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Abstract. Using Douglas theorem on factorization and range inclusion of bounded linear operators, we give
the factorization of Hankel operators, range inclusion of Hankel and Toeplitz operators defined on vector-
valued Hardy spaces.

Résumé. En utilisant le théorème de Douglas sur la factorisation impliquée par l’inclusion des images de
deux opérateurs linéaires bornés, nous donnons la factorisation des opérateurs de Hankel quand il y a
inclusion des images de deux opérateurs de Hankel ou de Toeplitz définis sur des espaces de Hardy à valeur
vectorielle.
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1. Introduction and Preliminaries

Let E be a Hilbert space (here all Hilbert spaces are separable and over C) and T be a bounded
linear operator on E (T ∈B(E ) in short). The subspaces R(T ) = {T x : x ∈ E } and N (T ) = {x ∈ E :
T x = 0} denotes the range space and the null space, respectively. A linear operator T ∈ B(E ) is
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said to be bounded below if there exists a constant M ≥ 0 such that ∥T x∥ ≥ M ∥x∥ for every x ∈ E ,
T ∈B(E ) is said to normal if T ∗T = T T ∗, hyponormal if T T ∗ ≤ T ∗T , and isometry if T ∗T = I .

LetD be the open unit disc in C, and let E be a Hilbert space. The E -valued Hardy space H 2
E

(D)
(H 2(D) if E = C ) over D is the Hilbert space of all E -valued analytic functions f (z) = ∑∞

n=0 an zn ,
an ∈ E , z ∈D such that

∥ f ∥ =
( ∞∑

n=0
∥an∥2

) 1
2

<∞.

Let E∗ be another Hilbert space. Then denote by H∞
B(E ,E∗)(D) (H∞

B(E )(D) if E∗ = E ) the set of
B(E ,E∗)-valued bounded analytic functions on D which is a Banach space with the norm
defined by

∥Θ∥∞ = sup{∥Θ(z)∥ : |z| < 1}.

An operator-valued analytic function Θ ∈ H∞
B(E ,E∗)(D) is said to be inner if Θ(z)∗Θ(z) = IE a.e.

z ∈T.

1.1. Toeplitz and Hankel Operators

In this section we give definitions of Toeplitz and Hankel operators and their basic properties. Let
E be any Hilbert space. Let L2

E
(T), where T denotes the unit circle in the complex plane, denote

the Hilbert space of all square E -valued Lebesgue integrable functions on T, that is

L2
E (T) =

{
f :T−→ E measurable : ∥ f ∥2 =

∫
T
∥ f (z)∥2

E dm(z) <∞
}

,

where m represent the normalized Lebesgue measure on T. The Hardy space H 2
E

(D) can also be
identified (via radial limits) with a subspace of E -valued functions in L2

E
(T), which we will also

denote by H 2
E

(D). This subspace consists of functions f for which f̂ (n) = 0 for all n < 0, where
f̂ (n) denotes the n-th Fourier coefficient of f .

Given another Hilbert space E∗, we denote by L∞
B(E ,E∗)(T) ( L∞

B(E )(T) if E∗ = E ) the set of
B(E ,E∗)-valued bounded functions on T.

Let E∗ and E be Hilbert spaces. For Φ ∈ L∞
B(E ,E∗)(T), the Laurent operator LΦ : L2

E
(T) → L2

E∗ (T)
is defined by (LΦ f )(z) = Φ(z) f (z), z ∈ T. In this case, LΦ is bounded and ∥LΦ∥ = ∥Φ∥∞. The
Toeplitz operator TΦ : H 2

E
(D) → H 2

E∗ (D) with (operator-valued) symbolΦ is defined by

TΦ = PH 2
E∗ (D)LΦ|H 2

E
(D),

where PH 2
E∗ (D) (in short P ) is the orthogonal projection of L2

E∗ (T) onto H 2
E∗ (D). It is well known

that ∥TΦ∥ = ∥Φ∥∞ (cf. [1, Theorem 1.7, p. 112]).
The Toeplitz operator TΦ = A is characterized by the operator equation

T ∗
z ATz = A.

Let E be a Hilbert space, and let Φ ∈ H∞
B(E )(D). The analytic Toeplitz operator TΦ : H 2

E
(D) →

H 2
E

(D) with symbolΦ is defined by

(TΦ f )(z) =Φ(z) f (z) ( f ∈ H 2
E (D), z ∈D).

It is known that ∥TΦ∥ = ∥Φ∥∞, and TΦ is an isometry if and only ifΦ is inner [5, Proposition 2.2].
Let A ∈ B(H 2

E
(D)). Then ATz = Tz A if and only if A is an analytic Toeplitz operator that is,

A = TΦ for someΦ ∈ H∞
B(E )(D).

Let J be defined on L2
E

(T) by

J f (z) = z f (z), f ∈ L2
E (T).
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The J maps zH 2
E

(D) onto H 2
E

(D), and J maps H 2
E

(D) onto zH 2
E

(D). This J is a unitary operator with
the following properties:

J∗ = J , J 2 = I , J M∗
z = Mz J , JQ = P J , and JP =Q J ,

where Q := I −P the projection from L2
E

(T) to zH 2
E

(D) := L2
E

(T)⊖H 2
E

(D).
The Hankel operator HΦ from H 2

E
(D) into H 2

E∗ (D) is defined by

HΦh = JQ (Φh) = P J (Φh) , h ∈ H 2
E (D).

The Hankel operator HΦ = A is characterized by the operator equation

ATz = T ∗
z A. (1.1)

It is easy to verify that H∗
Φ = HΦ(z)∗ . The Toeplitz and Hankel operators are related by the following

equation

TΦΨ−TΦTΨ = H∗
Φ∗ HΨ equivalently, TΦ̌Ψ̃−TΦ̌TΨ̃ = HΦH∗

Ψ,

where qΦ(z) =Φ(z) and Φ̃(z) =Φ(z)∗.

Theorem 1 ([5, p. 69]). Let T ∈B(H ) and T ′ ∈B(H ′) be two contractions.

(1) Let U ∈B(K ) and U ′ ∈B(K ′) be the minimal isometric dilation of T and T ′, respectively.
Then for any operator W ∈ B(H ,H ′) satisfying W T = T ′W, there exists W1 ∈ B(K ,K ′)
such that W1U =U ′W1, ∥W1∥ = ∥W ∥ , W = PH ′ W1|H and W (K ⊖H ) ⊂K ′⊖K ′.

(2) Let U ∈ B(K ) and U ′ ∈ B(K ′) be the co-isometric extension of T and T ′, respectively.
Then for any operator W ∈ B(H ,H ′) satisfying W T = T ′W, there exists W1 ∈ B(K ,K ′)
such that W1U =U ′W1, ∥W1∥ = ∥W ∥ , W = W1|H .

Theorem 2 (Douglas Theorem [2, Theorem 1]). If A,B ∈ B(H ), then the following statements
are equivalent:

(1) R(A) ⊆R(B);
(2) A A∗ ≤λ2BB∗ for some λ≥ 0;
(3) A = BC for some C ∈B(H ).

Moreover, if (1), (2), and (3) are valid, then there exists a unique operator C so that

(a) ∥C∥2 = inf{µ|A A∗ ≤µBB∗};
(b) N (A) =N (C );
(c) R(C ) ⊆R(B∗).

Here C = D∗, where D : R(B∗) → R(A∗) defined by D(B∗ f ) = A∗ f and D = 0 on the orthogonal
complement of R(B∗).

Theorem 3 (Beurling-Lax-Halmos theorem [5, Chapter V, Theorem 3.3]). Any Tz -invariant
subspace of M of H 2

E
(D) is of the form

M =ΘH 2
F (D),

where F is a Hilbert space andΘ :D→B(F ,E ) is an inner function.

The main aim of this paper is to give the factorization of Hankel operators using Douglas
theorem on range inclusion, factorization and majorization (cf. Theorem 2). We also studied
the case when the range of the Toeplitz operator is included in the range of the Hankel operator
(cf. Theorem 7). We have extended the results of [4] in the vector-valued Hardy space setup. We
conclude by discussing the hyponormality of Hankel operators.
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2. Main results

We begin this section with some observations.

Proposition 4. LetΨ ∈ H∞
B(E )(D) andΦ ∈ L∞

B(E )(T). Then

(1) HΦTΨ = HΦΨ.
(2) T ∗

ΨHΦ = HΦTΨ̃.

Proof. The proof of (1) follows directly from the definition. Let us prove (2).

T ∗
ΨHΦ = (H∗

ΦTΨ)∗ = (HΦ̃TΨ)∗ = H∗
Φ̃Ψ

= HΦΨ̃ = HΦTΨ̃. □

Remarks 5.

(1) For analytic function Φ ∈ H∞
B(E )(D), the subspace N (TΦ) is Tz -invariant, equivalently,

R(T ∗
Φ

) is T ∗
z -invariant. By Theorem 3, there exists a Hilbert space F and an inner

functionΘ ∈ H∞
B(F ,E )(D) such that N (TΦ) = TΘH 2

F
(D).

(2) For any Φ ∈ L∞
B(E )(T), R(H∗

Φ
) is T ∗

z -invariant. By Theorem 3, there exists a Hilbert space
F and an inner function Θ ∈ H∞

B(F ,E )(D) such that N (HΦ) = TΘH 2
F

(D). If R(HΦ1 ) ⊆
R(HΦ2 ). Then, by Theorem 2, there exists C ∈ B(H 2

E
(D)) such that HΦ1 = HΦ2C . There-

fore, for any ∆ ∈ H∞
B(E )(D), using Proposition 4, we have

C∗T ∗
∆H∗

Φ2
=C∗H∗

Φ2
T∆̃ = H∗

Φ1
T∆̃ = T ∗

∆H∗
Φ1

= T ∗
∆C∗H∗

Φ2(
C∗T ∗

∆ −T ∗
∆C∗)

H∗
Φ2

= 0.

Therefore, C∗T ∗
∆ −T ∗

∆C∗ = 0 on R(H∗
Φ2

) and R(C T∆−T∆C ) ⊆N (HΦ2 ) = TΘH 2
F

(D).

LetΘ1,Θ2 ∈ H∞
B(E )(D) withΘ2 be inner such that R(TΘ1 ) ⊆R(TΘ2 ). Then, by Theorem 2, there

exists C ∈B(H 2
E

(D)) such that TΘ1 = TΘ2C . Next, observe that

TΘ2 TzC = Tz TΘ2C = Tz TΘ1 = TΘ1 Tz = TΘ2C Tz .

Since TΘ2 is isometry, we have C Tz = TzC which implies C = TΘ3 for some Θ3 ∈ H∞
B(E )(D). Thus

TΘ1 = TΘ2 TΘ3 .
Again ifΘ1,Θ2 ∈ H∞

B(E )(D) withΘ1 is isometry and ∥Θ2∥∞ ≤ 1 such that TΘ1 T ∗
Θ1

≤ TΘ2 T ∗
Θ2

, then
TΘ1 = TΘ2 TΘ3 for some Θ3 ∈ H∞

B(E )(D) which is inner. This fact is an easy consequence of [5,
Proposition V.5.3].

By using the result in [3], we observe that if Θ1,Θ2 ∈ H∞
B(E )(D) with ∥Θi∥∞ ≤ 1 for i = 1,2 such

that TΘ1 T ∗
Θ1

≤ TΘ2 T ∗
Θ2

, then TΘ1 = TΘ2 TΘ3 for someΘ3 ∈ H∞
B(E )(D) with ∥Θ3∥∞ ≤ 1.

In contrast to the aforementioned observations, we prove the following theorem, which also
generalizes the factorization of contractive analytic functions [5, p. 205]. Although this result may
be known to experts, we provide a different proof using Douglas theorem (cf. Theorem 2).

Theorem 6. Let Θ1,Θ2 ∈ H∞
B(E )(D). Then R(TΘ1 ) ⊆ R(TΘ2 ) if and only if Θ1 = Θ2Θ3 for some

Θ3 ∈ H∞
B(E )(D).

Proof. Suppose that R(TΘ1 ) ⊆ R(TΘ2 ). Then, by Theorem 2, there exists an operator W :
R(T ∗

Θ2
) → R(T ∗

Θ1
) such that T ∗

Θ1
= W T ∗

Θ2
. Since TΘi Tz = Tz TΘi , and R(T ∗

Θi
) is T ∗

z -invariant for
i = 1,2, we have

W T ∗
z T ∗

Θ2
=W T ∗

Θ2
T ∗

z = T ∗
Θ1

T ∗
z = T ∗

z T ∗
Θ1

= T ∗
z W T ∗

Θ2

W

(
T ∗

z

∣∣
R(T ∗

Θ2
)

)
=

(
T ∗

z

∣∣
R(T ∗

Θ1
)

)
W.

Therefore, by using (2) of Theorem 1, there exists W1 such that W1T ∗
z = T ∗

z W1 and W = W1|R(T ∗
Θ2

).

Therefore, we get W ∗
1 is an analytic Toeplitz operator TΘ3 . Thus TΘ1 = TΘ2 TΘ3 which implies

Θ1 =Θ2Θ3. The converse trivially follows from the Theorem 2. □
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Theorem 7. LetΦ,Φ1,Φ2,Ψ ∈ L∞
B(E )(T). Then the following are true:

(1) R(TΦ) ⊆R(HΨ) if and only ifΦ= 0.
(2) Suppose that Φ is not identically zero, then R(H∗

Φ) ⊆ R(T ∗
Φ) if and only if P is bounded

below onΦH 2
E

(D).
(3) R(HΦ1 ) ⊆R(HΦ2 ) if and only if there existsΩ ∈ H∞

B(E ) such that HΦ1 = HΦ2 TΩ = HΦ2Ω.

Proof.
(1). Suppose that R(TΦ) ⊆R(HΨ). Then, for some λ≥ 0

TΦT ∗
Φ ≤λ2HΨH∗

Ψ

TΦT ∗
Φ ≤λ2(TΨ̌Ψ̃−TΨ̌TΨ̃).

Thus for every f ∈ H 2
E

(D), we have∥∥TΦ∗ f
∥∥2 +λ2 ∥∥TΨ̃ f

∥∥2 ≤λ2 ∥∥Ψ̃ f
∥∥2∥∥P (Φ∗ f )

∥∥2 +λ2 ∥∥P (Ψ̃ f )
∥∥2 ≤λ2 ∥∥Ψ̃ f

∥∥2
.

Since {zmη : m ∈N, η ∈ E } is total in H 2
E

(D), we have∥∥P (Φ∗zmη)
∥∥2 +λ2 ∥∥P (Ψ̃zmη)

∥∥2 ≤λ2 ∥∥Ψ̃(zmη)
∥∥2

.

As m →∞, from above expression, we conclude that∥∥Φ∗∥∥2 +λ2 ∥∥Ψ̃∥∥2 ≤λ2 ∥∥Ψ̃∥∥2
,

which impliesΦ= 0. The converse is evident.

(2). Suppose that R(H∗
Φ) ⊆ R(T ∗

Φ). Then, by Theorem 2, there exists λ ≥ 0 such that H∗
ΦHΦ ≤

λ2T ∗
ΦTΦ, which implies

TΦ∗Φ−TΦ∗TΦ ≤λ2T ∗
ΦTΦ.

Therefore, for every f ∈ H 2
E

(D), we have∥∥Φ f
∥∥2 −∥∥TΦ f

∥∥2 ≤λ2 ∥∥TΦ f
∥∥2∥∥P (Φ f )

∥∥2 ≥ (1+λ2)−1 ∥∥Φ f
∥∥2 .

Which shows that the orthogonal projection operator P is bounded below onΦH 2
E

(D).

Conversely, if P is bounded below on ΦH 2
E

(D), then there exists a constant M ≥ 0 such that∥∥P (Φ f )
∥∥2 ≥ M

∥∥Φ f
∥∥2 for every f ∈ H 2

E
(D). Therefore,∥∥P (Φ(ηzn))

∥∥2 ≥ M
∥∥Φ(ηzn)

∥∥2 .

As n → ∞, we have M ≤ 1. Then choose M = (1+µ2)−1 for some µ ≥ 0, and apply the above
argument in the necessity part to obtain the desired conclusion.

(3). First, we assume that R(HΦ1 ) ⊆R(HΦ2 ). Then, by Theorem 2, we have

HΦ1 H∗
Φ1

≤λ2HΦ2 H∗
Φ2

, HΦ1 = HΦ2C

such that N (C ) = N (HΦ1 ), ∥C∥ ≤ λ2, and R(C ) ⊆ R(H∗
Φ2

). Note that C = W ∗, where W :

R(H∗
Φ2

) →R(H∗
Φ1

) is defined by W (H∗
Φ2

f ) = H∗
Φ1

f and W = 0 on R(H∗
Φ2

)⊥.

Since T ∗
z HΦ2 = HΦ2 Tz , we have N (HΦ2 ) is Tz -invariant, equivalently R(H∗

Φ2
) is T ∗

z -invariant.
Therefore, by using (1.1), we get

W T ∗
z H∗

Φ2
=W H∗

Φ2
Tz = H∗

Φ1
Tz = T ∗

z H∗
Φ1

= T ∗
z W H∗

Φ2

which implies

W

(
T ∗

z

∣∣
R(H∗

Φ2
)

)
=

(
T ∗

z

∣∣
R(H∗

Φ1
)

)
W.



1778 Sudip Ranjan Bhuia

Using (2) of Theorem 1, there exists W1 : H 2
E

(D) → H 2
E

(D) such that W1T ∗
z = T ∗

z W1 and W =
W1|R(H∗

Φ2
). Thus W ∗

1 is an analytic Toeplitz operator TΩ and HΦ1 = HΦ2W ∗ = HΦ2 TΩ. The

converse is obvious. □

Corollary 8. Let Φ ∈ L∞
B(E )(T). Then HΦ is hyponormal if and only if HΦ = H∗

ΦTΩ for some
Ω ∈ H∞

B(E )(D) with ∥Ω∥∞ ≤ 1.

Proof. Suppose that HΦ is hyponormal that is, HΦH∗
Φ ≤ H∗

ΦHΦ equivalently, HΦH∗
Φ ≤ HΦ̃H∗

Φ̃
.

Now setΦ1 =Φ andΦ2 = Φ̃. By applying (3) of Theorem 7, we have HΦ = HΦ̃TΩ = H∗
ΦTΩ for some

Ω ∈ H∞
B(E )(D) with ∥Ω∥∞ ≤ 1.

Conversely, suppose HΦ = H∗
ΦTΩ for someΩ ∈ H∞

B(E )(D) with ∥Ω∥∞ ≤ 1. Then ∥TΩ∥ = ∥Ω∥∞ ≤
1. Therefore,

H∗
ΦHΦ−HΦH∗

Φ = H∗
Φ(I −TΩT ∗

Ω)HΦ ≥ 0.

Hence HΦ is hyponormal. □

Corollary 9. LetΦ ∈ L∞
B(E )(T). If HΦ is hyponormal, then it is normal.

Proof. Suppose HΦ is hyponormal. By Corollary 8 and (2) of Proposition 4, we observe that

HΦ̃ = H∗
Φ = T ∗

ΩHΦ = HΦTΩ̃ = (H∗
Φ)∗TΩ̃ = H∗

Φ̃
TΩ̃.

Which shows that if HΦ is hyponormal, then H∗
Φ is also hyponormal, and consequently,

normal. □
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