is

L(Z(;(TT) = {f:TT — & measurable : ||f||2 :f ||f(z)||édm(z) <oo},
T

where m represent the normalized Lebesgue measure on T. The Hardy space H2 (D) can also be
identified (via radial limits) with a subspace of &-valued functions in L2 (m), Wthh we will also
denote by H2 (D). This subspace consists of functions f for which fi (n) 0 for all n < 0, where
f (n) denotes the n-th Fourier coefficient of f.

Given another Hilbert space &., we denote by L%
B(8,8,)-valued bounded functions on T.

Let &, and & be Hilbert spaces. For ® € LG . . ,(T), the Laurent operator Lo : L2 (M- L2 (m
is defined by (Lo f)(2) = ®(2)f(2), z€ T. In thls case, Lg is bounded and || Lol = [|P|lco-. The
Toeplitz operator Ty : Hy 2(D) — HZ* (D) with (operator-valued) symbol @ is defined by

)(TT) (L%, .. (T) if & = &) the set of

B(E,Ex B(&)

To = PHz (D)Lq’le o)

where PHz o (in short P) is the orthogonal projection of L (TT) onto Héo* (D). It is well known
that | T |l = [|®lleo (cf. [1, Theorem 1.7, p. 112]).
The Toeplitz operator Tp = A is characterized by the operator equation

T} AT, = A.
Let & be a Hilbert space, and let ® € HZ, ., (D). The analytic Toeplitz operator Ty : Hé, (D) —
Hé(ﬂ)) with symbol @ is defined by
(T f)(2) =D(2) f(2) (fEHé(lD),Z‘ElD)-

It is known that || Te || = [|®[le, and Tg is an isometry if and only if @ is inner [5, Proposition 2.2].
Let A€ .%(Hé (D). Then AT, = T, A if and only if A is an analytic Toeplitz operator that is,
A= Ty for some ® € H ég) (D).
Let J be defined on L, (T) by

Jf(2) =Zf @), f € L5 (T).
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The J maps zHé, (D) onto Hé,(ID), and J maps Hé,([l])) onto zHé (D). This J is a unitary operator with
the following properties:

J*=1J%=1,JM}; =M.J, JQ="PJ, and JP = QJ,

where Q := I — P the projection from L(Zs, (T) to zHé([D) = Lé(T) o Hé (D).
The Hankel operator Hg from Hé,(ID) into Hé,* (D) is defined by

Hoh=JQ(®h)=PJ(®h), he H5(D).
The Hankel operator Hp = A is characterized by the operator equation
AT, =T, A. (1.1
Itis easy to verify that Hy = Hgz~. The Toeplitz and Hankel operators are related by the following
equation
Toy — ToTy = H&k,* Hy equivalently, Tti) B — T(f) T‘i’ = HcpH\;,,
where Cf)(z) =®(z) and D(z) = D(2)*.

Theorem 1 ([5, p. 69]). Let T € B(H) and T' € B(F') be two contractions.

(1) LetU e B(X) andU' € B(X') be the minimal isometric dilation of T and T', respectively.
Then for any operator W € B(A, 7") satisfying W T = T'W, there exists W, € B(KX , X")
such that WU = U/W1, WAl =W, W =Pz Wil z and W (X e F) cH'ex'.

(2) Let U € B(X) and U' € B(KX") be the co-isometric extension of T and T', respectively.
Then for any operator W € B(H, 7") satisfying W T = T'W, there exists W, € B(KX , X")
such that WU = U/W1, WAl =W, W = Wi| .

Theorem 2 (Douglas Theorem [2, Theorem 1]). If A, B € B(H), then the following statements
are equivalent:

(1) %Z(A) =2 (B);
(2) AA* < A2BB* forsome A =0;
(3) A=BC for some C € B(H).
Moreover, if (1), (2), and (3) are valid, then there exists a unique operator C so that
(@ [CI*=inf{ulAA* < uBB*};
(b) N (A)=N(C);
() Z(C) = #(B*).

Here C = D*, where D : Z#(B*) — Z(A*) defined by D(B* f) = A* f and D = 0 on the orthogonal
complement of Z(B*).

Theorem 3 (Beurling-Lax-Halmos theorem [5, Chapter V, Theorem 3.3]). Any T,-invariant
subspace of M of Hé (D) is of the form

M =OH5 (D),
where & is a Hilbert space and © : D — (%, &) is an inner function.

The main aim of this paper is to give the factorization of Hankel operators using Douglas
theorem on range inclusion, factorization and majorization (cf. Theorem 2). We also studied
the case when the range of the Toeplitz operator is included in the range of the Hankel operator
(cf. Theorem 7). We have extended the results of [4] in the vector-valued Hardy space setup. We
conclude by discussing the hyponormality of Hankel operators.
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2. Main results

We begin this section with some observations.

Proposition4. LetV e HY . (D) and® e LY, .. (T). Then

(1) HoTy = Hovy.
(2) Ty Hp = HoTy.

%(5’) B(E)

Proof. The proof of (1) follows directly from the definition. Let us prove (2).
T\{,Hqu (Hq) Tq}) (H(i) T\y)* = Hg)\y = H(D‘P = Hop T\p. O

Remarks 5.
(1) For analytic function ® € H %( &)

R(Ty) is T;-invariant. By Theorem 3, there exists a Hilbert space & and an inner
function © € Hgj 5 ¢ (D) such that A (Tp) = Te H3 (D).
(2) Forany @€ L7 . (T), Z(Hg) is T; -invariant. By Theorem 3, there exists a Hilbert space
& and an inner function O € H BT .8 (D) such that A (Hgp) = T@H2 (D). If #(Ho,) <
Z(Hgp,). Then, by Theorem 2, there exists C € %8(Hz (D)) such that Hp, = Ho,C. There-

fore, forany A € H‘g’;’( &) (D), using Proposition 4, we have
c” TA*H;,2 = C*H;ZTA = H&;l Tz = TA*H[f)1 = TA*C*H&;2
(C*Ty - TxC") Hg, =0.

(D), the subspace A (Tp) is T,-invariant, equivalently,

Therefore, C* TA* - TK C*=0on =%(H&‘)Z) and Z(CTa — TaAC) € N (Ho,) = T@H;(D).

Let®;,0,5 € Hgg’( ) (D) with ©, be inner such that Z(Tg,) = Z(Te,). Then, by Theorem 2, there
exists C € %(Hé(ﬂ})) such that Tg, = Te, C. Next, observe that

To, T:C = T, To,C = T, To, = To, T, = To,CT,.

Since Tg, is isometry, we have CT, = T,C which implies C = Tg, for some O3 € H; (D). Thus
To, = To, To,-

Againif 0,0, € Hgg(g) (D) with ©, is isometry and |®; ]|, < 1 such that Tg, T* < To, 5 , then
Te, = Te, Te, for some O3 € H°°(éa) (D) which is inner. This fact is an easy consequence of [5,
Proposition V.5.3].

By using the result in [3], we observe that if ©,,0; € ngf(g) (D) with |O;lo, =1 fori =1,2 such
that Tp, Tgl < To, ng, then Ty, = Te, T, for some O3 € H‘uj;(g)(ﬂ}) with [|O3]lo = 1.

In contrast to the aforementioned observations, we prove the following theorem, which also
generalizes the factorization of contractive analytic functions [5, p. 205]. Although this result may

be known to experts, we provide a different proof using Douglas theorem (cf. Theorem 2).

38(8)

Theorem 6. Let®,,0, € H ua(g) (D). Then Z(Te,) < Z(Te,) if and only if ©; = 0,03 for some
O3€e H (D).
((‘Z)

Proof. Suppose that %Z(Te,) < %(Te,). Then, by Theorem 2, there exists an operator W :
.%(Té“z) — .%’(Tgl) such that T51 = WT@’;Z. Since Tg, T, = T;Tg,, and %(Té“_) is T} -invariant for
i=1,2, we have

WT T, =WTS T; = T4 Tr =T; T4 = T;WTE,

* | — | 7|
W( Ty l(T )) - (Tz l2(T} )) w.
Therefore, by using (2) of Theorem 1, there exists W; such that W1 T} = T; Wy and W = Wl HTG)

Therefore, we get W}" is an analytic Toeplitz operator Tg,. Thus Te, = Te, Te, Which 1mp11es
©) = ©,03. The converse trivially follows from the Theorem 2. O
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Theorem 7. Let ®,®y,®;, ¥ € LY . (T). Then the following are true:

(1) Z(Tp) < %(Hy) ifand only if ® = 0.
(2) Suppose that @ is not identically zero, then %(Hg) € X(Ty) if and only if P is bounded

below on @Hé(lﬂ)).

(3) %(Ho,) € %(Ho,) if and only if there exists Q € Hgg(g) such that Ho, = Hop, Tq = Ho,q.

Proof.
(1). Suppose that Z(Tep) < Z(Hy). Then, for some A =0

To Ty < A* Hy Hyy

To Ty < A*(Tyy — Ty Ty).
Thus for every f € Hé(lﬂ)), we have

| o £17+ 2% | To | < 22 [ % 1)
|P@" pI*+ 42| PN <22 |21
Since {z"'n: meN, ne &} is total in Hé (D), we have
|P@* 2" |* + A2 | P2 | < A2 | F )|
As m — oo, from above expression, we conclude that
o |+ 2% %) < 2% | 77,

which implies ® = 0. The converse is evident.

(2). Suppose that %(Hyg) < #(Tg). Then, by Theorem 2, there exists A = 0 such that Hg Hop <
A*T T, which implies
Toro — T Tep < AZ th Te.
Therefore, for every f € Hg,(ID), we have
lofl” -1 To s I* < 22| To £
[P@p?=a+1%7" |or|.

Which shows that the orthogonal projection operator P is bounded below on (DHé(ID).

Conversely, if P is bounded below on CDH;, (D), then there exists a constant M = 0 such that

[P@f)||> = M|@f| for every f € HZ(D). Therefore,
|P@mz")|* = M| om=")|*.
As n — oo, we have M < 1. Then choose M = (1 + u?)~! for some u = 0, and apply the above
argument in the necessity part to obtain the desired conclusion.
(3). First, we assume that Z(Ho,) € %(Ho,). Then, by Theorem 2, we have
He, Hy <A*He,Hy,, Ho, = Ho,C

such that 4 (C) = A (Hg,), ICIl = A%, and Z(C) < .%(H(;z). Note that C = W*, where W :
%(ng) - ,%(H&;]) is defined by W(H&‘)zf) = H&;lf and W =0on %(H&;Z)L.

Since T} Ho, = Ho, T, we have A (Hgp,) is T-invariant, equivalently %(H&’;Z) is T} -invariant.
Therefore, by using (1.1), we get

WT; Hy, =WHg T, = Hg T, =T; Hy =T} WH;,

which implies

W(Tz |%(ng)) = (Tz L@(Hg,l)) w.
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Using (2) of Theorem 1, there exists W : Hé([[l)) - Héa (D) such that W1 T} = T; W) and W =
wp IW. Thus W} is an analytic Toeplitz operator T and He, = He,W* = Hg,Tq. The
L)

converse is obvious. O

Corollary 8. Let ® € LY ., (T). Then Ho is hyponormal if and only if He = HyTq for some
Qe Hg » (D) with |Qlleo < 1.

Proof. Suppose that Hg is hyponormal that is, Hp Hy, < Hg He equivalently, Ho Hg, H@H x
Now set ®; = ® and @, = ®. By applying (3) of Theorem 7, we have Hp = Hz To = Hg TQ for some
Q€ HY o, (D) with [ Qlleo < 1.

Conversely, suppose He = Hg Tq for some Q € H,
1. Therefore,

56D with | Qe < 1. Then | Toll = |2l <

H;f,H@ Hq>H¢ H(D(I Ta TQ)H@ =>0.
Hence Hyp is hyponormal. O

Corollary 9. Let®e Lg 2 (- If Hy is hyponormal, then it is normal.
Proof. Suppose Hg is hyponormal. By Corollary 8 and (2) of Proposition 4, we observe that
Hg = Hy = T Hp = HoTg = (Hg)* Ty = H} T

Which shows that if He is hyponormal, then Hg is also hyponormal, and consequently,
normal. 0
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