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Abstract. We consider the Newtonian planar three-body problem, defining a syzygy (velocity syzygy) as a
configuration where the positions (velocities) of the three bodies become collinear. We demonstrate that
if the total energy is negative, every collision-free solution has an infinite number of velocity syzygies.
Specifically, the velocities of the three bodies become parallel within every interval of time containing three
consecutive syzygies. Using comparison theory for matrix Riccati equations, we derive new upper and lower
bounds on the moments when syzygies occur.

Résumé. Nous considérons le problème newtonien des trois corps dans le plan, en définissant une syzy-
gie (syzygie de vitesse) comme une configuration où les positions (vitesses) des trois corps deviennent co-
linéaires. Nous démontrons que si l’énergie totale est négative, toute solution sans collision présente un
nombre infini de syzygies de vitesse. Plus précisément, les vitesses des trois corps deviennent parallèles dans
chaque intervalle de temps contenant trois syzygies consécutives. En utilisant la théorie de comparaison
pour les équations de Riccati matricielles, nous dérivons de nouvelles bornes supérieures et inférieures sur
les instants où les syzygies se produisent.
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1. Introduction and Preliminary Results

The Newtonian planar three-body problem has been a subject of extensive study in celestial me-
chanics. It involves predicting the motion of three bodies moving under their mutual gravita-
tional attraction. Understanding syzygies, where the positions or velocities of the three bodies
become collinear, provides significant insight into the dynamics of the system.

Let P1, P2, and P3 be three points in the plane with strictly positive masses m1,m2,m3 and
Euclidean coordinates (xi , yi ) ∈ R2, i = 1,2,3. The Newtonian three-body problem [7] can be
formulated as follows:

z̈1 = m2
z21

|z21|3
−m3

z13

|z13|3
, z̈2 = m3

z32

|z32|3
−m1

z21

|z21|3
, z̈3 = m1

z13

|z13|3
−m2

z32

|z32|3
, (1)

where zk = xk + i yk ∈C, k = 1,2,3 and zkl = zk − zl .
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Given that the total linear momentum (which is conserved) is zero, one can always set∑
k

mk żk = 0,
∑
k

mk zk = 0, (2)

by placing the center of mass of the bodies at the origin.
Let t 7→ zi (t ), i = 1,2,3 be any collision-free solution of equations (1) defined for t ∈ I = [0, a),

a > 0, and determined by a set of initial conditions (zi (0), żi (0)), i = 1,2,3.

Definition 1. We say that the three bodies P1,P2,P3 form a syzygy (velocity syzygy) at the moment
t0 ∈ I if the complex triplet (z1, z2, z3)(t0) ((ż1, ż2, ż3)(t0)) is collinear.

Our first result concerns the existence of velocity syzygies.

Theorem 2. Let t 7→ (z1(t ), z2(t ), z3(t )), t ∈ [0,+∞), be a zero angular momentum, collision-free
solution to the three-body problem (1) with negative energy. Then, it has an infinite number of
velocity syzygies.

Proof. After introducing the new variables wi = mi zi , i = 1,2,3, the relations (2) yield∑
i

wi =
∑

i
ẇi = 0. (3)

Writing

wk = Xk + i Yk , Xk = mk xk , Yk = mk yk , k = 1,2,3 , (4)

and using (3), one derives from the equations (1) the following 2×2 matrix equation:

Ẍ = AX , X =
(

X1 Y1

X2 Y2

)
, A =

(−m2ρ3 −m13ρ2 m1ρ32

m2ρ31 −m1ρ3 −m32ρ1

)
, (5)

where

ρ1 = 1

|z32|3
, ρ2 = 1

|z13|3
, ρ3 = 1

|z21|3
, mi j = mi +m j , ρi j = ρi −ρ j . (6)

We define the determinants

∆1(t ) =
∣∣∣∣ X1 Y1

X2 Y2

∣∣∣∣ (t ), ∆2(t ) =
∣∣∣∣ Ẋ1 Ẏ1

Ẋ2 Ẏ2

∣∣∣∣ (t ), t ∈ [0,+∞) . (7)

It is sufficient to show that ∆2 has an infinite number of zeros for t ≥ 0. As demon-
strated by Montgomery [4], and later independently by the author in [5, 6], the solution t 7→
(z1(t ), z2(t ), z3(t )), for t ∈ [0,+∞), has an infinite number of consecutive syzygies. That is, there
exist ti ≥ 0, i = 1,2, . . . , with ti+1 > ti such that ∆1(ti ) = 0. As shown in [5, p. 6833], in the zero
angular momentum case:

∆̇1(t )2 −4∆1(t )∆2(t ) ≥ 0, ∀t ≥ 0, (8)

where equality occurs only if the positions zi (t ) and velocities żi (t ) for i = 1,2,3 are parallel.
Let ti < ti+1 < ti+2 be three consecutive syzygy moments. By Rolle’s theorem, there exist

τ ∈ (ti , ti+1) and η ∈ (ti+1, ti+2) such that τ < η and ∆̇1(τ) = ∆̇1(η) = 0. Without loss of generality,
we can assume that ∆1(τ) > 0 and ∆1(η) < 0. Indeed, if for some i ≥ 0, ∆1(ti ) = ∆̇1(ti ) = 0, then
according to (8), the corresponding solution is a straight-line one (with all positions and velocities
lying on the same line) and will result in a triple collision since the energy is negative.

Thus, by the Intermediate Value Theorem and (8),∆2 has a zero in the interval [τ,η]. The proof
is complete. □
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2. Bounds on Syzygy Moments in the Zero Angular Momentum Case

In the author’s previous works [5, 6], an upper bound was determined for the moment when the
very first syzygy occurs, expressed as a function of the energy value and the masses alone. In
this section, we refine our results by providing both upper and lower bounds that depend on the
initial positions and velocities of the bodies, resulting in significantly more precise estimates.

First, we present a preliminary result from the comparison theory for matrix Riccati equations,
developed by Eschenburg and Heintze in 1990 [3], which will be utilised later in the proof of our
main result.

Let E be a finite-dimensional real vector space equipped with an inner product ( · , · ), and let
S(E) denote the space of self-adjoint linear endomorphisms of E . Consider the Riccati differential
equation with a smooth coefficient curve R : (0, t0) → S(E):

Ḃ +B 2 +R = 0, (9)

where B : (0, t0) → S(E) is the solution.
We define R1 ≥ R2, where R1,R2 ∈ S(E), if the difference R1 −R2 is positive semidefinite. With

this definition, one can compare the solutions B1 and B2 of the following Riccati equations:

Ḃ1 +B 2
1 +R1 = 0, (10)

and

Ḃ2 +B 2
2 +R2 = 0, (11)

subject to appropriate initial conditions.

Theorem 3 ([3]). Let R1,R2 : (0, t0) → S(E) be smooth coefficient curves with R1 ≥ R2. For j = 1,2,
let B j : (0, t j ) → S(E) be the solution to the Riccati equation corresponding to R j , with maximal
t j ∈ (0,+∞]. If the difference U := B2 −B1 has a continuous extension to 0 with U (0) ≥ 0, then
t1 ≤ t2 and B1 ≤ B2 on (0, t1).

We now assume that at the instant t = 0, the configuration of the three-body problem is
different from a syzygy, i.e., the positions of the three bodies are not parallel. In this case, the
matrix C0 = Ẋ0X −1

0 , where X0 = X (0) and Ẋ0 = Ẋ (0), is well-defined since det(X0) ̸= 0. In the
zero angular momentum case, as shown in [5], both eigenvalues of C0 are real. We denote the
spectrum of C0 as:

Spec(C0) = {λ1,λ2} ⊂R , (12)

and define

πs = min{λ1,λ2} . (13)

Finally, we suppose that during the motion, all mutual distances of the bodies are bounded
above and below by the constants α,β> 0, with α<β, i.e.,

α≤ |zi j (t )| ≤β, ∀ i < j , (14)

and we define

θα =
p

M

α3/2
, θβ =

p
M

β3/2
, M = m1 +m2 +m3 . (15)

Theorem 4. Let Ts > 0 be the moment in time when the first syzygy occurs. Then the following
bounds hold:

1

θα
arccot

(
−πs

θα

)
≤ Ts ≤ 1

θβ
arccot

(
−πs

θβ

)
. (16)
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Proof. Let t 7→φi (t ), i = 1,2,3, be arbitrary positive smooth functions on [0,+∞). We consider a
linear system of second order

Z̈ =A Z , Z =
(

Z11 Z12

Z21 Z22

)
, A (φ1,φ2,φ3) =

(−m2φ3 −m13φ2 m1φ32

m2φ31 −m1φ3 −m32φ1

)
, (17)

where φi j =φi −φ j , mi j = mi +m j .
If (Z11, Z12) = (X1,Y1), (Z21, Z22) = (X2,Y2), and φi = ρi for i = 1,2,3, then the equations (17)

and (5) coincide.
It is a straightforward computation to verify that for any solution Z of the system (17), the

following identity holds:

1

m1

∣∣∣∣Z11 Z12

Ż11 Ż12

∣∣∣∣+ 1

m2

∣∣∣∣Z21 Z22

Ż21 Ż22

∣∣∣∣+ 1

m3

∣∣∣∣Z11 +Z21 Z12 +Z22

Ż11 + Ż21 Ż12 + Ż22

∣∣∣∣= k, k ∈R , (18)

which is an analog of the angular momentum conservation law in the three-body problem
written in the form (5) (recall that replacing (Zi 1, Zi 2) by (Xi ,Yi ), i = 1,2, in formula (18) the third
determinant is nothing but det(X3,Y3; Ẋ3, Ẏ3)).

The matrix B = Ż Z−1 is a solution of the following Riccati equation:

Ḃ +B 2 +R = 0, R =−A , (19)

an equation utilized in the study of the three-body problem in [6].
We introduce the matrices

I2 =
(

1 0
0 1

)
, Ã1 =

( m32
2 0

−m2 −m32
2

)
, Ã2 =

(−m13
2 −m1

0 m13
2

)
. (20)

Then, if k = 0,

B = δ̇

2δ
I2 + b

m2δ
Ã1 − a

m1δ
Ã2 = 1

δ

[
βa +γb + δ̇

2 a

−b −βa −γb + δ̇
2

]
, (21)

where

β= 1

2

(
m3

m1
+1

)
, γ= 1

2

(
m3

m2
+1

)
, (22)

and

δ=
∣∣∣∣Z11 Z12

Z21 Z22

∣∣∣∣ , a =
∣∣∣∣Z11 Z12

Ż11 Ż12

∣∣∣∣ , b =
∣∣∣∣Z21 Z22

Ż21 Ż22

∣∣∣∣ . (23)

The equality (21) follows directly from formulas (2.21), (2.32), (2.35)–(2.37) of [6] in which one
should replace X = Z and ∆1 = δ.

In order to apply Theorem 3 to equation (19), the solution B and the matrix R should be
symmetric. This can be achieved by the linear transformation B̃ = P−1BP with the invertible
matrix P defined by:

P =
(
− m1

m13

1
m13

√
m1m3M

m2

1 0

)
, M = m1 +m2 +m3 . (24)

Indeed, it is easy to check that the matrices P−1 Ãi P , i = 1,2, and R̃ = P−1RP are symmetric.
Since B̃ is a linear combination of I2 and P−1 Ãi P , it is also symmetric. Thus, equation (19)
becomes:

˙̃B + B̃ 2 + R̃ = 0, (25)

and Theorem 3 can be applied.
This fact also follows directly from the work in [1], where the same matrix A (up to reduction,

transposition, and some scaling factor) was introduced in relation to the Wintner–Conley endo-
morphism, which encodes the forces. Specifically, it was demonstrated that in the case of zero
angular momentum, this matrix is always conjugate to a symmetric matrix, simultaneously with
B = Ż Z−1.
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Lemma 5. The matrix Ã (φ1,φ2,φ3) = P−1A (φ1,φ2,φ3)P is negative semidefinite.

Proof. Since Ã is symmetric, it is sufficient to show that the eigenvalues of A are negative. We
have:

det(A ) = M(m3φ1φ2 +m2φ1φ3 +m1φ2φ3) ≥ 0, Tr(A ) =−(
m32φ1 +m13φ2 +m21φ3

)≤ 0, (26)

since φi ≥ 0 for i = 1,2,3.
Thus, Ã is negative semidefinite. □

Let us consider two Riccati equations:
˙̃B1 + B̃ 2

1 + R̃1 = 0, R̃1 =−P−1A (ρ1,ρ2,ρ3)P , (27)

and
˙̃B2 + B̃ 2

2 + R̃2 = 0, R̃2 =−P−1A

(
1

β3 ,
1

β3 ,
1

β3

)
P (28)

subject to the same initial conditions

B̃ 1(0) = B̃ 2(0) = P−1 Ẋ0X −1
0 P . (29)

By the linearity of A as a function of φi (i = 1,2,3), we have

R̃2 − R̃1 = P−1A

(
ρ1 − 1

β3 ,ρ2 − 1

β3 ,ρ3 − 1

β3

)
P,

and ρi − 1
β3 ≥ 0 for i = 1,2,3 by the definition of β.

According to Lemma 5, it follows that R̃1 ≥ R̃2.
Equation (28) can be easily solved by setting R̃2 = Ẏ Y −1. This leads to the equivalent equation:

Ÿ =−θ2
βY , θβ =

p
M

β3/2
. (30)

The solution to the Cauchy problem defined by (30) and the initial conditions Y (0) = Y0 = P−1X0,
Ẏ (0) = Ẏ0 = P−1 Ẋ0 is:

Y (t ) = cos(θβt )Y0 + 1

θβ
sin(θβt )Ẏ0 , t ≥ 0. (31)

Therefore, the corresponding maximal solution of (28) is:

B̃ 2(t ) = Ẏ (t )Y (t )−1, t ∈ [0, t2) , (32)

where t2 is the first positive zero of t 7→ det(Y (t )).
One has

det(Y (t2)) = 0 ⇐⇒ det(Ẋ0X −1
0 +θβ cot(θβt2)I2) = 0, (33)

since X0 and P are invertible matrices. As a consequence, we obtain:

−θβ cot(θβt2) ∈ Spec(C0), C0 = Ẋ0X −1
0 , (34)

and t2 = 1

θβ
arccot

(
−πs

θβ

)
. (35)

Let Ts = t1 > 0 be the first syzygy moment for the solution of the three-body problem t 7→ zi (t ),
i = 1,2,3. Then, using a similar argument, we show that the maximal solution of the Cauchy
problem defined by (27) and (29) is defined in the interval [0, t1). Therefore, according to
Theorem 3, Ts ≤ t2, and the upper bound in (16) is proven.

To prove the lower bound, consider the Riccati equations:

˙̃B1 + B̃ 2
1 + R̃1 = 0, R̃1 =−P−1A

(
1

α3 ,
1

α3 ,
1

α3

)
P , (36)

and ˙̃B2 + B̃ 2
2 + R̃2 = 0, R̃2 =−P−1A (ρ1,ρ2,ρ3)P , (37)

where R̃1 ≥ R̃2. Applying the same arguments as before, the proof of Theorem 4 is complete. □
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Remark 6. The uniform bounds |zi j | ≥α, ∀ i < j have a very natural astrophysical interpretation:
such motion corresponds to the collision-free movement of three rigid planets, each having the
same radius R = α/2. As seen from the proof of Theorem 4, the uniform bounds (14) and the
absence of collisions are required only for the period of time preceding the first syzygy.

3. Conclusion: Numerical Validation and Open Questions

To numerically verify our findings, we will consider the figure-eight periodic solution with equal
masses m1 = m2 = m3 = 1 and zero angular momentum, as described in [2]. The initial positions
and velocities of the bodies are set as follows:

z1(0) = 1.08075− i 0.0126893, z2(0) =−0.570154+ i 0.350807, z3(0) =−z1(0)− z2(0), (38)

and

ż1(0) = 0.0193421+ i 0.467219, ż2(0) = 1.0852− i 0.174718, ż3(0) =−ż1(0)− ż2(0) . (39)

Numerically, we can find that the first syzygy occurs at Ts = 0.55431 (see Figure 1). The
constants α and β are estimated to be α= 0.690526 and β= 2. Using formulas (15), we determine
θα = 3.01849 and θβ = 0.612372.

-1.0 -0.5 0.5 1.0

-0.3

-0.2

-0.1

0.1

0.2

0.3

Figure 1. The figure shows the trajectory of the figure-eight solution, as described in [2].
The initial positions of the bodies at t = 0 are represented by filled points. Additionally, the
configuration of the first syzygy, which occurs at t = 0.55431, is indicated by unfilled points.

Using the initial conditions (38) and (39), we compute:

X0 =
(
0.734528 1.35841
0.755791 −0.470708

)
, Spec(X0) = {1.31082,−1.047}, πs =−1.047, (40)

and the bounds (16) give us:

0.409781 ≤ Ts ≤ 0.864231, (41)

which are quite satisfactory.
We would like to highlight several open questions. It would be interesting to find bounds

analogous to (16) for the velocity syzygy moments using similar ideas based on the comparison
of matrix Riccati equations. It is important to note that the estimates provided by our Theorem 4
are valid only if the initial configuration at t = 0 is not a syzygy. However, with some effort and
by employing Theorem 3, one could establish bounds similar to (16) even in the case where the
initial configuration is a syzygy.

Finally, generalising to the case of non-zero angular momentum is an intriguing and impor-
tant challenge.
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