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Abstract. The present note concerns the “graph of graphs” that has cubic graphs as vertices connected by
edges represented by the so-called Whitehead moves. Here, we prove that the outer-conductance of the graph
of graphs tends to zero as the number of vertices tends to infinity. This answers a question of K. Rafi in the
negative.

Résumé. Cette note porte sur le « graphe des graphes », dont les sommets sont des graphes trivalents reliés
par des arêtes correspondant aux transformations de Whitehead. Nous montrons ici que la conductance
externe de ce graphe tend vers zéro lorsque le nombre de sommets tend vers l’infini. Cela donne une réponse
négative à la question posée par K. Rafi.
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1. Introduction

The present note is concerned with the graph of connected 3-regular, or cubic, graphs. Such a
“graph of graphs” Γn , represents what can be informally described as the “deformations space”
of cubic graphs on 2n vertices under the Whitehead moves. In particular, we shall investigate its
expansion properties.

Let g be a cubic graph (we allow graphs with multiple edges and loops), with set of vertices
V (g ), and set of edges E(g ). Then, for an edge e ∈ E(g ) which is not a loop, there are two possible
Whitehead moves w (1)

e and w (2)
e on e, depicted in Figure 1, which are local transformations of g .

If e ∈ E(g ) is a loop, we define the respective Whitehead moves as having no effect on g . Let
us note that this convention is not arbitrary. Indeed, we may represent g as a multigraph: a set
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Figure 1. Two possible Whitehead moves performed on an edge ε.

of half-edges incident to vertices and paired by a fixed-point-free involution. Then a Whitehead
move does not affect the pairing of half-edges and only changes which vertices the half-edges are
adjacent to. If e is a loop, the two vertices u, v adjacent to its half-edges coincide: thus changing
the vertex assignment of one of the other two half-edges at u and of one of the other two half-
edges at v does nothing.

Let the vertices of Γn be all possible cubic graphs on 2n vertices (n ≥ 1) up to isomorphism,
where two vertices g1, g2 ∈ V (Γ) are connected by a directed edge for each Whitehead move
wε, for ε ∈ E(g1), such that wε(g1) is isomorphic to g2. It is easy to see that being related by a
Whitehead move is an equivalence relation on the set of isomorphism classes of cubic graphs on
2n vertices (n ≥ 1).

In this note, a directed version of this graph of graphs is considered, as it is common to do so
in the context of dynamical systems. Moreover, as Whitehead moves are clearly reversible, this
choice does not affect the expansion property of Γn .

We introduce the notion of outer-conductance φout because there is no standard definition of
expansion for directed non-regular multigraphs, despite them being a natural class of objects to
consider.

Outer-conductance captures how easy it is to escape a given subset of the graph. Therefore,
having the outer-conductance tend to 0 is a way of saying that the graphs have poor mixing and
therefore cannot be “expanders” in this sense.

Namely, we show that the following theorem holds which answers the question about “edge
expansion” of Γn posed by K. Rafi [11].

Theorem A (Theorem 2). Let Γn be the graph of cubic graphs on 2n (n ≥ 1) vertices connected by
Whitehead moves. Then Γn is connected and φout(Γn) → 0, as n →∞.

Since Γn contains loops, it is aperiodic. As a byproduct of this and Theorem Theorem 2, we
obtain one more statement about the combinatorics of Γn .

Corollary B (Corollary 4). For each n ≥ 1, the graph Γn is strongly connected and aperiodic. There
exists a Perron number ρn such that the number of length ℓ paths in Γn is asymptotic to const ·ρℓn ,
as ℓ→∞.

Finally, in Section 5, we mention some objects connected to Γn .
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First and foremost, the graph of graphs is related to moduli spaces of surface triangulations [5,
6] and pants decomposition of surfaces [12], although not entirely equivalent to said objects. The
definition considered here is a directed version of the graph of graphs considered in [12], and is
quasi-isometric to the latter.

Also, the graph of graphs considered in [12] is quasi-isometric to the “wide” component of
the thick part of the moduli space of a genus g ≥ 2 surface. This means that Γn describes pants
decompositions of the genus g = n+1 surface in which the set of separating curves contains only
sufficiently short geodesics.

Similar local transformations are considered in [8] and two such pants decompositions repre-
sent adjacent vertices in Γn if they are connected by a (I )-move1, while a (IV )-move2 is always
performed on a handle that corresponds to a loop in the pants decomposition graph, and thus is
not taken into account when passing to Γn . In this way, there exists a graph morphism from the
directed pants graph to Γn which sends pants decomposition to their dual graphs, and edges to
edges.

As shown in [14, 15], the vertex set of Γn coincides with the vertex set of the pants graph
quotient by the action of the mapping class group. Thus, Γn is quasi-isometric to the latter.

Thus, knowing the combinatorial properties ofΓn could be useful in the study of the geometric
and combinatorial properties of the pants graph.

2. Conductance and expansion

Let G be a connected directed graph with vertex set V (G) and edge set E(G). For a subset S ⊂V (G),
let d(S) denote the sum of vertex out-degrees in S, i.e. d(S) = ∑

v∈S dout(v), where dout(v) is the
number of edges of the form (v,u) where u ∈V (G). The boundary ∂(S) of a vertex subset S ⊂V (G)
is defined as the set of directed edges in E(G) joining a vertex in S with a vertex in V (G) \ S, that is
∂(S) = {e = (u, v) ∈ E(G) | u ∈ S , v ∈ Sc }.

The outer-conductance of S ⊂V (G) is defined as follows:

φout(S) = |∂(S)|
min{d(S),d(V (G)−S)}

and the outer-conductance of G is

φout(G) = min
S⊂V (G)

φout(S).

This is a generalization of the notion of conductance [2, Section 6.2]. Since we work with
directed graphs, the definition is adapted so that the volume is measured with respect to the
number of out-going edges. By doing so the outer-conductance measures how hard it is to escape
a subset of the graph.

As a generalization of the notion of expander families to the case of directed graphs with vertex
degrees (both out-degree and in-degree) growing with the number of vertices, we introduce
Definition 1.

Definition 1. We say that a sequence of directed graphs Gn with out-degree and in-degree growing
with the number of vertices is an outer-expander family if the conductance φout(Gn) is uniformly
bounded away from 0 as n tends to infinity.

Now we state our main result.

Theorem 2. Let Γn be the directed graph of cubic graphs on 2n (n ≥ 1) vertices connected by
Whitehead moves. Then Γn is connected and φout(Γn) → 0, as n → ∞. Therefore {Γn}n∈N is not
an outer-expander family.

1Called an A-move in [7]
2Called an S-move in [7]
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3. Proof of Theorem 2

Let Γn be the directed graph of (isomorphism classes of) cubic graphs on 2n vertices (n ≥ 1)
with edges corresponding to Whitehead moves as defined in the introduction. The following two
claims will imply Theorem 2.

3.1. Γn is connected

This result in mentioned in [11] as attributed to Coco Zhang. We give a proof below by using the
classical facts about tree rotations and rebalancing known in computer science.

Figure 2. The edge ε = (v0, v1) that belongs to a k-cycle Ck in g ∈ V (Γn) on which a
Whitehead move may be performed.

Let g be a cubic graph, and let Ck be an indecomposable k-cycle (with k ≥ 2) in g , i.e. an
induced cycle subgraph of g . If we perform a Whitehead move on the edge ε that belongs to a
k-cycle Ck , a part of which is depicted in Figure 2, we obtain a modified graph (partly) depicted
in Figure 3.

Figure 3. The resulting (k −1)-cycle Ck−1 in g̃ = wε(g ): the edge ε= (v, w) does not belong
to Ck−1.

The overall changes in the structure of g̃ = wε(g ) as compared to g are local and amount to
the following:

• The k-cycle Ck has been transformed into a (k −1)-cycle Ck−1 ;
• If v1, w1 were part of an l-cycle Cl then Cl was transformed into an (l +1)-cycle Cl+1;
• Same applies to any cycle that previously contained w0 and/or v0.

By performing a total of k −1 Whitehead moves on the edges in Ck , we reduce it to a loop, as
depicted in Figure 4. Here we reduced the total amount of k-cycles with k ≥ 2 by one, although
the lengths of some other cycles could have been augmented.
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Figure 4. The k-cycle Ck (k ≥ 2) is finally reduced to a loop by k−1 consecutive Whitehead
moves.

By repeating the above procedure on the remaining k-cycles (with k ≥ 2) of the resulting graph,
we shall reduce it to a (n,b)-lollipop tree, as defined below, an example of which is depicted in
Figure 5. Such a tree has 2n vertices and b = n+1 loops: note that b is the 1st Betty number of the
initial graph g , since Whitehead moves preserve the number of vertices and edges of g , as well as
the rank of π1(g ).

Figure 5. A (2,3)-lollipop tree.

There exists a natural isomorphism between our (n,b)-lollipop trees with a chosen loop (i.e.
rooted (n,b)-lollipop trees with a chosen loop ε∗ as a root), and binary rooted trees. Namely,
let us take a rooted (n,b)-lollipop tree (T,ε∗) and remove all the loops as well as the edge (v∗, v)
adjacent to ε∗ (with ε∗ being the loop at vertex v). The result, (T̃ , v∗) is a binary rooted tree on
2n −1 vertices with n leaves.

The general theory of binary trees and tree rebalancing [3, Section 12–Section 13] shows that
we can bring (T̃ , v∗) to a unique complete rooted binary tree Tn on n vertices by a series of
rotations. As Figure 6 shows, a tree rotation can be achieved by a Whitehead move. This proves
that Γn is connected.

3.2. The outer-conductance of Γn tends to 0

A bridge in a connected graph is an edge such that its removal produces several connected
components. A graph with a bridge is called bridged, while a graph that has no bridges at all
is called bridgeless.

Let Bn ⊂ V (Γn) be the set of (isomorphism classes of) connected cubic graphs on 2n vertices
that have at least one bridge. We shall estimate the probability P(g ∈ Bn) asymptotically. For this
matter, notice that if Un = V (Γn) is the set of unlabelled cubic graphs (i.e. their isomorphism
classes), and Ln is the set of labelled ones, then P(g ∈Un has a bridge) =P(g ∈ Ln has a bridge)+
o(1), since according to [1] we have that |Ln | ∼ |Un | · (2n)!, as n →∞.
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Figure 6. A left and right rotation of a rooted binary tree (corresponding to an (n,b)-
lollipop tree with root ε∗) realised by a Whitehead move on edge e. Here P , Q are the
vertices of ε, and A, B , and C are the respective sub-trees

A Hamiltonian circuit in a (connected) graph is a closed edge path that visits each vertex once
(i.e. without self-intersection). A graph is called Hamiltonian if it admits a Hamiltonian circuit.

It is clear that a graph that has a bridge cannot be Hamiltonian, and hence every Hamiltonian
cubic graph is bridgeless.

Let Bridged = {g ∈ Ln | g has a bridge} and Looped = {g ∈ Ln | g has a loop}, and let nH be the
set of graphs in Ln that do not have a Hamiltonian circuit. Then

P(g ∈ Looped) ≤P(g ∈ Bridged) ≤P(g ∈ Looped)+P(g ∉ Looped and g ∈ nH),

since Looped ⊆ Bridged, as well as Bridged ⊆ nH.
By applying [9, Theorem 9.5], we have that P(g ∈ Looped) = 1− e−1 + o(1), while [9, Theo-

rem 9.23] implies that P(g ∉ Looped and g ∈ nH) = o(1), as n → ∞. Thus, P(g ∈ Bridged) =
1−e−1 +o(1) asymptotically, as n →∞.

Together with the remarks above about the probabilities for labelled and unlabelled graphs,
we obtain that P(g ∈ Bn), for g ∈ V (Γn), satisfies P(g ∈ Bn) = 1− e−1 + o(1), as n → ∞. Thus,
|Bn | ∼ (1−e−1)|V (Γn)|, and |V (Γn) \ Bn | ∼ e−1|V (Γn)|.

Note that the only vertices in Bn connected with vertices in V (Γn) \ Bn are those g ∈ Bn having
a single bridge, and the corresponding Whitehead moves have to be performed exactly on the
bridge edge of g .

Indeed, let g ∈V (Γn) have at least one bridge and let ε∗ = (u, v) denote one of its bridges. Then
we can check case-by-case what the result of a Whitehead move on ε∗ could be.

For this purpose, let us introduce the following equivalence relation on the vertices of g : for
v, w ∈ V (g ), we write v ∼g w if and only if there are two edge-disjoint paths connecting v to w .
Then we write [v]g = {w ∈V (g ) s.t . v ∼g w} for the equivalence class of v .

Let {a,b,c,d} be the vertices adjacent to the bridge ε∗ ∈ E(g ), and let g̃ = wε∗ (g ) be the graph
resulting from a Whitehead move performed on ε∗. Then we consider the following five possible
cases.

(1) [a]g = [b]g = [c]g = [d ]g : in this case ε∗ is not a bridge neither in g , nor in g̃ , as shown in
Figure 7–Figure 8.
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a
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Figure 7. Local picture inside g
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b
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v
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d

ε∗

Figure 8. Local picture inside g̃

(2) [a]g = [b]g = [c]g ̸= [d ]g : same as above, ε∗ is not a bridge neither in g , nor in g̃ , see
Figure 9–Figure 10.

a
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ε∗

Figure 9. Local picture inside g
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v

c

d

ε∗

Figure 10. Local picture inside g̃

(3) [a]g = [b]g ̸= [c]g = [d ]g : in this case, ε∗ is a bridge in g , but not in g̃ , see Figure 11–
Figure 12.
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Figure 11. Local picture inside g
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Figure 12. Local picture inside g̃
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(4) [a]g = [b]g ̸= [c]g , [a]g = [b]g ̸= [d ]g , and [c]g ̸= [d ]g : again, ε∗ is a bridge in g , but not in
g̃ , see Figure 13–Figure 14.

a
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c

d

ε∗

Figure 13. Local picture inside g
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c

d

ε∗

Figure 14. Local picture inside g̃

(5) [a]g , [b]g , [c]g , [d ]g are all distinct: obviously, ε∗ is a bridge in both g and g̃ , see Figure 15–
Figure 16.

a

b

u v

c

d

ε∗

Figure 15. Local picture inside g

a

b

u

v

c

d

ε∗

Figure 16. Local picture inside g̃

According to the observations above, if a bridged graph g ∈ Bn can be transformed into a
bridgeless one g̃ = wε(g ), then ε is the only bridge of g . Every time, both Whitehead moves
either succeed or fail to bring g̃ outside Bn . This implies that |∂(Bn)| ≤ 2|Bn |. Thus the outer-
conductance of the set Bn satisfies

φout(Bn) = |∂(Bn)|
min{d(Bn),d(V (Γn) \ Bn)}

≤ 2|Bn |
6n|V (Γn) \ Bn |

∼ 2|V (Γn)|(1−e−1)

6n|V (Γn)|e−1 = e −1

3n
−→ 0,

as n →∞. □
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Remark 3. It appears that Γn is itself a relatively “thin” neighbourhood of Bn . Indeed, each
length k cycle in a graph g ∈ V (Γn) can be reduced by k − 2 Whitehead moves to a 2-cycle,
and one more Whitehead move will create an edge incident to a loop. The standard asymptotic
bound on girth is girth(g ) ≲ 2log2 n. If v = |V (Γn)|, then v ∼ nn [1], and thus each vertex of Γn

happens to be within ∼ log2 log2 v distance from Bn . As shown in [12], the diameter of Γn satisfies
d = diam(Γn) ∼ n log2 n, and thus each vertex of Γn is within log2 d of Bn .

4. Combinatorics of paths

Let A be a non-zero square k×k (k ≥ 2) matrix with non-negative integer entries. Such a matrix is
called non-negative, for brevity. If all the entries of A are actually positive, then A is called positive.

If there exists a permutation matrix P such that PAP−1 has upper-triangular block form, A is
called reducible. Otherwise, A is irreducible.

For i ∈ {1, . . . ,k}, the i -th period of A is the greatest common divisor of all integers m such that
the i -th diagonal entry of Am is positive. If A is irreducible, then all its periods coincide, and each
of them equals the period of A. If the period of A equals 1, then A is called aperiodic.

An aperiodic and irreducible non-negative matrix A is called primitive. If A is a primitive
matrix, then its spectral radius is a Perron number, as a consequence of the Perron–Frobenius
theorem [10, Theorem 4.5.11]. Recall that a Perron number is an algebraic integer ρ > 1 such that
all of its other Galois conjugates have modulus strictly less than ρ. Perron numbers often appear
in dynamical context, cf. [10]. Another property of the spectral radius of a primitive matrix A is
that this eigenvalue has multiplicity one.

Let Γ be a directed graph, and let A be its adjacency matrix defined as follows:

Auv = the number of directed edges joining u to v, if u ̸= v,

and

Av v = the number of loops incident to v.

Then A is irreducible if and only if Γ is strongly connected, i.e. there exists a path of directed
edges in Γ between any pair of distinct vertices. If Γ is strongly connected and the greatest
common divisor of its directed cycle lengths equals 1, then A is aperiodic, and thus primitive.
Thus, in this case we can deduce that the spectral radius of A is a Perron number by considering
the combinatorics of Γ.

Corollary 4. The graph Γn is strongly connected and aperiodic. The number of length ℓ paths in
Γn is asymptotic to const ·ρℓn , with ρn a Perron number, if ℓ→∞.

Proof. For every n ≥ 1, there exists an (n,b)-lollipop tree t ∈ V (Γn), with b = n + 1 ≥ 2 loops
ε1, . . . ,εb . Then, wεi (t ) = t , for any i = 1, . . . ,b, and thus Γn has loops. This implies that Γn is
aperiodic.

Remark 5. There exist a 3-cycle and a 4-cycle in each Γn , for n ≥ 3. Namely, we can choose
the cycle in Figure 17. The subgraph of Γ3 depicted in Figure 17 embeds in Γn by replacing the
left-most loop in each cubic graph with a sequence of “lollipop” graphs.

Moreover Γn is strongly connected, as follows from the proof of Theorem 2. Thus, we obtain
that An is primitive, and can now apply the Perron–Frobenius theorem.

Hence the spectral radius ρn = ρ(An) is a multiplicity 1 eigenvalue with a positive eigenvec-
tor v , and ρn is a Perron number. Then the asymptotic number of paths follows from [10, Theo-
rem 4.5.12] by a standard computation. □



1834 Laura Grave de Peralta and Alexander Kolpakov

Figure 17. Two cycles in Γ3 of coprime lengths having a common vertex. Each of them
is a cubic graph containing a “lollipop” (a loop incident to an edge) subgraph on the left.
By replacing this lollipop subgraph with a lollipop tree on 2n −4 vertices minus a loop, we
obtain a similar picture inside Γn for every n ≥ 4 as well.

5. Related objects

Above we consider the graph of graphs Γn of all possible cubic graphs on 2n vertices, where
two vertices, g1, g2 ∈ V (Γn), are connected by a directed edge for each Whitehead move wε, for
ε ∈ E(g1), such that wε(g1) is isomorphic to g2.

However, there are several ways to modify this definition. Indeed, we could modify the edges
of Γn in order to turn it into an undirected graph, a simple graph or other types of graphs.
These modifications can provide relations between the graph of graphs and other mathematical
problems. In this section we will explore some of these connections.

5.1. Matchings on graphs

Let us consider two edges e, f in g ∈ Γn that are not incident to each other. Note that the
Whitehead move w (k)

e (g ), k = 1,2, only affects the 4 half-edges incident to the vertices of e (and
not belonging to e). The same holds for w (k)

f (g ), k = 1,2. Thus, the respective sets of half-edges
are disjoint, which implies that we (g ) and w f (g ) commute. We will call this transformation a
simultaneous Whitehead move on the set {e, f }, cf. [12].

Thus, we can consider a modified graph Γ′n with V (Γ′n) = V (Γn) where g1, g2 ∈ V (Γ′n) are
connected by a directed edge if there exists a Whitehead move on some set of non-incident edges
of g1 mapping g1 to g2.

Each vertex matching of cardinality m ≥ 1 in g1 gives rise to 2m simultaneous Whitehead
moves. Thus, knowing the number of cardinality m ≥ 1 matchings in g1 allows us to compute
the degree of g1 in Γ′n .

5.2. Outer space and its spine

Let Fn be the free group on n ≥ 2 letters. In [4], Culler and Vogtmann introduced a space Xn

on which the group Out(Fn) acts. This space can be thought of as analogous to the Teichmüller
space of a surface with the action of the mapping class group of the surface.
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The description of Xn is complicated, and we will not detail it here. We will only briefly
mention the relevant aspects of this object and how it could relate to our graph of graphs.

The space Xn is an infinite, finite-dimensional simplicial complex. A point in Xn is defined
as a metric graph (where edges have assigned lengths) of total length 1 with fundamental group
Fn equipped with a homotopy equivalence to the bouquet of n circles, called a marking. Each
open simplex in Xn is obtained by varying the lengths of the edges in a fixed marked topological
graph in such a way that their sum remains equal to 1. The group Out(Fn) acts on Xn by change
of markings.

Two given k-simplices x1 and x2 share a face of codimension 1 if one can pass from a point
in x1 to a point in x2 by collapsing an edge and re-opening it, i.e., by a continuous version of
a Whitehead move. Observe that some simplices have missing faces corresponding to loops in
the graph, since collapsing a loop would change the fundamental group. Note that simplices of
maximal dimension correspond to marked trivalent metric graphs.

The space Xn admits a spine Kn which is a deformation retract of Xn : the vertices of Kn are
marked graphs considered without edge lengths. This spine Kn has the structure of a simplicial
complex, in fact it can be identified with the geometric realization of the partially ordered set of
open simplices of Xn .3 The group Out(Fn) acts on Kn with compact quotient.

Our graph of graphs Γn is related to Kn+1/Out(Fn+1) in the following way. Let us consider
the dual graph to the collection of top-dimensional simplices in Xn+1, then take its quotient by
Out(Fn+1). This will yield a graph that Γn admits a morphism onto.

Acknowledgements

Both authors thank the anonymous referees for their comments and suggestions that helped
improving the manuscript.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.

References

[1] B. Bollobás, “The asymptotic number of unlabelled regular graphs”, J. Lond. Math. Soc. 26
(1982), no. 2, pp. 201–206.

[2] F. R. K. Chung, Spectral graph theory, American Mathematical Society, 1997, pp. xii+207.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, Third

edition, MIT Press, 2009, pp. xx+1292.
[4] M. Culler and K. Vogtmann, “Moduli of graphs and automorphisms of free groups”, Invent.

Math. 84 (1986), no. 1, pp. 91–119.
[5] V. Disarlo and H. Parlier, “Simultaneous flips on triangulated surfaces”, Mich. Math. J. 67

(2018), no. 3, pp. 451–464.
[6] V. Disarlo and H. Parlier, “The geometry of flip graphs and mapping class groups”, Trans.

Am. Math. Soc. 372 (2019), no. 6, pp. 3809–3844.
[7] A. Hatcher, “Pants decompositions of surfaces”, 1999. https : / / arxiv . org / abs / math /

9906084.

3This is, word for word, the description given in [13].

https://arxiv.org/abs/math/9906084
https://arxiv.org/abs/math/9906084


1836 Laura Grave de Peralta and Alexander Kolpakov

[8] A. Hatcher and W. Thurston, “A presentation for the mapping class group of a closed
orientable surface”, Topology 19 (1980), no. 3, pp. 221–237.

[9] S. Janson, T. Luczak and A. Rucinski, Random graphs, John Wiley & Sons, 2011.
[10] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Second edition,

Cambridge University Press, 2021, pp. xix+550.
[11] K. Rafi, K. Rafi’s webpage, 2024. http://www.math.toronto.edu/~rafi/gofg.html.
[12] K. Rafi and J. Tao, “The diameter of the thick part of moduli space and simultaneous

Whitehead moves”, Duke Math. J. 162 (2013), no. 10, pp. 1833–1876.
[13] K. Vogtmann, “Automorphisms of free groups and outer space”, Geom. Dedicata 94 (2002),

pp. 1–31.
[14] U. Wolf, Die Aktion der Abbildungsklassengruppe auf dem Hosenkomplex, PhD thesis,

Karlsruher Institut für Technologie, 2009.
[15] U. Wolf, “The action of the mapping class group on the pants complex”, 2009. https://www.

math.kit.edu/iag3/~wolf/media/wolf-the-action-of-the-mapping-class-group-on-the-
pants-complex.pdf.

http://www.math.toronto.edu/~rafi/gofg.html
https://www.math.kit.edu/iag3/~wolf/media/wolf-the-action-of-the-mapping-class-group-on-the-pants-complex.pdf
https://www.math.kit.edu/iag3/~wolf/media/wolf-the-action-of-the-mapping-class-group-on-the-pants-complex.pdf
https://www.math.kit.edu/iag3/~wolf/media/wolf-the-action-of-the-mapping-class-group-on-the-pants-complex.pdf

	1. Introduction
	2. Conductance and expansion
	3. Proof of Main theorem
	3.1. Gamma is connected
	3.2. The outer-conductance of Gamma n tends to 0

	4. Combinatorics of paths
	5. Related objects
	5.1. Matchings on graphs
	5.2. Outer space and its spine

	Acknowledgements
	Declaration of interests
	References

