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Abstract. A set P of links is introduced, containing positive braid links as well as arborescent positive Hopf
plumbings. It is shown that for links in P , the leading and the second coefficient of the Alexander polynomial
have opposite sign. It follows that certain satellite links, such as (n,1)-cables, are not in P .

Résumé. Un ensemble P de liens est introduit, contenant les clôtures de tresses positives ainsi que les
plombages arborescents de bandes de Hopf positives. Il est démontré que pour les liens appartenant à P ,
le premier et le deuxième coefficient du polynôme d’Alexander sont de signe opposé. Il s’ensuit que certains
liens satellites, tels que les câbles (n,1), n’appartiennent pas à P .

Keywords. Alexander polynomial, Hopf plumbings, satellite knots, arborescent knots, positive braids.

Mots-clés. Polynôme d’Alexander, plombages de Hopf, nœuds satellites, nœuds arborescents, tresses posi-
tives.

2020 Mathematics Subject Classification. 57K10, 57K14.

Manuscript received 11 March 2024, revised 9 October 2024, accepted 13 October 2024.

In this short note, we introduce a certain set P of fibered links in S3, which in particular
contains non-split positive braid links and arborescent positive Hopf plumbings, and is closed
under connected sum. We then prove the following.

Theorem 1. For all links in P , the second coefficient of the Alexander polynomial is negative.

Let us briefly define the above-mentioned terms. A link L, i.e. a non-empty compact oriented
one-dimensional smooth submanifold of S3, is fibered if there exists a fibration S3 \ L → S1

whose every fiber is the interior of a Seifert surface of L, i.e. a compact connected oriented two-
dimensional smooth submanifold of S3 with boundary L. The fiber surface of a fibered link L is
uniquely determined up to isotopy, and it is the unique Seifert surface of minimal genus for L (see
e.g. [12, Proposition 2.19] and [4, Lemma 5.1]). For example, a disk is the fiber surface of the
unknot; and an unknotted band with a left-handed full-twist, called a positive Hopf band, is the
fiber surface of the positive Hopf link. On the other hand, split links are not fibered. Here, a link L
is called split if it admits a 2-sphere S ⊂ S3 \L such that each component of S3 \S contains at least
one component of L. Further examples of fibered links may be constructed as follows: given a
Seifert surface Σ0 and a properly embedded arc h ⊂ Σ0, let Σ+ be the union of Σ0 with a positive
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Figure 1. The links L+,L0,L− appearing in the skein relation.

Hopf band H along a square S, such that S ⊂Σ0 is a product neighborhood of h, S ⊂ H is a product
neighborhood of a cocore of H , and H is contained in a small neighborhood of h in S3, as shown
in Figure 2. Then Σ+ is a positive Hopf plumbing of Σ0, and Σ+ is a fiber surface if Σ0 is.

Let us now define the above-mentioned two classes of fibered links. Firstly, an arborescent pos-
itive Hopf plumbing is associated with a plane tree T in the following way (see [3, Chapter 12],
[2,5]): place a positive Hopf band at each vertex of T , and plumb any two bands whose corre-
sponding vertices are connected by an edge; the embedding of T into R2 dictates the order of
the (disjoint) plumbing squares around each band. Secondly, consider Artin’s braid group on n
strands with its standard generators σ1, . . . ,σn−1 [1]. By closing off its strands, a braid β gives rise
to a link called the closure of β. A braid is called positive if it can be written as a word in the gen-
erators σi (without their inverses). Closures of positive braids are called positive braid links; they
are fibered if they are non-split [13].

The Alexander polynomial ∆L(t ) of a link L is an integer Laurent polynomial in t 1/2. We use
the Conway normalization; that is to say, ∆U (t ) = 1 for the unknot U , and the skein relation

∆L+ (t ) =∆L− (t )+ (
t 1/2 − t−1/2)∆L0

holds, whenever L±,L0 are three links as shown in Figure 1. These equations determine ∆L(t )
uniquely for all links L. Non-zero Alexander polynomials are of the form

∆L(t ) = ad t d +ad−1t d−1 +·· ·+a−d+1t−d+1 +a−d t−d

with d(L) = d ≥ 0 an integer and ai = a−i if L has an odd number of components, and d(L) ≥ 1/2
a half-integer and ai = −a−i if L has an even number of components. For ∆L ̸= 0, let us call
α(L) = ad ̸= 0 the leading coefficient and β(L) = ad−1 the second coefficient. It is well-known that
for fibered links L (such as the links in P ), the Alexander polynomial ∆L is non-zero, d(L) equals
b1(Σ)/2 for Σ⊂ S3 a fiber surface of L, and α(L) =±1. We shall see in the proof of Theorem 1 that
α(L) = 1 for all L ∈ P . Thus, if one prefers the convention that the Alexander polynomial is only
well-defined up to multiplication with ±t k , one may state Theorem 1 as follows: for all links L
in P , the leading and second coefficient of ∆L have opposite sign (i.e. α(L) ·β(L) < 0).

Theorem 1 and its proof are inspired by Ito’s theorem [6, Corollary 2] that −β(L) equals the
number of prime connected summands of L if L is a positive braid knot. Our main motivation
for Theorem 1 is the satellite obstruction stated below in Corollary 2. Given a so-called pattern P ,
which is a link in the solid torus, and a companion, which is a knot in S3, the satellite link P (K ) is
the link obtained from P by tying the knot K into the solid torus containing P , preserving standard
longitudes. The winding number w(P ) of the pattern is the algebraic intersection number of P
with a meridional disk of the solid torus, or equivalently, the class of P in the first homology group
of the solid torus identified with Z.

Corollary 2. Let P be a pattern with winding number not equal to ±1 such that the product of the
leading and the second coefficient of ∆P (U ) is non-negative. Then P (K ) ̸∈P for all knots K .

Proof. The Alexander polynomial of P (K ) equals (see e.g. [9, Theorem 6.15 and its proof])

∆P (K )(t ) =∆K
(
t w(P )) ·∆P (U )(t ).
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Figure 2. The links L+,L0,L−, the fiber surfaces Σ+,Σ0, the arc h, and the Seifert surface Σ−
featuring in Definition 3.

It follows that

α
(
P (K )

)=α(K ) ·α(
P (U )

)
,

β
(
P (K )

)=α(K ) ·β(
P (U )

)
.

Multiplying the two equations, one sees that the hypothesis α(P (U )) · β(P (U )) ≥ 0 implies
that α(P (K )) ·β(P (K )) ≥ 0. By Theorem 1, it follows that P (K ) ̸∈P . □

The hypotheses for P in Corollary 2 are e.g. satisfied by the (n,1)-cable patterns for n ≥ 2, since
P (U ) is the unknot (which satisfies α(U ) = 1,β(U ) = 0). So in particular, Corollary 2 recovers
Krishna’s recent theorem that (n,1)-cables of non-trivial knots are never positive braid knots [8,
Theorem 1.5].

Let us now give the definition of P and prove our results.

Definition 3 (see Figure 2). Let P be the smallest set of fibered links in S3 that contains the positive
Hopf link and satisfies the following. Let L0 ∈ P with fiber surface Σ0, and h ⊂ Σ0 a properly
embedded arc. Let Σ− be the surface obtained from Σ0 by cutting along h, and let Σ+ be the surface
obtained from Σ0 by plumbing a positive Hopf band to Σ0 along h. Let us write L± = ∂Σ±. If the
following holds:

“The coefficient of t b1(Σ−)/2 in ∆L− (t ) is less than or equal to 1.” (∗)

then L+ ∈P .

Let us make some remarks regarding this definition; note that (∗) is in particular satisfied if L−
is fibered (because then the coefficient is ±1 or 0), or if L− is split (because then ∆L− is zero, and
so is the coefficient). Also remark that by definition, for all links L ∈ P with the exception of the
positive Hopf link, there exists links L− and L0 such that L plays the role of L+. Finally, note that
as plumbings of positive Hopf bands, all links in P are strongly quasipositive [11].

Proposition 4.

(1) P is closed under connected sum.
(2) P contains all non-trivial closures of non-split positive braids.
(3) P contains all non-trivial arborescent positive Hopf plumbings.

Proof.

(1). Let L,L′ ∈ P . Let us show that L#L′ ∈ P (where the connected sum # is taken along any
choice of components), by induction over the first Betti number b of the fiber surface of L#L′.
By definition of P , the Hopf link is the only link with Betti number 1 in P . So if b = 2, then L
and L′ are both the positive Hopf link, and so L#L′ ∈ P . Otherwise, if b > 2, then L or L′ is not
the positive Hopf link; without loss of generality, suppose L is not. Then, by definition of P ,
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one may pick links L− and L0 for L+ = L as in Definition 3. Hence L+#L′ is obtained from L0#L′

by plumbing a positive Hopf band along an arc h, such that cutting along h yields L−#L′. The
link L0#L′ is in P by induction. Since α(L′) = 1 (see proof of Theorem 1) and L− satisfies (∗), so
does L−#L′. It follows that L+#L′ = L#L′ ∈P .

(2). Let L be a non-trivial non-split positive braid link. We show by induction over the first
Betti number b of the fiber surface of L that L ∈ P . If b = 1, then L is the positive Hopf link,
and so L ∈ P . Let us now assume b ≥ 2. An elegant argument by Rudolph [10, proof of last
proposition] shows that a positive braid link that is not an unlink can be written as the closure of
a positive braid that starts with the square of a generator, i.e. is of the formσ2

kβwith positiveβ. So
let us pick such a braid σ2

kβ with closure L. Let L0 and L− be the links obtained as the closures of
σkβ and β, respectively. One may choose an arc h in the fiber surface of L0 such that plumbing a
positive Hopf band along h yields L+ = L, and cutting along h yields L−. Since b ≥ 2, it follows that
L0 is non-trivial. Moreover, L0 is the closure of the non-split positive braid σkβ. Hence L0 ∈ P

follows by the induction hypothesis. Finally, L− is the closure of a positive braid. Thus L− is either
split or fibered. In either case, L− satisfies condition (∗). Thus L+ = L ∈P by definition of P .

(3). Let T be a plane tree, and L the associated link. We proceed by induction over the number
of vertices of T . If T consists of a single vertex, then L is a positive Hopf link, so L ∈P . Otherwise,
pick a leaf v of T with parent w . Let L0 be the link associated with the plane tree T \ {v}. There
is an arc h in the fiber surface of L0 such that plumbing a positive Hopf band along h yields the
fiber surface of L+ = L, and cutting along h yields a link L− that is a connected sum of the links
associated with the plane tree components of the forest T \{v, w}. By induction, L0 ∈P . Moreover,
L− satisfies (∗) since it is fibered (though it may not be in P , namely if T \ {v, w} is empty and L−
is thus the unknot). By definition of P , it follows that L+ = L ∈P . □

Proof of Theorem 1. Let L ∈P . Let us write b for the first Betti number of the fiber surface of L,
so that d(L) = b/2. We show α(L) = ab/2(L) = 1 and β(L) = ab/2−1(L) ≤ −1 by induction over b.
If b = 1, then L is the positive Hopf link, with Alexander polynomial t 1/2 − t−1/2 satisfying α = 1
and β = −1. If b ≥ 2, by definition there exists a fibered link L0 ∈ P , whose fiber surface Σ0

contains an arc h ⊂ Σ0 such that plumbing a positive Hopf band along h yields the fiber surface
Σ+ of L+ = L, and cutting along h yields a Seifert surface Σ− with L− = ∂Σ− satisfying (∗). Since
L0 is fibered and b1(Σ0) = b−1, we have d(L0) = b/2−1/2. Since L− is the boundary of the Seifert
surface Σ− (which may or may not be a fiber surface) with b1(Σ−) = b−2, we have d(L−) ≤ b/2−1.
By (∗), the coefficient c of t b/2−1 in ∆L− is less than or equal to 1. Now, the skein relation holds
for L±,L0 (compare Figures 1 and 2). Writing o for any linear combinations of powers of t with
exponent less than b/2−1, we get

α(L+)t b/2 +β(L+)t b/2−1 +o = c · t b/2−1 + (
t 1/2 − t−1/2)(α(L0)t b/2−1/2 +β(L0)t b/2−3/2

)
+o.

Equating the coefficients of t b/2 and t b/2−1 gives

α(L+) =α(L0) and β(L+) = c −α(L0)+β(L0).

We have α(L0) = 1 and β(L0) ≤ −1 by induction hypothesis, and c ≤ 1 by (∗). It follows that
α(L+) = 1 and β(L+) ≤−1 as desired. □

While I was writing this text, Ito independently obtained an obstruction similar to Corollary 2.
Namely, Theorem A.2 in [7], whose proof likewise relies on the Alexander polynomial, states that
satellites with patterns satisfying a certain condition (different from the condition in Corollary 2)
are never positive braid knots.
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