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Abstract. We show that for each n ≥ 2, the systoles of closed hyperbolic n-manifolds form a dense subset of
(0,+∞). We also show that for any n ≥ 2 and any Salem number λ, there is a closed arithmetic hyperbolic
n-manifold of systole log(λ). In particular, the Salem conjecture holds if and only if the systoles of closed
arithmetic hyperbolic manifolds in some (any) dimension fail to be dense in (0,+∞).

Résumé. Nous démontrons que, pour tout n ≥ 2, les systoles de variétés hyperboliques compactes sans bord
de dimension n constituent une partie dense de ]0,+∞[. Nous démontrons de plus que, pour tout n ≥ 2 et
tout nombre de Salem λ, il existe une variété hyperbolique arithmétique compacte sans bord de dimension
n et de systole log(λ). En particulier, la conjecture de Salem est vraie si et seulement si les systoles de variétés
hyperboliques arithmétiques compactes sans bord d’une certaine dimension (de manière équivalente, de
dimension quelconque) ne sont pas denses dans ]0,+∞[.
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The systole sys(M) of a closed nonpositively curved Riemannian manifold M is the length of a
shortest closed geodesic in M . It follows for instance from residual finiteness of surface groups
that there is a sequence of closed hyperbolic surfaces with systole going to infinity. Since for any
ϵ> 0 and any closed surface M of negative Euler characteristic there is a hyperbolic metric on M
of systole < ϵ, continuity of the systole function on moduli space then yields for any L > 0 a closed
hyperbolic surface of systole precisely L.

By Mostow rigidity [19], the set of systoles of closed hyperbolic n-manifolds is countable for
n ≥ 3. Nevertheless, we show the following.

Theorem 1. For any n ≥ 2, the set of systoles of closed hyperbolic n-manifolds is dense in (0,+∞).
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That 0 is an accumulation point of systoles of closed hyperbolic 3-manifolds follows for in-
stance from Thurston’s hyperbolic Dehn filling theory (see [4, Sections E.5 and E.6]). The analo-
gous fact for 4-manifolds was established by Agol [1], whose strategy was to “inbreed” arithmetic
manifolds along totally geodesic hypersurfaces. This strategy was successfully extended to arbi-
trary dimensions independently by Belolipetsky–Thomson [3] and Bergeron–Haglund–Wise [6].
The present note is an elaboration on the utility of this inbreeding technique.

We also establish a variant of Theorem 1 for arithmetic hyperbolic manifolds. A Salem number
is a real algebraic integer λ > 1 of degree ≥ 4 that is Galois-conjugate to λ−1 and all of whose
remaining Galois conjugates lie on the unit circle.

Theorem 2. Let λ > 1 be a Salem number. Then for any n ≥ 2, there is a closed arithmetic
hyperbolic n-manifold of systole precisely log(λ).

The manifolds we exhibit in the proof of Theorem 2 are arithmetic of simplest type (the latter
being the only arithmetic construction that applies in every dimension) and are moreover classi-
cal in the language of Emery–Ratcliffe–Tschantz [11]. For n ≥ 4, it follows from Meyer’s theorem
on quadratic forms and [11, Theorem 5.2] that the exponential lengths of closed geodesics in any
classical simplest-type closed arithmetic hyperbolic n-manifold are Salem numbers.1

Lehmer’s conjecture for Salem numbers, or the Salem conjecture for short, asserts that the
Salem numbers are bounded away from 1; see [15, Section 13] and [21, p. 31]. In light of
the relationship between Salem numbers and lengths of geodesics in arithmetic hyperbolic
manifolds, Theorem 2 yields the following reformulation of the Salem conjecture.

Corollary 3. The Salem conjecture holds if and only if, for some, equivalently, any, n ≥ 2, the set
of systoles of closed arithmetic hyperbolic n-manifolds fails to be dense in (0,+∞).

Proof. It is known generally that, given any irreducible symmetric space X of noncompact
type, the Salem conjecture implies a uniform lower bound on systoles of closed arithmetic
locally symmetric manifolds modeled on X ; see Fra̧czyk–Pham [12]. On the other hand, since
positive powers of Salem numbers remain Salem numbers, failure of the Salem conjecture would
imply density of Salem numbers in (1,+∞), and hence density of systoles of closed arithmetic
hyperbolic n-manifolds in (0,+∞) for each n ≥ 2 by Theorem 2. □

We motivate the proofs of Theorems 1 and 2 with the following remark.

Remark 4. We provide an argument along the lines of [1] that, given any L > 0, there is a
closed hyperbolic surface of systole precisely L. Indeed, it suffices to find a closed hyperbolic
surface ML of systole ≥ L possessing two disjoint 2-sided simple closed geodesics Σ1 and Σ2

and an orthogeodesic segment ω joining the Σi of length L/2 and whose length is minimal
among all orthogeodesic segments with endpoints on Σ1 ∪Σ2. Cutting ML along the Σi and
then doubling the resulting surface along its boundary yields a (possibly disconnected) closed
hyperbolic surface of systole precisely L.

One can construct such a surface ML as follows. Let P ⊂ H2 be a right-angled pentagon with
an edge ω̃ of length precisely L/2, and let H1, H2 ⊂ H2 be the walls of P adjacent to ω̃. Let
ΓP < Isom(H2) be the group generated by the reflections in the walls of P . We can find a larger
right-angled convex polygon Q ⊂H2 that is a union of finitely many ΓP -translates of P such that
the walls of Q that enter the L

2 -neighborhood of Hi are orthogonal to Hi for i = 1,2 (this idea

1Exponential geodesic lengths in closed arithmetic hyperbolic surfaces or 3-manifolds can be quadratic “Salem
numbers”; the latter are sometimes included in the definition of a Salem number. Exponential geodesic lengths in odd-
dimensional closed arithmetic hyperbolic orbifolds need not be Salem numbers even in this more general sense; see
Lemma 4.10 and Theorem 4.11 in [20], as well as [11, Theorem 7.7].



Sami Douba and Junzhi Huang 1821

originates in work of Scott [22]; see also [2, Section 3.1]). By residual finiteness and virtual torsion-
freeness of the group ΓQ < Isom(H2) generated by the reflections in the walls of Q, there is a finite-
index subgroup Λ< ΓQ such that Λ\H2 is a surface of systole ≥ L. We may now take ML =Λ\H2,
the Σi to be the projections to ML of the Hi , and ω to be the projection of ω̃.

Proof of Theorem 1. Given L,ϵ> 0, we exhibit a closed hyperbolic n-manifold M with |sys(M)−
L| < ϵ. As in Remark 4, it suffices to find a closed hyperbolic n-manifold ML,ϵ of systole ≥ L + ϵ
possessing two disjoint 2-sided closed embedded totally geodesic hypersurfaces Σ1 and Σ2, and
an orthogeodesic segment ω joining the Σi of length within ϵ/2 from L/2 and whose length is
minimal among all orthogeodesic segments with endpoints on Σ1 ∪Σ2. We can then cut ML,ϵ

along Σ1 ∪Σ2, select the component N containing ω of the resulting manifold with boundary,
and define M to be the double of N . The double of ω is indeed a shortest closed geodesic in M of
length within ϵ from L.

To that end, let k =Q(
p

2) and Ok =Z[
p

2]. Define f to be the quadratic form on Rn+1 given by

f (x1, . . . , xn+1) = x2
1 +·· ·+x2

n −p
2x2

n+1.

We identify the level set {x ∈ Rn+1| f (x) = −1, xn+1 > 0} with n-dimensional hyperbolic space
Hn and O′( f ;R) with Isom(Hn), where O′( f ;R) is the index-2 subgroup of O( f ;R) preserving Hn .
By the Borel–Harish-Chandra theorem [7], we have that Γ := O′( f ;Ok ) is a uniform arithmetic
lattice of Isom(Hn).

Denote by H1 the hyperplane {x1 = 0} in Hn . Since O′( f ;k) is dense in O′( f ;R), there is an
element g ∈ O′( f ;k) such that ∣∣∣∣distHn (H1, g H1)− L

2

∣∣∣∣< ϵ

2
.

It follows again from the Borel–Harish-Chandra theorem that H1 and H2 := g H1 project to closed
immersed totally geodesic hypersurfaces in the orbifold Γ\Hn . Let ω̃ be the orthogeodesic
segment in Hn connecting H1 and H2. By the proof of Lemma 3.1 in Belolipetsky–Thomson [3],
we may now pass to a non-zero ideal I ⊂ Ok such that distHn (H1,γH2) ≥ distHn (H1, H2) for each
γ in the principal congruence subgroup Γ(I ) < Γ of level I . Up to diminishing the ideal I , we can
further assume that

(1) the principal congruence subgroup Γ(I ) is torsion-free, so that ML,ϵ := Γ(I )\Hn is a
manifold;

(2) we have sys(ML,ϵ) ≥ L+ϵ;
(3) for i = 1,2 and γ ∈ Γ(I ), either γHi = Hi , in which case γ furthermore preserves each side

of Hi , or distHn (Hi ,γHi ) ≥ distHn (H1, H2); in particular, the projections Σi of the Hi to
ML,ϵ are 2-sided closed embedded totally geodesic hypersurfaces in ML,ϵ.

Note that item (2) can be arranged by residual finiteness of the ring Ok , whereas item (3) can
be ensured by the fact that the stabilizer in Γ of either side of Hi is an intersection of congruence
subgroups of Γ for i = 1,2; see [16] and [5, Lemme principal]. We now have that the Σi are
disjoint and that any orthogeodesic segment in ML,ϵ with endpoints on Σ1 ∪Σ2 has length at
least that of the projection ω of ω̃ to ML,ϵ. Thus, the manifold ML,ϵ, the hypersurfaces Σi , and the
orthogeodesic segment ω are as desired. □

Remark 5. The proof of Theorem 1 demonstrates that we may take the closed hyperbolic
manifolds giving rise to a dense set of systoles in (0,+∞) to be quasi-arithmetic in the sense of
Vinberg and all share the same adjoint trace field (indeed, the same Vinberg ambient algebraic
group); see [23] and compare [9, Theorem 1.3]. In this case, infinitely many of these manifolds
would necessarily be nonarithmetic. This is because, for fixed D > 0 and µ > 1, there are
only finitely many monic integer polynomials of degree ≤ D and Mahler measure ≤ µ; see the
discussion immediately following Conjecture 10.2 in [13]. On the other hand, by varying the
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form f in the proof, one easily produces a family of pairwise incommensurable closed hyperbolic
manifolds in each dimension whose systoles remain dense in (0,+∞).

In fact, it is possible to achieve the latter without varying f ; one can select from any family
of closed hyperbolic manifolds whose systoles are dense in (0,+∞) pairwise incommensurable
manifolds whose systoles remain dense in (0,+∞). Indeed, given a closed hyperbolic manifold
M , the set of all geodesic lengths of manifolds commensurable to M is closed and discrete in
[0,+∞). When M is nonarithmetic, the latter follows from Margulis’s arithmeticity criterion [18,
Theorem IX.6.5], and when M is arithmetic, from the fact about Mahler measures of bounded-
degree monic integer polynomials mentioned in the previous paragraph.

Remark 6. Instead of appealing to the work of Belolipetsky–Thomson (loc. cit.) to find the
manifold ML,ϵ in the proof of Theorem 1, we could have instead used [6, Corollary 1.12] as in
the proof of Theorem 4 in [10]. An interesting feature of the former approach is that it afforded us
a manifold ML,ϵ that is congruence arithmetic.

Proof of Theorem 2. Let µ=λ+λ−1. Let k =Q(µ), and Ok be the ring of integers of k. Following
the proof of [11, Theorem 6.3], we define the form f in n +1 variables over k to be that given by
the symmetric matrix  1 µ/2

In−1

µ/2 1

 .

The form f is of signature (n,1), so that we may again identify Hn with one of the two sheets of
the hyperboloid {x ∈ Rn+1| f (x) = −1} and Isom(Hn) with O′( f ;R), where O′( f ;R) is the index-2
subgroup of O( f ;R) preserving Hn . Moreover, the field k is totally real, and for any embedding
σ : k → R other than the identity (of which at least one exists), the form f σ is positive definite. It
follows that Γ := O′( f ;Ok ) is a uniform arithmetic lattice of O′( f ;R) = Isom(Hn), which contains
the reflections

τ1 :=
−1 −µ

In−1

1

 , τ2 :=
−µ 1−µ2

In−1

1 µ


whose respective fixed hyperplanes H1, H2 ⊂Hn satisfy

distHn (H1, H2) = log(λ)/2.

As in the proof of Theorem 1, by the aforementioned work of Belolipetsky–Thomson (loc. cit.),
we may pass to a non-zero ideal I ⊂Ok such that

• the principal congruence subgroup Γ(I ) is torsion-free, so that Mlog(λ) := Γ(I )\Hn is a
manifold;

• we have sys(Mlog(λ)) ≥ log(λ);
• the Hi project to disjoint closed embedded 2-sided totally geodesic hypersurfacesΣ1 and
Σ2 in Mlog(λ);

• any orthogeodesic segment in Mlog(λ) with endpoints on Σ1 ∪Σ2 has length ≥ log(λ)/2.

Now cutting Mlog(λ) along the Σi and then doubling the resulting manifold along its boundary
yields a (possibly disconnected) closed manifold M of systole precisely log(λ) each of whose
components is arithmetic. □

Remark 7. Note that each component of the output manifold M in the proof of Theorem 2 is
arithmetic because the reflections τi in the hyperplanes Hi both belong to the input arithmetic
lattice Γ, whereas there is no such guarantee in the proof of Theorem 1.
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We conclude by remarking that there are natural spectral analogues of the questions consid-
ered in this paper, namely, what are the possible values of the smallest nonzero eigenvalue of
the Laplacian of a closed hyperbolic manifold (respectively, an arithmetic hyperbolic manifold)?
For recent progress in dimension 2, where these questions are already nontrivial, see Kravchuk–
Mazáč–Pal [14] and Magee [17]. See also Breuillard–Deroin [8] for a spectral reformulation of the
Salem conjecture.
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