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Abstract. The purpose of this paper is to announce our solution to the Mandelbrot–Kahane problem (Man-
delbrot, 1976 and Kahane, 1993) of determining the Fourier dimension of the Mandelbrot canonical cascade
measure (MCCM). Specifically, we obtain the exact formula for the Fourier dimension of the MCCM with ran-
dom weights W satisfying the condition E[W t ] <∞ for all t ≥ 1. In addition, we show that the MCCM is Ra-
jchman with polynomial Fourier decay whenever the random weight satisfies E[W 1+δ] <∞ for some δ > 0.
In this announcement, we briefly highlight the following two applications: (1) in the Biggins–Kyprianou’s
boundary case, the Fourier dimension of the MCCM exhibits a second order phase transition at the inverse
temperature β= 1

2 , and (2) the upper Frostman regularity and Fourier restriction estimate of the MCCM.

Résumé. Le but de cet article est d’annoncer notre résolution du problème de Mandelbrot–Kahane (Man-
delbrot, 1976 et Kahane, 1993) sur la détermination de la dimension de Fourier de la mesure en cascade ca-
nonique de Mandelbrot (MCCM). Plus précisément, nous obtenons la formule exacte pour la dimension de
Fourier de la MCCM avec des poids aléatoires W satisfaisant la condition E[W t ] <∞ pour tout t ≥ 1. De plus,
nous démontrons que la MCCM est une mesure de Rajchman avec une décroissance polynomiale de Fourier
lorsque le poids aléatoire satisfait E[W 1+δ] <∞ pour un certain δ> 0. Dans cette annonce, nous soulignons
brièvement les deux applications suivantes : (1) dans le cas frontière de Biggins–Kyprianou, la dimension de
Fourier de la MCCM présente une transition de phase du second ordre à la température inverse β= 1

2 , et (2)
la régularité de Frostman supérieure et l’estimation de restriction de Fourier pour la MCCM.
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1. The Mandelbrot–Kahane problem

Following the works of Kolmogorov [10], Landau–Lifshitz [12], Obukhov [19] and in particular the
work of Yaglom [23], Mandelbrot [13] introduced the log-normal multiplicative martingales to
build random measures, aiming to describe energy dissipation and explain intermittency effects
in Kolmogorov’s theory of turbulence. The Mandelbrot canonical cascade measure (MCCM)
proposed in [14] is a simpler model, focusing on the construction of related random measures
on the unit interval.

In the early stages of the theory, Mandelbrot in 1974 [14,15] proved and conjectured various
fundamental fractal properties of the MCCM, many of his conjectures were rigorously established
by Kahane–Peyrière in [6,20]. Kahane–Peyrière’s results, with some improvements, are contained
in [9] (see [17, pp. 373–388] for an English translation of [9]). At almost the same time (in 1976),
Mandelbrot posed a problem to study the harmonic analysis of MCCM in [16]. Mandelbrot’s
question was reiterated by Kahane [8] in 1993. The Mandelbrot–Kahane problem remains
open. Using ideas from modern harmonic analysis, in particular, the theory of vector-valued
martingales, we are now able to solve this long-standing problem.

Fix an integer b ≥ 2 and a random weight W , that is, W is a non-constant non-negative
random variable with E[W ] = 1. Let µ∞ denote the corresponding MCCM, in other words, µ∞
is the corresponding random measure obtained by the action of the multiplicative cascades on
the Lebesgue measure on the unit interval equipped with the standard b-adic structure. By the
celebrated Kahane–Peyrière theorem, the MCCM µ∞ is non-degenerate (that is, P(µ∞ ̸= 0) > 0) if
and only if

DH := DH (W,b) = 1−E[W logb W
]> 0.

Moreover, almost surely on
{
µ∞ ̸= 0

}
, the measure µ∞ is unidimensional and the exact formula

of its Hausdorff dimension is given by

dimH (µ∞) = DH .

Mandelbrot–Kahane problem

Denote the Fourier transform of µ∞ by

µ̂∞(ζ) =
∫

[0,1]
e−2πiζx dµ∞(x), ζ ∈R.

In 1976, Mandelbrot [16] (and in his selected works [17, p. 402]) asked whether the Fourier
coefficients of the cascade measure µ∞ satisfy

∣∣µ̂∞(k)
∣∣2 ∼ k−D as k → ∞ for a suitable exponent

D and what is the relationship between the optimal D and its Hausdorff dimension DH . This
question was reiterated by Kahane [8] in 1993, where is included in his general open program
to study the decay behavior of Fourier transforms of natural random measures. In particular,
Kahane [8] provided detailed analysis of MCCM and noted that, except for a few cases, the behavior
of µ̂∞(ζ) was not known. To be more precise, Kahane’s program on the MCCM involves the study
of the following three problems:

Rajchman property: Whether µ̂∞(ζ) → 0 as ζ→∞?
Polynomial Rajchman property: Do we have

∣∣µ̂∞(ζ)
∣∣2 =O

(|ζ|−D
)

for a certain D > 0?
Salem property: When does the equality dimF (µ∞) = dimH (µ∞) hold? Here the Fourier dimen-
sion dimF (µ∞) is defined by

dimF (µ∞) := sup
{

D ∈ [0,1] :
∣∣µ̂∞(ζ)

∣∣2 =O
(|ζ|−D)}

.

Recall that when the random weights have the specific two-point distributions (namely, there
exists a > 0 and P(W = a) = 1 −P(W = 0) ∈ (0,1)), the corresponding multiplicative cascades
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are called the β-models or the birth-and-death models [15] (see [17, p. 359] for an English
translation of [15]). The Salem property ofµ∞ in theβ-model case was obtained by Shmerkin and
Suomala [22] following a construction of Łaba and Pramanik [11]. By the following Corollary 2,
we show that the β-model is the sole Salem measure within MCCMs.

2. The definition of the MCCM

Fix an integer b ≥ 2 and the set of alphabets A = {
0,1, . . . ,b −1

}
. The rooted b-ary tree with the

root denoted by ; and the convention A 0 = {;}
can be canonically identified with

A ∗ = ⊔
n≥0

A n .

Elements of A ∗ are written as words: if u = x1x2 · · ·xn with x j ∈ A , then we set |u| = n,u j = x j
and u

∣∣
k = x1 · · ·xk (with u

∣∣
0 = ;). Recall that the b-adic intervals on the unit interval [0,1] are

defined for any n = 1,2, . . . and u ∈A ∗ with |u| = n by

Iu =
[ n∑

1
uk b−k ,

n∑
1

uk b−k +b−n
)
.

By a random weight, we mean a non-constant non-negative random variable W with E[W ] = 1.
Let

(
W (u)

)
u∈A ∗\{;} be independent copies of W , and as usual, on the root vertex, we set W (;) ≡ 1.

Then, for any integer n ≥ 0, Mandelbrot [15] defined the random measure µn on [0,1] by

µn(dt ) := ∑
|u|=n

( n∏
j=0

W
(
u

∣∣
j

))
1Iu (t )dt for all n ≥ 0.

Let Fn denote the sigma-algebra defined by

Fn :=σ({
W (u)

∣∣u ∈A ∗ with |u| ≤ n
})

for all n ≥ 0. (1)

Clearly,
(
µn

)
n≥0 is a measure-valued martingale with respect to the filtration

(
Fn

)
n≥0 and almost

surely, the sequence converges weakly to a limiting random measure µ∞:

µn
n→∞−−−−→

a.s.
µ∞.

The random measure µ∞ is referred to as the Mandelbrot canonical cascade measure (MCCM).

3. Main results

Now we proceed to state our main results. Set W (2) =W 2/E[W 2] and define

DF := DF (W,b) =


1− logE[W 2]

logb
if E

[
W (2) logW (2)]≤ logb,

1− inf
1
2 ≤t≤1

logE
[
b1−t W 2t

]
t logb

if E
[
W (2) logW (2)]> logb.

(2)

Theorem 1 (Exact Fourier dimension). Assume that E[W logW ] < logb and E[W t ] < ∞ for all
t > 0. Then 0 < DF < 1 and almost surely on

{
µ∞ ̸= 0

}
we have

dimF (µ∞) = DF .

Corollary 2 (Salem property). Assume that E[W logW ] < logb and E[W t ] <∞ for all t > 0. Then
almost surely on

{
µ∞ ̸= 0

}
, the measure µ∞ has Salem property if and only if W has a two-point

distribution :

P(W = x−1) = 1−P(W = 0) = x with b−1 < x ≤ 1.



38 Xinxin Chen, Yong Han, Yanqi Qiu and Zipeng Wang

Corollary 3 (Log-normal weights). For the log-normal random weights W = eσN− σ2
2 with σ2 <

2logb, almost surely, we have

dimF (µ∞) =


1− σ2

logb
if

σ2

logb
≤ 1

2
,

1− σ2

logb
+

(
1−

√
2σ2

logb

)2

if
1

2
< σ2

logb
< 2.

Among all the applications of Theorem 1, we briefly introduce the following two, while others
are in [4, Subsection 1.2].

Common second order phase transition of the Fourier dimension. When the random weights
are in the Biggins–Kyprianou’s boundary case:

W = e−βξ

E
[
e−βξ

] with E
[
ξe−ξ

]= 0, E
[
e−ξ

]= 1

b
and P

(
ξ ∈ (−∞,0)

)> 0.

Assume that E
[
e−tξ

]<∞ for all t > 0. Then

DF = DF (β,ξ) =


2ψ(β)−ψ(2β)

logb
if 0 <β≤ 1

2
,

2ψ(β)

logb
if

1

2
<β< 1,

where ψ is the strictly convex function defined by ψ(t ) =ψξ(t ) = logE
[
be−tξ

]
. By the elementary

properties of the function ψ (see [4, Lemma 7.3]), we show that, for fixed ξ, the map β 7→ DF (β,ξ)
exhibits a second order phase transition at β= 1

2 .

Upper Frostman regularity and Fourier restriction estimate. By Theorem 1, we show that the
measure µ∞ is γ-upper Frostman regular for any 0 ≤ γ< DF

2 . That is, almost surely,

sup
I⊂[0,1]

µ∞(I )

|I |γ <∞,

where the supremum runs over all sub-intervals I ⊂ [0,1]. Moreover, this upper Frostman
regularity and Theorem 1 combined with the celebrated Fourier restriction estimate obtained
in [18, Theorem 4.1] imply that for any 1 ≤ r < 4

4−DF
, there exists C (r,µ∞) > 0 such that for all

f ∈ Lr (R), we have (see [4, Corollary 1.6])∥∥ f̂
∥∥

L2(µ∞) ≤C (r,µ∞)
∥∥ f

∥∥
Lr (R).

Theorem 4 (Polynomial Rajchman property or positive Fourier dimension). Assume that the
random weight W satisfies E[W logW ] < logb and E[W 1+δ] <∞ for some δ> 0. Then almost surely
on

{
µ∞ ̸= 0

}
, we have dimF (µ∞) > 0. In other words, µ∞ has polynomial Rajchman property.

4. Discussions and main strategy of the proofs

4.1. Kahane’s reduction to the Fourier coefficients

Following Kahane, for any Borel measure µ on [0,1], one may reduce the study of the decay
behavior of the Fourier transform µ̂(ζ) as ζ → ∞ to that of its Fourier coefficients µ̂(k) on the
integers as k →∞. See Kahane [7, Chapter 17, Lemma 1] and a convenient version for us in [4,
Lemma 1.8 and Corollary 1.9].
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4.2. Failure of the Kahane’s moment method in MCCM

Given a random measure µ on [0,1], the standard strategy for obtaining a lower estimate of
dimF (µ) is to apply Kahane’s moment method. More precisely, one needs to compute the
asymptotic order of decay of E

[|µ̂(k)|2m
]

as k → ∞ for infinitely many positive integers m ≥ 1.
However, in general, Kahane’s moment method fails in predicting the Fourier dimension of
MCCMs for the following two reasons:

• It is rare for the MCCM µ∞ to have moments of all higher orders; indeed, one can show
that, for any p>1 and any k≥1, the condition E

[|µ̂∞(k)|p]<∞ implies E
[
µ∞([0,1])p

]<∞.
Then by Kahane’s criterion for Lp -boundedness, it will imply that E[W p ] < bp−1. Hence,
if µ̂∞(k) has finite moments of all higher orders, then W must satisfy ∥W ∥∞ ≤ b.

• Even under the additional assumption E[W 2] < b, the asymptotic order of E
[|µ̂∞(k)|2]

may differ from the almost-sure asymptotic order of |µ̂∞(k)|2 (for instance, from our
work, we know that such difference does appear in the case of the log-normal weights

W = eσN− σ2
2 with logb

2 <σ2 < logb).

4.3. Main strategy of the proofs

The main strategy for obtaining our main results is to put the study of the Fourier coefficients of
random cascade measures in the framework of multiplicative cascade actions on finitely additive
vector measures.

One key ingredient in the proofs of Theorem 1 and Theorem 4 is a new connection be-
tween Fourier coefficients of the random cascade measures and the vector-valued martingale
theory. Then the main part in the proof is to establish the sharp lower bound of dimF (µ∞),
where Pisier’s martingale type theory and the vector-valued martingale inequalities (includ-
ing martingale type inequalities, vector-valued Burkholder inequalities, the recent ℓq -vector-
valued Burkholder–Rosenthal inequalities of Dirksen and Yaroslavtsev, Bourgain–Stein inequali-
ties, Kahane–Khintchine inequalities, etc., see [21] and [5]) will play natural roles.

More precisely, the key step in our proof is to find optimal τ such that for large enough q > 2
and small enough ε> 0,

E

[{∑
k≥1

∣∣kτ · µ̂∞(k)
∣∣q

} 1+ε
q

]
<∞.

Therefore, instead of considering coordinate-wisely all the random Fourier coefficients µ̂∞(k), we
shall consider µ̂∞ as a whole random object. Namely, µ̂∞ is identified with the random vector:

µ̂∞ = (
µ̂∞(k)

)
k≥1.

And for this random vector µ̂∞, we can define a series of norms as follows. For any α ≥ 0 and
p, q ≥ 1, define the (α, p, q)-norm of µ∞ by

N (α,p,q)(µ∞) :=
(
E

[{∑
k≥1

∣∣kα · µ̂∞(k)
∣∣q

} p
q
]) 1

p

=
∥∥∥(

kα · µ̂∞(k)
)

k≥1

∥∥∥
Lp (P;ℓq )

∈ [0,+∞].

In the next step, we define a critical exponent αc by

αc := sup
{
α ∈R : N (α,p,q)(µ∞) <∞ for some 1 < p < 2 < q <∞

}
.

To obtain the value of αc , we shall apply various vector-valued martingale inequalities for the
following vector-valued martingale in ℓq (with respect to the filtration

(
Fn

)
n≥0 defined in (1)):

Mn := (
kαµ̂n(k)

)
k≥1.
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Indeed, under the assumption of Theorem 1, we shall establish (see [4, Theorem 6.1]) sharp two-
sided bounds for N (α,p,q)(µ∞) when 0 <α< 1 and 1 < p < 2 < q <∞. Then we obtain the equality
αc = DF

2 . As a consequence, almost surely on
{
µ∞ ̸= 0

}
, we have

dimF (µ∞) ≥ 2αc = DF .

The upper bound of dimF (µ∞) relies on the fluctuations of some natural scalar martingales
arising in the theory of branching random walks (see [1], [2], etc.). And we prove that almost
surely on

{
µ∞ ̸= 0

}
, for any ε > 0, there exists some subsequence

(
km

)
m≥1 ⊂ N depending on ε,

such that
lim

m→∞bkm (DF +ε)
∣∣∣µ̂∞

(
bkm

)∣∣∣2 =∞.

The details of this part are given in [4, Section 9].
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