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Abstract. Reflexive homology and dihedral homology are the homology theories associated to the reflexive
and dihedral crossed simplicial groups respectively. The former has recently been shown to capture inter-
esting information about C2-equivariant homotopy theory and its structure is related to the study of “real”
objects in algebraic topology. The latter has long been of interest for its applications in O(2)-equivariant
homotopy theory and connections to Hermitian algebraic K -theory. In this paper, we show that the reflexive
and dihedral homology theories can be interpreted as functor homology over categories of non-commutative
sets, after the fashion of Pirashvili and Richter’s result for the Hochschild and cyclic homology theories.

Résumé. L’homologie réflexive et l’homologie diédrale sont les théories d’homologie associées respective-
ment aux groupes simpliciaux croisés réflexifs et diédrale. Il a été démontré récemment que la première
contient des informations intéressantes à propos de l’homotopie C2-équivariante et que sa structure est liée
à l’étude d’objets « réels » en topologie algébrique. Ce dernier suscite depuis longtemps un intérêt pour ses
applications pour la théorie de l’homotopie O(2)-équivariante et ses connexions avec la K -théorie algébrique
hermitienne. Dans cet article, nous montrons que les théories de l’homologie réflexive et dièdre peuvent être
interprétées comme une homologie de foncteurs sur des catégories d’ensembles non commutatifs, à la ma-
nière des résultats de Pirashvili et Richter pour les théories de Hochschild et de l’homologie cyclique.

Keywords. Reflexive homology, dihedral homology, functor homology, crossed simplicial group, involutive
non-commutative sets, involutive algebra.
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1. Introduction

Functor homology plays an important role in modern homological algebra. The subject was
pioneered by Connes [4] who described the cyclic homology theory as derived functors over
the cyclic category. This was extended to incorporate dihedral structure by Loday [20] and
Krasauskas, Lapin and Solov’ev [18]. Collectively, this work led to the notion of a crossed
simplicial group (see [10,17]). Crossed simplicial groups extended the notion of cyclic homology
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to detect other structure that is compatible with a unital, associative multiplication, such as an
order-reversing involution.

A great many homology theories for algebras have interpretations in terms of functor homol-
ogy: Hochschild homology [21, 6.2.2]; cyclic homology (see [4] and [21, 6.2.8]); dihedral ho-
mology [18,20]; reflexive homology [14]; symmetric homology [3,9]; hyperoctahedral homol-
ogy [9,12]; higher-order Hochschild homology [26]; gamma homology [29]; André–Quillen ho-
mology [28]; En-homology [19]; and Leibniz homology [16].

The reflexive crossed simplicial group and the dihedral crossed simplicial group are two of the
fundamental crossed simplicial groups. The associated homology theories, reflexive homology
and dihedral homology, are defined as functor homology over their respective indexing categories
∆Rop and ∆Dop.

The dihedral homology theory has long been of interest for its applications to O(2)-equivariant
homotopy theory and Hermitian algebraic K -theory [5–7,18,20,22–24]. By comparison, the study
of the reflexive homology theory is a modern venture. Recent work of the author has studied
the applications of the reflexive crossed simplicial group to C2-equivariant homotopy theory and
notes that the structure of the reflexive crossed simplicial group is used in the study of real objects
in algebraic topology [14].

From one point of view, reflexive homology and dihedral homology can be viewed as exten-
sions of Hochschild homology and cyclic homology respectively, detecting the extra structure of
an order-reversing involution.

The original functor homology interpretations of Hochschild homology and cyclic homology
were given in terms of∆op and∆C op, the categories indexing simplicial objects and cyclic objects
respectively. Pirashvili and Richter [30] gave an alternative functor homology interpretation
of Hochschild homology and cyclic homology. They showed that Hochschild homology and
cyclic homology can be expressed as functor homology over the category of non-commutative
sets, F (as). The category of non-commutative sets was introduced by Feı̆gin and Tsygan [8,
A10]. It is the category that encapsulates the structure of a monoid in a symmetric monoidal
category [27] and it is isomorphic to ∆S, the category associated to the symmetric crossed
simplicial group [3,9,10].

The author introduced an extension of F (as), called the category of involutive non-
commutative sets and denoted IF (as). This category encapsulates the structure of an involu-
tive monoid in a symmetric monoidal category [11] and is isomorphic to ∆H , the category asso-
ciated to the hyperoctahedral crossed simplicial group [9–12].

In this paper we prove that, just as Hochschild and cyclic homology can be interpreted as
functor homology over the category of non-commutative sets (equivalently, over ∆S), reflexive
homology, denoted HR⋆, and dihedral homology, denoted HD⋆, can be expressed as functor
homology over the category of involutive non-commutative sets (equivalently, over ∆H).

The paper is structured as follows.
In Sections 2 and 3 we recall the necessary background on functor homology, crossed sim-

plicial groups and their homology theories. In Section 4 we recall the category of involutive
non-commutative sets, IF (as), and the subcategory of based involutive non-commutative sets,
IΓ(as). In Section 5, we recall the special cases of functor homology for involutive algebras in
terms of Loday functors and bar constructions.

In Sections 6 and 7 we recall Pirashvili and Richter’s identification of the Hochschild and cyclic
homology theories as functor homology over the category of non-commutative sets. We also
recall the category-theoretic framework introduced independently by Słomińska and Zimmer-
mann, which allows for an alternative proof of Pirashvili and Richter’s result. This will be the
framework we use to prove our results.

In Sections 8 and 9 we prove the technical results that we require for our theorems.
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In Section 10 we prove our first main theorem (Theorem 37) which, in the specific case of an
involutive algebra (Corollary 38), can be stated as follows:

Theorem. Let A be an involutive, associative k-algebra. There exist isomorphisms of graded k-
modules

HD⋆(A) = Tor∆Dop

⋆

(
k∗,L (A)

)∼= TorIF (as)
⋆

(
B ,HA

)∼= Tor∆H
⋆

(
B ,HA

)
where L (A) is the dihedral Loday functor (also known as the dihedral bar construction); HA is the
hyperoctahedral bar construction; and the functor B can be found in Definition 36.

In Section 11 we prove our second main theorem (Theorem 40) which, in the specific case of
an involutive algebra (Corollary 41), can be stated as follows:

Theorem. Let A be an involutive, associative k-algebra and let M be an involutive A-bimodule.
There is an isomorphism of graded k-modules

HR⋆ (A, M) = Tor∆Rop

⋆

(
k∗,L (A, M)

)∼= TorIΓ(as)
⋆

(
B ′,R(A, M)

)
where L (A, M) is the reflexive Loday functor; R(A, M) is a restriction of the hyperoctahedral bar
construction to the subcategory IΓ(as); and B ′ is the restriction of the functor B to the subcategory
IΓ(as).

1.1. Conventions

Throughout the paper, we will let k be a unital, commutative ring, Modk be the category of k-
modules and ⊗ denote the tensor product of k-modules. All k-algebras in this paper will be
assumed to be unital. For n Ê 0, we will let [n] denote the set {0,1 . . . ,n}.

2. Functor homology

We begin by recalling the categories of left and right modules over a small category. We also
recall the tensor product of C-modules and its left-derived functors (see [25, Section 3] and [30,
Section 1.6] for instance).

Definition 1. For a small category C we define

CMod = Fun(C,Modk ) and ModC = Fun
(
Cop,Modk

)
.

Definition 2. For a small category C, we define the k-constant functor, k∗ in CMod to be the
functor that sends every object of C to k and every morphism in C to the identity map on k. By
abuse of notation, we will also use k∗ to denote the k-constant functor in ModC.

Definition 3. There is a tensor product

−⊗C − : ModC×CMod −→ Modk

defined as the coend

G ⊗C F =
∫ C∈Ob(C)

G(C )⊗F (C ).

The left derived functors of the tensor product −⊗C − are denoted by TorC
⋆ (−,−).

3. Crossed simplicial groups

We begin by recalling some notation for certain groups that we will use throughout the paper. We
will recall the notion of crossed simplicial group together with examples. We will recall the functor
homology definitions of reflexive homology, dihedral homology and hyperoctahedral homology.
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3.1. A gathering of groups

Definition 4. We define the groups that we will use throughout the paper. Let n Ê 0.

• The reflexive group is defined by

Rn+1 =
〈

rn+1
∣∣r 2

n+1 = 1
〉

.

The generator rn+1 acts on [n] by rn+1(i ) = n − i .
• Let

Cn+1 =
〈

tn+1
∣∣ t n+1

n+1 = 1
〉

denote the cyclic group of order n + 1. We note that Cn+1 acts on the set [n] as follows:
tn+1(i ) = i +1 for 0 É i É n −1 and tn+1(n) = 0.

• Let
Dn+1 =

〈
rn+1, tn+1

∣∣r 2
n+1 = t n+1

n+1 = 1, rn+1tn+1rn+1 = t−1
n+1

〉
.

denote the dihedral group. We note that Dn+1 acts on the set [n]. The generator tn+1 acts
as for the cyclic group Cn+1. The generator rn+1 acts as for Rn+1.

• We denote by Σn+1 the symmetric group on the set [n].
• Let Σ+

n+1 be the subgroup of permutations which fix 0.
• The hyperoctahedral group Hn+1 is the semi-direct product of C n+1

2 and Σn+1 where Σn+1

acts on C n+1
2 by permuting the factors.

• Let H+
n+1 denote the subgroup of Hn+1 consisting of elements

(
z0, z1, . . . , zn ;σ

)
such that

z0 = 1 ∈C2 and σ ∈Σ+
n+1.

The following lemma gives us a specific instance of the dihedral group inside the hyperocta-
hedral group. This will be of use for our technical results in Section 8.

Lemma 5. The elements R = (
t2, . . . , t2;rn+1

)
and T = (

1, . . . ,1; tn+1
)

generate a subgroup of Hn+1

isomorphic to Dn+1.

Proof. We see that R2 = (
t2, . . . , t2;rn+1

)2 = 1 = (
1, . . . ,1; tn+1

)n+1 = T n+1. We also see that

RT R = (
t 2

2 , . . . , t 2
2 ;rn+1tn+1rn+1

)= (
1, . . . ,1; t−1

n+1

)= T −1

which completes the proof. □

3.2. Crossed simplicial groups

The theory of crossed simplicial groups was developed independently by Fiedorowicz and Lo-
day [10] and Krasauskas [17], motivated by Connes’ construction of cyclic homology [4].

Definition 6. The category ∆ has as objects the sets [n] for n Ê 0, with order-preserving maps as
morphisms.

We recall, from [10, 1.1], that a family of groups {Gn} for n Ê 0 is called a crossed simplicial
group if there is a category ∆G such that the objects are the sets [n]; ∆ is a subcategory of ∆G ;
Aut∆G

(
[n]

)=Gn ; and any morphism [n] → [m] in∆G can be uniquely written as a pair (ϕ, g ) with
g ∈Gn and ϕ : [n] → [m] in ∆.

Examples 7. We recall the fundamental crossed simplicial groups.

• If we take the trivial group for each n, we recover the category ∆.
• If we take the family of reflexive groups, {Rn+1} (see [10, Example 2] and [14, 1.1]), we

obtain the reflexive category ∆R (see [14, 1.2]).
• If we take the family of cyclic groups, {Cn+1} (see [10, Example 4]), we obtain the cyclic

category ∆C , which is the same as Connes’ category Λ [4].
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• If we take the family of dihedral groups, {Dn+1} (see [10, Example 4]), we obtain the
dihedral category∆D (see [20, Section 3], and also [18, 1.1], where this category is denoted
by Ξ).

• If we take the family of symmetric groups, {Σn+1} (see [10, Example 6]), we obtain the
symmetric category ∆S (see [3, 1.1]).

• If we take the family of hyperoctahedral groups, {Hn+1} (see [10, Example 6]), we obtain
the hyperoctahedral category ∆H (see [12, 1.2]).

3.3. Functor homology theories

Given a crossed simplicial group, we have an associated functor homology theory. In this
subsection we recall the definition of reflexive homology from [14]; the definition of dihedral
homology from [20] and [18]; and the definition of hyperoctahedral homology from [9] and [12].

Definition 8. Let F : ∆Rop → Modk . The reflexive homology of F is defined to be

HR⋆(F ) = Tor∆Rop

⋆

(
k∗,F

)
.

Definition 9. Let F : ∆Dop → Modk . The dihedral homology of F is defined to be

HD⋆(F ) = Tor∆Dop

⋆

(
k∗,F

)
.

It was shown by Fiedorowicz and Loday [10, 6.16] that the functor homology theory for ∆H op

is isomorphic to Hochschild homology. However, the functor homology theory associated to ∆H
is very different. As shown in previous work of the author [12,13], inspired by Fiedorowicz’s
preprint [9], the functor homology theory for ∆H has applications in C2-equivariant stable
homotopy theory. Whilst hyperoctahedral homology does not appear directly in this paper,
functor homology over the category ∆H does, so we include the definition for reference.

Definition 10. Let F : ∆H → Modk . The hyperoctahedral homology of F is defined to be

HO⋆(F ) = Tor∆H
⋆

(
k∗,F

)
.

3.4. A gathering of groupoids

We will want to consider crossed simplicial groups not only as a family of groups but also as
a groupoid. We do this in the natural way: the objects are the sets [n] for n Ê 0 and the
automorphisms are the group elements in degree n. Recall the groups defined in Subsection 3.1.

Definition 11. We will make use of the following groupoids.

• Let H denote the groupoid of hyperoctahedral groups. The objects are the sets [n] and
HomH

(
[n], [n]

)= Hn+1.
• Let H+ denote the sub-groupoid of H such that HomH+

(
[n], [n]

)= H+
n+1.

• Let D denote the sub-groupoid of H such that HomD
(
[n], [n]

)
is the dihedral subgroup of

Hn+1 generated by the elements R and T of Lemma 5.
• Let R denote the sub-groupoid of H such that HomR

(
[n], [n]

)
is the reflexive subgroup of

Hn+1 generated by the element R of Lemma 5.

4. Involutive non-commutative sets

We recall the categories of non-commutative sets and involutive non-commutative sets together
with the subcategories of based non-commutative sets and based, involutive, non-commutative
sets.
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4.1. The category of non-commutative sets

Definition 12. The category of non-commutative sets, F (as), has as objects the sets [n] for n Ê 0.
An element f ∈ HomF (as)

(
[n], [m]

)
is a map of finite sets such that f −1(i ) is a totally ordered set for

each i ∈ [m]. Given composable morphisms f ∈ HomF (as)
(
[n], [m]

)
and g ∈ HomF (as)

(
[m], [k]

)
,

the composite is given by the underlying map of finite sets g ◦ f , together with the preimage data
given by the ordered disjoint union:(

g ◦ f
)−1 (i ) = ∐

j∈g−1(i )

f −1( j ).

Definition 13. The category of based non-commutative sets, Γ(as), is the subcategory of F (as)
with the same set of objects and whose morphisms satisfy f (0) = 0.

Remark 14. We note that the version of the category Γ(as) that we use here has a total ordering
on the preimage of the basepoint. There are versions of this category that forgo a total-ordering
on the preimage of the basepoint. See the paper of Hartl, Pirashvili and Vespa [15, Example 2.11]
for example.

4.2. The category of involutive non-commutative sets

Definition 15. A finite, totally ordered C2-set consists of a finite set whose elements have a total
ordering together with a superscript label from the group C2 for each element.

Definition 16. Let t denote the generator of C2. We define an action of C2 on finite, totally-ordered
C2-sets by

t ∗
{

j
α j1
1 < ·· · < j

α jr
r

}
=

{
j

tα jr
r < ·· · < j

tα j1
1

}
.

Explicitly, we invert the ordering and multiply each label by t ∈C2.

Definition 17. The category of involutive, non-commutative sets, IF (as), has as objects the
sets [n] for n Ê 0. An element f ∈ HomIF (as)

(
[n], [m]

)
is a map of finite sets such that f −1(i ) is a

totally ordered C2-set for each i ∈ [m]. Given composable morphisms f ∈ HomIF (as)
(
[n], [m]

)
and

g ∈ HomIF (as)
(
[m], [k]

)
, the composite is given by the underlying map of finite sets g ◦ f , together

with the preimage data given by the ordered disjoint union:(
g ◦ f

)−1 (i ) = ∐
jα∈g−1(i )

α∗ f −1( j )

with the action from Definition 16.

Remark 18. We recall from [12, 1.7] (see also [11, 3.11]) that there is an isomorphism of categories
∆H ∼= IF (as). This is the identity on objects. The isomorphism of categories follows from
observing that the preimage data of a morphism in IF (as) uniquely determines an element
of a hyperoctahedral group and an order-preserving map and that this is compatible with
composition.

Definition 19. The category of based, involutive, non-commutative sets, IΓ(as), is the subcate-
gory of IF (as) with the same objects and whose morphisms satisfy f (0) = 0.

5. Involutive algebras, Loday functors and bar constructions

We recall the definition of an involutive k-algebra. We also recall the definition of an involutive
bimodule (see [21, 5.2.1] for instance). We recall the Loday functors for the reflexive homology
and dihedral homology of an involutive k-algebra. We also recall the hyperoctahedral bar
construction, used to define the hyperoctahedral homology of an involutive k-algebra.
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5.1. Involutive algebras

Definition 20. An involutive k-algebra consists of an associative k-algebra A together with an
order-reversing k-algebra automorphism i : A → A which squares to the identity. This is commonly
written as a map a 7→ a satisfying the following conditions for a, b ∈ A and λ ∈ k:

• a +b = a +b;
• ab = b a;

• a = a;
• λ=λ.

Definition 21. Let A be an involutive k-algebra. An involutive A-bimodule is an A-bimodule M
equipped with a map m 7→ m such that a1ma2 = a2 m a1 for a1, a2 ∈ A.

5.2. Loday functors and homology theories for involutive algebras

Definition 22. For an associative k-algebra A and an A-bimodule M, the Loday functor is the
simplicial k-module

L (A, M) : ∆op −→ Modk

given on objects by [n] 7→ M ⊗ A⊗n and determined on morphisms by

∂i
(
m ⊗a1 ⊗·· ·⊗an

)=


(
ma1 ⊗a2 ⊗·· ·⊗an

)
i = 0,(

m ⊗a1 ⊗·· ·⊗ai ai+1 ⊗·· ·⊗an
)

1 É i É n −1,(
anm ⊗a1 ⊗·· ·⊗an−1

)
i = n,

and

s j
(
m ⊗a1 ⊗·· ·⊗an

)={(
m ⊗1A ⊗a1 ⊗·· ·⊗an

)
j = 0,(

m ⊗a1 ⊗·· ·⊗a j ⊗1A ⊗a j+1 ⊗·· ·⊗an
)

j Ê 1.

Following [14, 1.8 and 1.9] we can extend the Loday functor to a functor on ∆Rop and
therefore define the reflexive homology of an involutive algebra with coefficients in an involutive
bimodule. (We note that this functor was denoted by L +(A, M) and the homology was denoted
by HR+

⋆(A, M) in that paper.)

Definition 23. Let A be an involutive k-algebra and let M be an involutive A-bimodule. We extend
the Loday functor L (A, M) to a functor

L (A, M) : ∆Rop −→ Modk

by defining
rn+1

(
m ⊗a1 ⊗·· ·⊗an

)= (
m ⊗an ⊗·· ·⊗a1

)
.

We denote the reflexive homology of A with coefficients in M by

HR⋆(A, M) = Tor∆Rop

⋆

(
k∗,L (A, M)

)
.

We can extend the Loday functor for ∆Rop to a functor on ∆Dop. This first appeared in [20,
Section 2] and [18, Section 1] (see also [22, 1.4] and [7, Section 2] for example) and is also
sometimes called the dihedral bar construction. We note that in this case we have introduced
cycles so we must have M = A and we write L (A) rather than L (A, A).

Definition 24. Let A be an involutive k-algebra. We extend the Loday functor L (A) from ∆Rop to
a functor

L (A) : ∆Dop −→ Modk

by defining
tn+1

(
a0 ⊗a1 ⊗·· ·⊗an

)= (
an ⊗a0 ⊗·· ·⊗an−1

)
.

We denote the dihedral homology of A by

HD⋆(A) = Tor∆Dop

⋆

(
k∗,L (A)

)
.
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5.3. The hyperoctahedral bar construction

Definition 25. Let A be an involutive k-algebra. The hyperoctahedral bar construction

HA : ∆H −→ Modk

is given on objects by [n] 7→ A⊗n+1. Let (ϕ, g ) ∈ Hom∆H
(
[n], [m]

)
(so ϕ ∈ Hom∆

(
[n], [m]

)
and

g = (
z0, . . . , zn ;σ

) ∈ Hn+1). We define HA(ϕ, g ) to be determined k-linearly by

HA(ϕ, g )
(
a0 ⊗·· ·⊗an

)= b0 ⊗·· ·⊗bm ,

where

bi =
∏

j∈(ϕ◦σ)−1(i )

a
z j

j

where the product is ordered according to the map ϕ and

a
z j

j =
{

a j z j = 1,

a j z j = t2.

Note that an empty product is defined to be the multiplicative unit 1A .

5.4. Bar constructions on categories of involutive non-commutative sets

Definition 26. Let A be an involutive, associative k-algebra. By abuse of notation, we will
write HA : IF (as) → Modk for the functor obtained by pre-composing the hyperoctahedral bar
construction with the isomorphism of [12, 1.7]. In this setting, the functor HA is defined as follows.
On objects we define HA

(
[n]

)= A⊗n+1.
Let a0 ⊗ ·· · ⊗ an ∈ A⊗n+1. Let f : [n] → [m] in IF (as). We define HA( f ) to be determined k-

linearly by

HA( f )
(
a0 ⊗·· ·⊗an

)= b0 ⊗·· ·⊗bm ,

where

bi =
∏

j∈ f −1(i )

a
z j

j

with the product ordered according to the total ordering on f −1(i ) and a
z j

j given as in Definition 25.

Definition 27. Let A be an involutive, associative k-algebra and let M be an involutive A-
bimodule. We define a functor R(A, M) : IΓ(as) → Modk as follows. On objects we define
R(A, M)

(
[n]

)= M ⊗ A⊗n .
Let a0 ⊗ ·· · ⊗ an ∈ M ⊗ A⊗n . In particular, note that a0 ∈ M. Let f : [n] → [m] in IΓ(as). We

define R(A, M)( f ) to be determined k-linearly by

R(A, M)( f )
(
a0 ⊗·· ·⊗an

)= b0 ⊗·· ·⊗bm ,

where

bi =
∏

f −1(i )

azi
j

with the product ordered according to the total ordering on f −1(i ) and a
z j

j given as in Definition 25.

Remark 28. We observe that if we take M = A, then the functor R(A, A) is the restriction of the
hyperoctahedral bar construction HA to the subcategory IΓ(as) ⊂IF (as).
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6. The results of Pirashvili and Richter

We give a slight reformulation of Pirashvili and Richter’s theorem.

Theorem 29 ([30, 1.3]). For functors F : Γ(as) → Modk and T : F (as) → Modk , there are isomor-
phisms of graded k-modules

Tor∆C op

⋆

(
k∗,T ◦ i1

)∼= TorF (as)
⋆

(
b,T

)
and Tor∆

op

⋆

(
k∗,F ◦ i2

)∼= TorΓ(as)
⋆

(
b,F

)
,

where i1 : ∆C op → F (as) and i2 : ∆op → Γ(as) are inclusions of subcategories; the functor b was
defined in [30, 1.7] and b is the restriction of b to the subcategory Γ(as).

Pirashvili and Richter proved their theorem by using the axiomatic characterization of Tor
functors, which required detailed analysis of certain cyclic sets. However, it was shown by
Słomińska and Zimmermann that these theorems can be proved using category-theoretic meth-
ods.

7. The framework of Słomińska and Zimmermann

Słomińska [31] and Zimmermann [32] independently developed a categorical framework that
generalizes the theorems of Pirashvili and Richter [30].

Let C be a small category and let A and B be subcategories of C, such that all three categories
have the same set of objects. Following Słomińska, we will write C = A◦B if every morphism f in
C can be uniquely written as a composite, fA ◦ fB, of a morphism in B followed by a morphism in
A. We note that we would write C = A⋊⋉B in the notation of Zimmermann.

Examples 30. The following important examples follow from the very definition of a crossed
simplicial group. Recall the crossed simplicial group categories from Example 7 and the
groupoids of Definition 11. We have decompositions∆R =∆◦R;∆C =∆◦C;∆D =∆◦D;∆S =∆◦S;
and ∆H =∆◦H.

We now recall the statement of the results [31, 1.1] or [32, 2.7], which we will use to prove our
main results.

Theorem 31. Suppose C = A◦B. There exists a functor KB,C ∈ ModC such that for every M ∈ CMod
there is an isomorphism of graded k-modules

TorC
⋆

(
KB,C, M

)∼= TorA
⋆

(
k∗, M ◦ I

)
where I : A → C is the inclusion of the subcategory. Furthermore, for each object C ∈ C, we have

KB,C(C ) = k
[ ∐

Y ∈Ob(C)
HomB (C ,Y )

]
.

8. Decomposing the category of involutive non-commutative sets

In this section we prove the technical results required to prove Theorem 37. This involves
decomposing the category IF (as) into the dihedral category ∆D and the groupoid H+.

Lemma 32. There is a decomposition IF (as) =∆◦H.

Proof. As shown in [12, 1.7] (see also [11, 3.11] and Remark 18), there is an isomorphism of
categories IF (as) ∼=∆H from which the result follows. □

Lemma 33. There is a decomposition H = D◦H+.
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Proof. Let
(
z0, . . . , zn ;σ

)
be an element of Hn+1. For ease of notation, we will write τ for tn+1; t

for t2; and r for rn+1. Suppose σ(0) = k. We can therefore write σ = τkτ−kσ, where τ−kσ is a
permutation in Σ+

n+1. We now have two cases. On the one hand, suppose that zk = 1 ∈C2. In this
case, we can write (

z0, . . . , zn ;σ
)= (

1, . . . ,1;τk)◦ (
1, zk+1, . . . , zk−1;τ−kσ

)
and we see that

(
1, . . . ,1;τk

) ∈ Dn+1 and
(
1, zk+1, . . . , zk−1;τ−kσ

) ∈ H+
n+1 as required.

On the other hand, suppose zk = t2 = t ∈C2. In this case we can write(
z0, . . . , zn ;σ

)= (
t , . . . , t ;r

)◦ (
t zn , . . . , t z0;rσ

)
.

Now, t zk = 1 and this occurs in position n−k, so we can apply a similar argument to the previous
case to write(

z0, . . . , zn ;σ
)= (

t , . . . , t ;r
)◦ (

t zn , . . . , t z0;rσ
)

= (
t , . . . , t ;r

)◦ (
1, . . . ,1;τn−k)◦ (

1, t zk−1, . . . , t zk+1;τ−(n−k)rσ
)
.

We observe that
τ−(n−k)rσ(0) = τ−(n−k)r (k) = τ−(n−k)(n −k) = 0

so
(
1, t zk−1, . . . , t zk+1;τ−(n−k)rσ

) ∈ H+
n+1 and

(
t , . . . , t ;r

)◦ (
1, . . . ,1;τn−k

) ∈ Dn+1 as required. □

9. Decomposing the category of based, involutive non-commutative sets

In this section we prove the technical results required to prove Theorem 40. This involves
decomposing the category IΓ(as) into the reflexive category ∆Rop and the groupoid H+.

Lemma 34. The category ∆Rop is a subcategory of IΓ(as).

Proof. We begin by noting that∆op is a subcategory of IΓ(as). In [30, 1.4], it is shown that∆op is a
subcategory of Γ(as) by explaining how to include face and degeneracy maps. We can include the
category∆op into IΓ(as) as a subcategory by adding identity labels to all preimages of singletons.

We extend this to an inclusion functor I : ∆Rop →IΓ(as) as follows. For the reflection

rn+1 : [n] −→ [n]

in ∆Rop we write

I (rn+1)−1(i ) =
{{

0t
}

i = 0,{
(n − i +1)t

}
i > 0,

in IΓ(as). A straightforward check shows that the generators of ∆op and the maps rn+1 generate
the category ∆Rop as a subcategory of IΓ(as). □

Lemma 35. There is a decomposition IΓ(as) =∆Rop ◦H+.

Proof. By Lemmas 32 and 33 we have a decomposition IF (as) = (
∆D

) ◦ H+. The groupoid
H+ is a subcategory of IΓ(as), since the elements of this groupoid preserve 0. We also know
that IΓ(as) is a subcategory of IF (as). Combining these facts, together with the duality
isomorphism ∆D ∼=∆Dop of [7, 1.4], we obtain

IΓ(as) =IF (as)∩IΓ(as)

= (
∆D ◦H+)∩IΓ(as)

= (
∆D ∩IΓ(as)

)◦H+

∼= (
∆Dop ∩IΓ(as)

)◦H+.

By Lemma 34, ∆Rop is a subcategory of IΓ(as) and so ∆Rop is a subcategory of the intersection
∆Dop ∩IΓ(as). Now, consider a morphism in ∆Dop which is not in ∆Rop. Since ∆Rop contains
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all the order-preserving maps and all the reflections, such a morphism must contain a non-
identity cycle. However, such a map does not preserve 0 and so cannot be a morphism in IΓ(as).
Therefore, we have ∆Rop = (

∆Dop ∩IΓ(as)
)

and so IΓ(as) =∆Rop ◦H+ as required. □

10. Dihedral homology

We use the decompositions of Section 8 to prove our first main theorem. We make use of the
isomorphism [12, 1.7] (as recalled in Remark 18).

Definition 36. Let B : IF (as)op → Modk be the functor defined on objects by

B
(
[n]

)= k

[ ∐
mÊ0

HomH+
(
[n], [m]

)]
and determined on morphisms by pre-composition. By abuse of notation we will also let B denote
the functor∆H op → Modk obtained by pre-composing with the opposite of the isomorphism of [12,
1.7].

Theorem 37. Let F : IF (as) → Modk . There exist isomorphisms of graded k-modules

HD⋆

(
F ◦ I ◦D

)= Tor∆Dop

⋆

(
k∗,F ◦ I ◦D

)∼= TorIF (as)
⋆

(
B ,F

)∼= Tor∆H
⋆

(
B ,F

)
,

where D : ∆Dop →∆D is the dihedral duality isomorphism of [7, 1.4] and I : ∆D → IF (as) is the
inclusion of the subcategory.

Proof. By Lemmas 32 and 33, we have decompositions

IF (as) =∆◦H =∆◦D◦H+ = (
∆◦D

)◦H+,

where ∆◦D is precisely the dihedral category ∆D .
By [31, 1.1] or [32, 2.7], we have an isomorphism of graded k-modules

TorIF (as)
⋆

(
B ,F

)∼= Tor∆D
⋆

(
k∗,F ◦ I

)
,

where k∗ is the k-constant right ∆D-module. The first isomorphism follows from the fact that
k∗ ◦D is the k-constant right ∆Dop-module, which we also call k∗. The second isomorphism
follows from the isomorphism of [12, 1.7]. □

Corollary 38. Let A be an involutive k-algebra. There exist isomorphisms of graded k-modules

HD⋆(A) = Tor∆Dop

⋆

(
k∗,L (A)

)∼= TorIF (as)
⋆

(
B ,HA

)∼= Tor∆H
⋆

(
B ,HA

)
.

Proof. By [9, Lemma 2.2], the composite HA ◦ I ◦D : ∆Dop → Modk is the Loday functor L (A) of
Definition 24 and the result follows from Theorem 37. □

Remark 39. Pirashvili and Richter’s result was the first to draw a link between the category of
non-commutative sets and cyclic homology. This connection has been shown to go further,
notably in papers of Angeltveit (see [1] and [2]), where the category of non-commutative sets
plays an important role in forming a cyclic bar construction for A∞ H-spaces. In future work,
the author hopes to investigate further connections between the category of involutive, non-
commutative sets and dihedral homology.

11. Reflexive homology

We use the decomposition of Section 9 to prove our second main theorem.
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Theorem 40. Let F : IΓ(as) → Modk . There is an isomorphism of graded k-modules

HR⋆(F ◦ I ) = Tor∆Rop

⋆

(
k∗,F ◦ I

)∼= TorIΓ(as)
⋆

(
B ′,F

)
where B ′ is the restriction of the functor B from Definition 36 to the subcategory IΓ(as)op and
I : ∆Rop →IΓ(as) is the inclusion of the subcategory.

Proof. By Lemma 35, we have a decomposition IΓ(as) = (
∆Rop

)◦H+. The theorem now follows
from [31, 1.1] or [32, 2.7]. □

Corollary 41. Let A be an involutive k-algebra and let M be an involutive A-bimodule. There is
an isomorphism of graded k-modules

HR⋆ (A, M) = Tor∆Rop

⋆

(
k∗,L (A, M)

)∼= TorIΓ(as)
⋆

(
B ′,R(A, M)

)
.

Proof. The corollary follows from Theorem 40, upon noting that the composite

R(A, M)◦ I : ∆Rop −→ Modk

coincides with the Loday functor L (A, M) of Definition 23. □
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