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Abstract. We give a simple generalization of the Willmore-type inequality in [1] without assuming that Ricci
curvature is nonnegative everywhere.

Résumé. Nous donnons une généralisation simple de l’inégalité de type Willmore dans [1] sans supposer que
la courbure de Ricci est partout non négative.
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1. Introduction

The classical Willmore inequality for a bounded domainΩ of R3 with smooth boundary says that∫
∂Ω

H 2 dvol∂Ω ≥ 16π,

where H is the mean curvature of ∂Ω and dvol∂Ω is the volume form of ∂Ω. In [1], Agostiniani,
Fogagnolo, and Mazzieri obtained the following Willmore-type inequality for an n-dimensional
complete noncompact Riemannian manifold (M , g ) with the nonnegative Ricci curvature and
Euclidean volume growth: ∫

∂Ω

∣∣∣ H

n −1

∣∣∣n−1
dvol∂Ω ≥ AVR(g )|Sn−1|, (1)

where |Sn−1| is the volume of the standard sphere and AVR(g ) is the asymptotic volume ratio, i.e.

AVR(g ) = lim
r→∞

n vol(B(p,r ))

r n |Sn−1| ,

ISSN (electronic): 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.684
mailto:shpaeng@konkuk.ac.kr
https://comptes-rendus.academie-sciences.fr/mathematique/


1794 Seong-Hun Paeng

where B(p,r ) is the r -ball centered at p ∈ M . They used the monotonicity-rigidity properties of
the function Uβ(t ) which is defined as follows:

Uβ(t ) = t−β( n−1
n−2 )

∫
{u=t }

|∇u|β+1,

where u is the harmonic function which vanishes at infinity and u = 1 on ∂Ω.
In this paper, we will generalize the inequality without assuming Ric ≥ 0 everywhere. The

condition Ric ≥ 0 is essential in [1] to apply results on harmonic functions.
Let ρ(q) = max{(−Ric(v, v))+ | |v | = 1, v ∈ Tq M }, where f+ = max{0, f }. We define integral

norms Rn−1 as follows:

Rn−1 =
∫

M
ρn−1 dV ,

where dV is the volume form of M .

Theorem 1. Let (M , g ) be an n-dimensional complete noncompact Riemannian manifold with
Euclidean volume growth and Ric ≥ 0 outside B(p,R0). If Ω ⊂ M is a bounded and open subset
with smooth boundary, then(∫

∂Ω

∣∣∣∣ H

n −1

∣∣∣∣n−1

dvol∂Ω

) 1
n−1

≥ (
AVR(g )|Sn−1|) 1

n−1 − (2R0)
n−1
n−2 (Rn−1)

1
n−1

n −1
. (2)

If Ric ≥ 0, then Rn−1 = 0, so we obtain (1).

2. Proof of Theorem 1

We will use the following notations. Let

Ωt = {x ∈ M | d(x,Ω) ≤ t }

∂Ωt = {x ∈ M | d(x,Ω) = t }.

Let γq be the outward normal geodesic such that γq (0) = q and γ′q (0) is perpendicular to ∂Ω for
q ∈ ∂Ω. Let

tq = max{t | d(γq (t ),∂Ω) = t }.

Then we have
M \Ω= ⋃

q∈∂Ω
{γq (t ) | t ≤ tq }.

We denote by g t the induced metric of ∂Ωt from the metric g of M . Let dvolt be the volume
form of ∂Ωt induced from g t . Then the volume form dvol∂Ω of ∂Ω is dvol0 and the volume form
of M satisfies dV = dt ∧dvolt . By identifying γq (t ) ∈ ∂Ωt with q ∈ ∂Ω for t ≤ tq , we define ω(t , q)
and h(t , q) as follows:

dvolt =ω(t , ·)dvol∂Ω (3)

∂

∂t
ω(t , q) = h(t , q)ω(t , q), (4)

where h(t , ·) is the mean curvature of ∂Ωt . So H = h(0, ·). We abbreviateω(t , q) and h(t , q) toω(t )
and h(t ), respectively. For t < tq , h satisfies

h′+ h2

n −1
≤−Ric

(
∂

∂t
,
∂

∂t

)
, (5)

where ∂
∂t = γ′q (t ) and | ∂∂t | = 1. For t > tq , we let ω(t ) = 0. Then ω(t ) is defined for all t > 0 and

vol(Ωt \Ω) = ∫ t
0

∫
∂Ωω(s, q)dvol∂Ω ds. Furthermore, ω′(t ) = h(t )ω(t ) for t < tq and ω′(t ) = 0 for

t > tq . We denote left and right limits limδ→0− f (t +δ) and limδ→0+ f (t +δ) by f (t−) and f (t+),
respectively.
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Let

ψ(t ) =


h+(t ) if t < tq

h+(t−) if t = tq

0 if t > tq ,

(6)

where h+(t ) = max{h(t ),0}. Then we have

ω′(t ) ≤ψ(t )ω(t ) (7)

for t < tq . Also ψ′ = h′ on {h(t ) > 0} and ψ′ = 0 for t > tq .
Although both ω and ψ are continuous along γq (t ) for t ̸= tq , they are left continuous for all

t > 0, i.e. ω(t−) =ω(t ) and ψ(t−) =ψ(t ) for all t > 0. Even if ω is not continuous at t = tq , the left
derivative limδ→0− ω(t+δ)−ω(t )

δ is well defined for any t > 0. On the other hand, the right derivative
limδ→0+ ω(t+δ)−ω(t )

δ is not well defined, i.e. it can be −∞. For a while, we will abbreviate the left

derivative limδ→0−
f (t+δ)− f (t )

δ to f ′(t ) for simplicity.
The left derivative ω′(t ) is bounded on [0,T ] × ∂Ω for T > 0 by the Jacobi equation J ′′ =

R( ∂∂t , J ) ∂∂t , where R is the curvature tensor and J is the Jacobi field. Also (ψn−1)′(t ) is bounded
on [0,T ]×∂Ω since h′(t ) ̸= −∞ (i.e. γq (t ) is not a focal point) at t when h(t ) ≥ 0.

Since ρ = max{(−Ric(v, v))+ | |v | = 1, v ∈ Tq M }, (5) becomes

ψ′+ ψ2

n −1
≤ ρ, (8)

where we also let ρ(γq (t )) = 0 if t > tq . We let

Hn−1(t ) =
∫
∂Ωt

ψn−1dvolt =
∫
∂Ω
ψn−1ω.

Since (ψn−1ω)(t−) = (ψn−1ω)(t ) for every t , Hn−1(t ) is left continuous, i.e.

Hn−1(t−) = lim
δ→0−

∫
∂Ω

(ψn−1ω)(t +δ) =
∫
∂Ω

(ψn−1ω)(t ) =Hn−1(t ) (9)

by the dominated convergence theorem.

Since (ψn−1ω)(t+δ)−(ψn−1ω)(t )
δ ≤ 0 for t > tq and δ< 0, we obtain that

∫
∂Ω

ψn−1(t +δ)ω(t +δ)−ψn−1(t )ω(t )

δ

≤
∫

{q∈∂Ω | t≤tq }

(ψn−1(t +δ)−ψn−1(t ))ω(t +δ)+ψn−1(t )(ω(t +δ)−ω(t ))

δ

−→
∫

{q∈∂Ω | t≤tq }
(ψn−1)′ω+ψn−1ω′ =

∫
∂Ω

(ψn−1)′ω+ψn−1ω′ (10)

as δ→ 0− by the dominated convergence theorem for t ≤ tq and ω(t ) =ψ(t ) = 0 for t > tq .
From now on, we redefine f ′(t ) = d

dt f (t ) as follows:

f ′(t ) := limsup
δ→0−

f (t +δ)− f (t )

δ
.
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We call f ′(t ) the left derivative of f for simplicity. Then the left derivative H ′
n−1(t ) satisfies

d

dt

∫
∂Ωt

ψn−1dvolt = d

dt

∫
∂Ω
ψn−1ω

= limsup
δ→0−

(∫
∂Ω

ψn−1(t +δ)ω(t +δ)−ψn−1(t )ω(t )

δ

)
≤

∫
∂Ω

(ψn−1)′ω+ψn−1ω′

≤
∫
∂Ω
ψn−2((n −1)ψ′+ψ2)ω

≤ (n −1)
∫
∂Ωt

ψn−2ρdvolt

≤ (n −1)

(∫
∂Ωt

ψn−1dvolt

) n−2
n−1

(∫
∂Ωt

ρn−1dvolt

) 1
n−1

(11)

by (8), (10).

Proposition 2. For sufficiently large t , we have(∫
∂Ω

|H |n−1 dvol∂Ω

) 1
n−1 ≥Hn−1(t )

1
n−1 − (2R0)

n−1
n−2 (Rn−1)

1
n−1 . (12)

Proof. Since
∫
∂Ω |H |n−1 ≥Hn−1(0), we only need to show that

Hn−1(t )
1

n−1 −Hn−1(0)
1

n−1 ≤ (2R0)
n−1
n−2 (Rn−1)

1
n−1 .

By (11),
H ′

n−1(t )

(n −1)Hn−1(t )
n−2
n−1

≤
(∫
∂Ωt

ρn−1dvolt

) 1
n−1

(13)

if Hn−1(t ) ̸= 0.
If g (x) = x

1
n−1 and f is left continuous, then the left derivative g ( f )′ satisfies that

g ( f )′(a) = limsup
δ→0−

(
g ( f (a +δ))− g ( f (a))

f (a +δ)− f (a)

)(
f (a +δ)− f (a)

δ

)
= g ′( f (a)) f ′(a)

(14)

if f (a) ̸= 0. By (13) and (14), the left derivative d
dt Hn−1(t )

1
n−1 satisfies that

d

dt

(
Hn−1(t )

1
n−1

)
≤

(∫
∂Ωt

ρn−1 dvolt

) 1
n−1

(15)

if Hn−1(t ) ̸= 0. If Hn−1(t ) = 0, then the left derivative (Hn−1(t ))
1

n−1 )′ ≤ 0 since Hn−1(s)
1

n−1 ≥ 0 for
any s. Thus (15) holds for any t .

Lemma 3. Let f and g ≥ 0 be left continuous on [a,b] and f (t ) ≥ f (t+) for all t ∈ [a,b]. If the left
derivative f ′ satisfies that f ′(t ) ≤ g (t ) for any t and g is bounded, then

f (b)− f (a) ≤
∫ b

a
g .

Proof. For η > 0, let I = {x ∈ [a,b] | f (b)− f (x) ≤ ∫ b
x (g (t )+η)d t } and A = inf I . Then it is clear

that b ∈ I . First, we show that A ∈ I . If not, there is a sequence an ∈ I such that an → A. Since
f (A) ≥ f (A+), we have

f (b)− f (A) ≤ f (b)− f (A+) ≤ lim
n→∞

∫ b

an

(g (t )+η)dt =
∫ b

A
(g (t )+η)dt .

Hence we obtain that A ∈ I .
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Now we show that A = a. If not, for s satisfying a ≤ s < A,

f (b)− f (s) >
∫ b

s
(g (t )+η)dt .

Since f (b)− f (A) ≤ ∫ b
A (g (t )+η)dt , we have

f (A)− f (s) >
∫ A

s
(g (t )+η)dt .

Then

f ′(A) = limsup
s→A−

f (A)− f (s)

A− s
≥ limsup

s→A−
1

A− s

∫ A

s
(g (t )+η)dt = g (A)+η

since g is left continuous. But this is a contradiction to our assumption. So we obtain that
A = a, i.e. f (b)− f (a) ≤ ∫ b

a (g (t )+η)dt . Since η is arbitrarily chosen, letting η→ 0, we obtain
Lemma 3. □

By the same reason that Hn−1 is left continuous,
(∫
∂Ωt

ρn−1 dvolt
) 1

n−1 is left continuous.

Hence, by (15) and Lemma 3 with f =Hn−1 and g = (∫
∂Ωt

ρn−1 dvolt
) 1

n−1 ,

Hn−1(t )
1

n−1 −Hn−1(0)
1

n−1 ≤
∫ t

0

(∫
∂Ωs

ρn−1dvols

) 1
n−1

ds. (16)

Since the diameter of B(p,R0) is not larger than 2R0, B(p,R0) \Ω ⊂Ωt0+2R0 \Ωt0 for some t0 ≥ 0.
For t > t0 +2R0,

Hn−1(t )
1

n−1 −Hn−1(0)
1

n−1 ≤
∫ t0+2R0

t0

(∫
∂Ωs

ρn−1 dvols

) 1
n−1

ds

≤
(∫

M
ρn−1 dV

) 1
n−1

(2R0)
n−2
n−1 ,

(17)

so we have Proposition 2. □

Now we calculate Hn−1(t ) with vol(∂Ωt ). Let A(t ) = volt (∂Ωt ) = ∫
∂Ωω(t , ·). Then A(t ) is left

continuous similarly as in (9). Similarly as in (11),

A′(t ) ≤
∫
∂Ω
ω′

≤
∫
∂Ωt

ψdvolt

≤
(∫
∂Ωt

ψn−1 dvolt

) 1
n−1

(∫
∂Ωt

dvolt

) n−2
n−1

≤Hn−1(t )
1

n−1 A(t )
n−2
n−1 .

(18)

by (7). By (14), (18), and the left continuity of A(t ),

(n −1)
(

A
1

n−1 (t )
)′ ≤Hn−1(t )

1
n−1 . (19)

From Proposition 2, we obtain that(∫
∂Ω

|H |n−1 dvol∂Ω

) 1
n−1 ≥ (n −1)

(
A

1
n−1 (t )

)′− (2R0)
n−1
n−2 (Rn−1)

1
n−1 . (20)

Now we calculate the left derivative
(

A
1

n−1 (t )
)′ with AVR(g ).

Lemma 4. Let f : [0,∞) → R have left derivative and satisfy f (t+) ≤ f (t ) for all t . If
limsupt→∞

f (t )
t = a > 0, then the left derivative f ′(t ) satisfies

limsup
t→∞

f ′(t ) ≥ a. (21)
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Proof. Assume limsupt→∞ f ′(t ) < a −2ϵ < a. Then there exists r0 > 0 such that f ′(t ) < a − ϵ for
t ≥ r0. Take a large R > r0. By Lemma 3,

f (R)− f (r0) ≤
∫ R

r0

(a −ϵ) = (a −ϵ)(R − r0), (22)

which implies that

lim sup
t→∞

f (t )

t
≤ a −ϵ.

It is a contradiction to our condition. Hence,

limsup
t→∞

f ′(t ) ≥ a, (23)

which completes the proof of Lemma 4. □

We let f (t ) = vol(Ωt \Ω)
1
n , where vol(Ωt \Ω) = ∫ t

0

∫
∂Ωω(s, q)dvol∂Ω ds. Although vol(Ωt \Ω)

may not be differentiable since ω(t ) is not continuous at tq , f is continuous. We can obtain the
left derivative as follows:

d

dt
vol(Ωt \Ω) =

∫
∂Ω
ω(t , q)dvol∂Ω = A(t ). (24)

Since vol(Ωt \Ω) is continuous, the left derivative satisfies

f ′(t ) = 1

n

A(t )

vol(Ωt \Ω)
n−1

n

by (14).
Since vol(ΩR \Ω)

vol(B(p,R)) → 1 as R →∞, we have

lim
t→∞

f (t )

t
=

(
AVR(g )|Sn−1|

n

) 1
n

. (25)

From f ′(t ) = 1
n

A(t )

vol(Ωt \Ω)
n−1

n
and Lemma 4, we obtain that

(
AVR(g )|Sn−1|

n

) 1
n

≤ limsup
t→∞

f ′(t ) = limsup
t→∞

1

n

A(t )

vol(Ωt \Ω)
n−1

n

= limsup
t→∞

1

n

A(t )

vol(B(p, t ))
n−1

n

.

(26)

Although A
1

n−1 (t ) may not be continuous, we have A
1

n−1 (t+) ≤ A
1

n−1 (t ) since ω(t ) ≥ω(t+). By
Lemma 4 and (25), (26),

limsup
t→∞

(A
1

n−1 (t ))′ ≥ limsup
t→∞

A
1

n−1 (t )

t

≥ n
1

n−1 lim
t→∞

(
AVR(g )|Sn−1|

n

) 1
n(n−1) vol(B(p, t ))

1
n

t

=
(
AVR(g )|Sn−1|

) 1
n−1

.

Consequently, from (20),(∫
∂Ω

( |H |
n −1

)n−1) 1
n−1

≥
(
AVR(g )|Sn−1|

) 1
n−1 − 1

n −1
(2R0)

n−1
n−2 (Rn−1)

1
n−1 ,

which completes the proof of Theorem 1.
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