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Abstract. A new proof of the sharp symmetrized form of Talagrand’s transport-entropy inequality is given.
Compared to stochastic proofs of other Gaussian functional inequalities, the new idea here is a certain
coupling induced by time-reversed martingale representations.

Résumé. Nous donnons une nouvelle preuve de la version symétrisée de l’inégalité de transport-entropie
de Talagrand avec constante optimale. En comparaison avec d’autres preuves stochastiques d’inégalités
fonctionnelles gaussiennes, l’élément nouveau ici est l’utilisation d’un couplage induit par un retournement
du temps sur des représentations de martingales.
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1. Introduction

We aim to give a short stochastic proof of the following sharp symmetrized Talagrand inequality:

Theorem 1 ([8, Theorem 1.1]). For Borel probability measures µ,ν on Rn with finite second
moments and µ centered,

W2(µ,ν)2 ≤ 2D(µ∥γ)+2D(ν∥γ), (1)

where W2 is 2-Wasserstein distance, D is relative entropy, and γ is the standard Gaussian measure
on Rn .

By duality, (1) is formally equivalent to the functional Blaschke–Santaló inequality [13, Theo-
rem 1.2], which states that if Borel functions f , g :Rn →R satisfy∫

Rn
x e− f (x) dx = 0 and f (x)+ g (y) ≥ 〈x, y〉, ∀x, y ∈Rn ,

then (∫
Rn

e− f (x) dx

)(∫
Rn

e−g (x) dx

)
≤ (2π)n . (2)

Equality holds for quadratic f , and g = f ∗, its convex conjugate. Despite the equivalence, (1) may
be regarded as a formal strengthening of (2) in the sense that (2) is recovered from Theorem 1 by
weak duality: briefly, for f , g satisfying the hypotheses demanded by (2), take dµ(x) ∝ e− f (x) dx
and dν(x) ∝ e−g (x) dx in (1) and simplify to obtain (2). The reverse implication corresponds to
strong duality, and is more difficult. See [10, Theorem 11] and [8] for details.

Inequality (2) is a functional generalization of the earlier Blaschke–Santaló inequality for
the volume product of convex sets, earlier proofs of which were accomplished by calculus of
variations [20] and symmetrization arguments [16, 19]. The functional form was proved in [2]
(and earlier in K. Ball’s Ph.D. thesis [3] in a restricted setting of even functions). The original
proof relied on the usual Blaschke–Santaló inequality applied to level sets. Lehec later gave
two alternative proofs; one using induction on the dimension [13], and the other [14] using the
Prekópa–Leindler inequality and the Yao–Yao partition theorem. This last proof actually yields
a more general statement, originally due to [9], but the present work shall be restricted to the
classical setting. More recently, a new semigroup proof of the inequality for even functions
was established in [18] using improved hypercontractive estimates for the heat flow, and then
simplified in [6]. Let us also mention a recent generalization to several functions under a
symmetry assumption, due to Kolesnikov and Werner [12].

Equivalence between integral inequalities of the form (2) and transport inequalities of the
form (1) via duality goes back to [4], where they studied Talagrand quadratic transport-entropy
inequality [21] (which is (1) in the particular case µ = γ). Duality for transport inequalities
involving three measures, such as (1), has been considered in [10] and [11, Proposition 8.2].

Stochastic proofs of functional inequalities, in particular using Brownian motion and Gir-
sanov’s theorem, go back to Borell’s stochastic proof of the Prekópa–Leindler inequality [5]. Our
present work is motivated by Lehec’s short stochastic proofs of various functional inequalities
[15], including in particular Talagrand’s transport-entropy inequality.

2. A Stochastic Proof

We’ll work on the Wiener space (Ω,B,P), where Ω is the set of continuous paths ω : [0,1] → Rn

starting at 0, B is the usual Borel σ-algebra, and P is the Wiener measure. Let Bt (ω) := ω(t ) be
the coordinate process, so that B = (Bt )0≤t≤1 is a standard Brownian motion, and so is the time-
reversed process B̂ t := B1 −B1−t . Let F = (Ft )0≤t≤1 and F+ = (F+

t )0≤t≤1 denote the filtrations
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generated by B and B̂ , respectively. For each t ∈ [0,1], Ft and F+
1−t are complementary, in the

sense that they are independent and B = σ(Ft ∪F+
1−t ). Henceforth, ∥ · ∥ denotes the ℓ2 norm,

and I denotes the identity matrix.
Apart from standard facts in stochastic calculus, we’ll need two lemmas. The first is a

variational representation of entropy, obtained as a consequence of Girsanov’s theorem; it has
been applied to study rigidity and stability of various functional inequalities (see, e.g., [1, 7, 17]).

Lemma 2 ([7]). For a centered probability measure µ on Rn with finite second moments, we have

D(µ∥γ) = inf
F

1

2

∫ 1

0

E[∥Ft − I∥2]

1− t
dt , (3)

where the infimum is over F -adaptedRn×n-valued processes F = (Ft )0≤t≤1 such that
∫ 1

0 Ft dBt ∼µ.

Remark 3. The same representation holds if we consider F+-adapted F with
∫ 1

0 Ft dB̂ t ∼µ.

Stochastic proofs of several other functional inequalities use representation formulas for the
entropy and linear couplings of Brownian motions (cf. [7, 15]). Our proof will similarly rely on the
representation formula (3) for the entropy1, but makes use of a new coupling induced by time-
reversed martingale representations. The next lemma is the crucial new ingredient; it relates
martingale representations in terms of (Bt )0≤t≤1 and its time-reversal (B̂ t )0≤t≤1.

Lemma 4. If X ∈ L2(Ω,B,P) is a Rn-valued random vector with martingale representations

X =
∫ 1

0
Ft dBt =

∫ 1

0
Gt dB̂ t ,

then ∫ 1

t
E[∥Fs − I∥2]ds ≥

∫ 1−t

0
E[∥Gs − I∥2]ds, ∀0 ≤ t ≤ 1. (4)

Proof. By the Pythagorean theorem, convexity, and independence of Ft and F+
1−t , we have

E[∥X ∥2]−E[∥E[X |Ft ]∥2] = E[∥X −E[X |Ft ]∥2] ≥ E[∥E[X −E[X |Ft ]|F+
1−t ]∥2] = E[∥E[X |F+

1−t ]∥2].

Since E[X |Ft ] = ∫ t
0 Fs dBs and E[X |F+

1−t ] = ∫ 1−t
0 Gs dB̂ s , three applications of Itô’s isometry give∫ 1

t
E[∥Fs∥2]ds = E[∥X ∥2]−E[∥E[X |Ft ]∥2] ≥ E[∥E[X |F+

1−t ]∥2] =
∫ 1−t

0
E[∥Gs∥2]ds, ∀0 ≤ t ≤ 1.

Next, by applying Itô’s isometry to each martingale representation of X , we find∫ 1

t
E[Tr(Fs )]ds = E[〈X ,B1 −Bt 〉] = E[〈X , B̂ 1−t 〉] =

∫ 1−t

0
E[Tr(Gs )]ds, ∀0 ≤ t ≤ 1.

Combining the previous two observations gives (4). □

Proof of Theorem 1. The inequality is invariant with respect to translations of ν, so we may also
assume ν is centered. Let F = (Ft )0≤t≤1 be any F -adapted process such that

∫ 1
0 Ft dBt ∼ µ, and

let H = (Ht )0≤t≤1 be any F+-adapted process such that
∫ 1

0 Ht dB̂ t ∼ ν. Let G = (Gt )0≤t≤1 be the
martingale representation of

∫ 1
0 Ft dBt in terms of the time-reversed Brownian motion B̂ ; i.e., G is

F+-adapted, satisfying
∫ 1

0 Gt dB̂ t =
∫ 1

0 Ft dBt ∼µ. By the Tonelli theorem and Lemma 4, we have∫ 1

0

E[∥Gs − I∥2]

s
ds =

∫ 1

0
E[∥Gs − I∥2]ds +

∫ 1

0

1

(1− t )2

(∫ 1−t

0
E[∥Gs − I∥2]ds

)
dt

≤
∫ 1

0
E[∥Fs − I∥2]ds +

∫ 1

0

1

(1− t )2

(∫ 1

t
E[∥Fs − I∥2]ds

)
dt =

∫ 1

0

E[∥Fs − I∥2]

1− s
ds.

1The representation (3) is not the same as that used in [15]. However, it is derived from [15, Theorem 4] by
combination with the martingale representation theorem.
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By definition of W2, Itô’s isometry, convexity of ∥ ·∥2, and the previous estimate,

W2(µ,ν)2 ≤ E
∥∥∥∥∫ 1

0
(Gt −Ht )dB̂ t

∥∥∥∥2

=
∫ 1

0
E[∥Gt −Ht∥2]dt ≤

∫ 1

0

E[∥Gt − I∥2]

t
dt +

∫ 1

0

E[∥Ht − I∥2]

1− t
dt

≤
∫ 1

0

E[∥Ft − I∥2]

1− t
dt +

∫ 1

0

E[∥Ht − I∥2]

1− t
dt .

With the help of Lemma 2, optimizing over F and H completes the proof . □

3. Remarks on the Approach

3.1. Equality cases

The equality cases for (1) are also evident from the given proof. Indeed, if D(µ∥γ) < ∞, then
the infimum in (3) is a.s.-uniquely achieved by an F -adapted process F = (Ft )0≤t≤1. Defining
X := ∫ 1

0 Ft dBt ∼ µ for this particular F , equality in (1) implies equality in (4) for a.e. t ∈ [0,1],
which requires that X − E[X |Ft ] is F+

1−t -measurable for a.e. t ∈ [0,1]. By Proposition 5 below,
this ensures X ∼ µ is Gaussian. By symmetry, any extremal ν is also Gaussian, and explicit
computation shows that µ,ν are extremizers in (1) if and only if µ = N (0,C ) and ν = N (θ,C−1)
for some θ ∈Rn and positive definite C ∈Rn×n .

Proposition 5. Let X ∈ L2(Ω,B,P) admit martingale representation X = ∫ 1
0 Ft dBt . If X −E[X |Ft ]

is F+
1−t -measurable for a.e. t ∈ [0,1], then X is Gaussian.

Proof. Define Mt := ∫ t
0 Fs dBs . The hypothesis is equivalent to requiring that (M1 −Mt ) is F+

1−t -
measurable for each t ∈D, where D is dense in [0,1]. Fix any s, t ∈D, with s ≤ t . Since (M1−Mt ) is
F+

1−t -measurable by hypothesis, and (Mt −Ms ) is Ft -measurable by definition, complementarity
ensures (M1−Mt ) and (Mt −Ms ) are independent. Iterating this procedure on the (M1−Mt ) term
allows us to conclude that (Mt )0≤t≤1 has independent increments, provided the endpoints of the
increments are in D. Since X ∈ L2(Ω,B,P), a version of (Mt )0≤t≤1 admits continuous sample
paths, and we conclude by density of D that (Mt )0≤t≤1 has (square-integrable) independent
increments generally, and is thus a Gaussian process. □

3.2. Importance of the coupling induced by time-reversal

With the proof of Theorem 1 in hand and the equality cases characterized, we highlight the impor-
tance of the coupling based on time-reversal. Following previous stochastic proofs of functional
inequalities, one could appeal to martingale representations

∫ 1
0 Ft dB 1

t ∼ µ and
∫ 1

0 Gt dB 2
t ∼ ν

with linearly coupled Brownian motions B 1 and B 2 (equivalently, Brownian motions B 1 and B 2

adapted to a common filtration) to couple µ and ν. This approach cannot work, as we now ex-
plain.

Working in dimension n = 1 for simplicity, recall that when µ = N (0,α) with α > 0, the
minimizer F in (3) has an explicit expression (e.g., [7, Sec. 2]). In particular,∫

Ft dB 1
t ∼µ and D(µ∥γ) = 1

2

∫ 1

0

E[∥Ft − I∥2]

1− t
dt −→ Ft = α

1− t +αt
.

Likewise, for ν= N (0,α−1), the “optimal” representation of ν with respect to B 2 satisfies∫ 1

0
Gt dB 2

t ∼ ν and D(ν∥γ) = 1

2

∫ 1

0

E[∥Gt − I∥2]

1− t
dt −→ Gt = 1

α(1− t )+ t
.

Since B 1 and B 2 are linearly coupled standard Brownian motions, we can write[
B 1

t
B 2

t

]
=

[
1 σ

σ 1

]1/2

Bt , 0 ≤ t ≤ 1, (5)
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for some |σ| ≤ 1, where (Bt )0≤t≤1 is a 2-dimensional standard Brownian motion. This construc-
tion induces a coupling πσ of X := ∫ 1

0 Ft dB 1
t ∼µ and Y := ∫ 1

0 Gt dB 2
t ∼ ν satisfying

Eπσ∥X −Y ∥2 =
∫ 1

0

(
F 2

t +G2
t −2σFt Gt

)
dt =


(
α+ 1

α

)− 4σ logα(
α− 1

α

) if α ̸= 1

2(1−σ) if α= 1,

where we made use of Itô’s isometry and (5). A simple calculation reveals that

min
σ:|σ|≤1

Eπσ∥X −Y ∥2 ≥α+ 1

α
−2 =W2(µ,ν)2 = 2D(µ∥γ)+2D(ν∥γ),

with equality if and only ifα= 1. So, with the exception of the trivial caseµ= ν= γ, the established
stochastic approach to proving functional inequalities using linearly coupled Brownian motions
fails to produce the requisite optimal coupling between µ and ν in all extremal cases (at least,
in this implementation). This suggests that coupling through time-reversal lends a useful new
degree of freedom to the stochastic program for proving functional inequalities.
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