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Abstract. In this paper, we calculate the Hausdorff dimension of some exceptional sets that emerge from
specific constraints imposed on the partial quotients of continued fractions. In particular, we calculate the
Hausdorff dimension of the sets

Λ1 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x), for all n ∈N

}
,

and

Λ2 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x), for infinitely many n ∈N

}
.

We prove that the Hausdorff dimensions of Λ1 and Λ2 are 1/2 and 1 respectively. The Hausdorff dimension
of some other related sets, obtained by considering different faster growth rates such as replacing the growth
rate of sums of partial quotients with the product of partial quotients in the above sets, is also calculated with
the dimension bounds 1/3 and at least 2/3.

Résumé. Dans cet article, nous calculons la dimension de Hausdorff de certains ensembles exceptionnels qui
émergent de contraintes spécifiques imposées aux quotients partiels des fractions continues. En particulier,
nous calculons la dimension de Hausdorff des ensembles

Λ1 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x), for all n ∈N

}
,

et

Λ2 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x), for infinitely many n ∈N

}
.

Nous prouvons que les dimensions de Hausdorff de Λ1 et Λ2 sont respectivement 1/2 et 1. La dimension
de Hausdorff de certains autres ensembles apparentés, obtenus en considérant différents taux de croissance
plus rapides tels que le remplacement du taux de croissance des sommes de quotients partiels par le produit
des quotients partiels dans les ensembles ci-dessus, est également calculée avec les bornes de dimension 1/3
et au moins 2/3.
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1. Introduction

It is well-known that any irrational number x ∈ (0,1) admits a unique continued fraction expan-
sion of the form

x = 1

a1(x)+ 1

a2(x)+ 1

. . . + 1

an(x)+ . . .

= [
a1(x), a2(x), . . . , an(x), . . .

]
,

where a1(x), a2(x), a3(x), . . . are positive integers, called the partial quotients of the continued
fraction expansion of x. For any n ≥ 1, the truncation produces rational fractions

pn(x)

qn(x)
:= 1

a1(x)+ 1

a2(x)+ 1

. . . + 1

an(x)

= [
a1(x), a2(x), . . . , an(x)

]

called the nth convergents of x. In the metrical theory of continued fractions, the fundamental
set of interest is

Λ(Φ) = {
x ∈ (0,1) : an+1(x) ≥Φ(n), for infinitely many n ∈N}

,

where Φ : N→ R+ is any positive function. There have been a number of Hausdorff dimension
results for some particular choices of Φ but, in full generality, the Hausdorff dimension of this
set was determined by Wang–Wu [18]. The metrical properties of continued fractions play a
pivotal role in understanding the approximation properties of real numbers by rational numbers,
see for example [8,15]. It is worth noting that the growth properties of the product of partial
quotients give information on the set of Dirichlet improvable numbers, that is, the sets of
numbers admitting improvements to Dirichlet’s approximation theorem. We refer the reader
to [1,7–10,14] for a selection of results in this direction.

In this paper, we prove Hausdorff dimension results for certain interesting sets. The motiva-
tion for considering this problem comes from the following open problem related to Minkowski’s
question mark function. Minkowski’s question mark function ?: [0,1] → [0,1], introduced in 1904,
can be defined as

?(x) =∑
k

(−1)k−1

2(a1+···+ak )−1
.

Some of the properties of this function are that:

(i) it is strictly increasing;
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(ii) if x is rational then it is of the form k/2s , where k, s ∈Z;
(iii) if x is a quadratic irrational then the continued fraction is periodic, hence the function is

rational;
(iv) the function is singular.

The derivative of the function, if it exists, can take only two values: 0 and +∞, and this value is
concerned with the limiting behaviour of the sum

∑t
i=1

ai
t . Note that ?(0) = 0, ?(1/2) = 1/2, ?(1) = 1.

Since the function is increasing, it is conjectured that there are exactly 5 fixed points, that is, apart
from the three trivial zeros 0,1/2,1, there are two other non-trivial zeros.

This conjecture is as yet unproven, however, there are some results on solutions of this
equation. Namely, Gayfulin and Shulga [5] proved the following theorem:

Theorem 1 ([5]). Let x = [a1, . . . , an , . . . ] be the smallest or the greatest fixed point of the Minkowski
question mark function on the interval (0, 1

2 ). Then a1 = 2 and

an+1 ≤
n∑

i=1
ai (1)

for all n ∈N.

Hence, it is natural to estimate the size of the following exceptional sets. Let

Λ1 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x), for all n ∈N

}
,

and

Λ2 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x), for infinitely many n ∈N

}
.

Throughout, for any set A, dimH A denotes the Hausdorff dimension of the set A. We refer to the
standard text [2] for the definition of Hausdorff dimension and measure. In our first two results,
we calculate the Hausdorff dimension ofΛ1 andΛ2 respectively.

Theorem 2. dimHΛ1 = 1
2 .

Theorem 3. dimHΛ2 = 1.

Similar to the above sets, it is natural to consider some other related sets. For instance, we
consider sets that emerge when we substitute the growth rate of the sums of partial quotients
with the product of partial quotients. This leads us to define the setsΛ3 andΛ4 as follows:

Λ3 =
{

x ∈ (0,1) : an+1(x) ≥
n∏

i=1
ai (x), for all n ∈N

}
,

and

Λ4 =
{

x ∈ (0,1) : an+1(x) ≥
n∏

i=1
ai (x), for infinitely many n ∈N

}
.

Intuitively, one might anticipate that the Hausdorff dimension of Λ3 and Λ4 would not surpass
that of Λ1 and Λ2 respectively. This expectation arises from the observation that the product
of partial quotients exhibits a significantly faster growth rate compared to the sums of partial
quotients. As we shall demonstrate, this intuition aligns with the following theorems:

Theorem 4. dimHΛ3 = 1
3 .

Theorem 5. dimHΛ4 ≥ 2
3 .

In [19, Corollary 7.4], Wang, Wu, and Xu expressed the dimension of Λ4 in terms of a pressure
function. Here, we present their result in an alternative form, devoid of the notion of a pressure
function.
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Theorem 6 ([19]). The Hausdorff dimension of Λ4 is the infimum s0 of the numbers s ≥ 0 such
that

lim
n→∞

1

n
log

∑
(a1,...,an )∈Nn

(
1

a1 · · ·an q2
n(a1, . . . , an)

)s

≤ 0.

An implication of Theorem 6 is that the Hausdorff dimension of this set lies within the range
of 1/2 to 1. However, our Theorem 5 provides a more robust and optimal lower bound compared
to Theorem 6. Proving this bound to be sharp is an exciting open problem.

One may ponder the implications of incorporating both the sums and the products of partial
quotients into the growth rate of the aforementioned sets. Consequently, we define the sets Λ5

andΛ6 as follows:

Λ5 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x)+

n∏
i=1

ai (x), for all n ∈N
}

,

and

Λ6 =
{

x ∈ (0,1) : an+1(x) ≥
n∑

i=1
ai (x)+

n∏
i=1

ai (x), for infinitely many n ∈N
}

.

We prove the following theorems.

Theorem 7. dimHΛ5 = 1
3 .

Theorem 8. dimHΛ6 ≥ 2
3 .

Remarkably, despite the significantly faster growth rates in Λ5 compared to Λ3, the Hausdorff
dimensions are unexpectedly identical, as demonstrated in Section 6. We suspect the same
behaviour for Theorems 5 and 8.

Finally, it is important to note that the growth rates given in the above sets are not exhaustive.
Some further restrictions may be imposed for example restricting the partial quotients from
infinite subsets of natural numbers such as primes or only considering those partial quotients
that arise from arithmetic progressions. We believe similar results as above can be obtained for
such settings. We leave this for an interested reader.

2. Preliminaries

In this section, we first collect some notations and basic properties and then present some useful
lemmas for calculating the Hausdorff dimension of sets in continued fractions.

For any n ≥ 1 and (a1, . . . , an) ∈Nn , we call

In(a1, . . . , an) := {
x ∈ [0,1) : a1(x) = a1, . . . , an(x) = an

}
a basic interval of order n of continued fractions. Note that all the points in In(a1, . . . , an) have a
continued fraction expansion beginning by a1, . . . , an and thus the same for pn(x) and qn(x). If
there is no confusion, we write pn(a1, . . . , an) = pn = pn(x) and qn(a1, . . . , an) = qn = qn(x). It is
well known (see [13, p. 4]) that pn and qn satisfy the following recursive formula:{

p−1 = 1, p0 = 0, pn = an pn−1 +pn−2 (n ≥ 1),

q−1 = 0, q0 = 1, qn = an qn−1 +qn−2 (n ≥ 1).
(2)

As a consequence, we have the following results.

Proposition 9 ([11, p. 18]). For any (a1, . . . , an) ∈Nn , the interval In(a1, . . . , an) has the endpoints
pn/qn and (pn +pn−1)/(qn +qn−1). More precisely,

In(a1, . . . , an) =


[

pn

qn
,

pn +pn−1

qn +qn−1

)
, if n is even,(

pn +pn−1

qn +qn−1
,

pn

qn

]
, if n is odd.
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As a result, ∣∣In(a1, . . . , an)
∣∣= 1

qn(qn +qn−1)
.

Lemma 10 ([13, p. 13]). For any (a1, . . . , an) ∈Nn , we have

qn ≥ 2
n−1

2 and
n∏

k=1
ak ≤ qn ≤

n∏
k=1

(ak +1).

Lemma 11 ([20, Lemma 2.1]). For any n ≥ 1 and 1 ≤ k ≤ n, we have

ak +1

2
≤ qn(a1, . . . , ak−1, ak , ak+1, . . . , an)

qn−1(a1, . . . , ak−1, ak+1, . . . , an)
≤ ak +1.

Lemma 12 ([3]). Let {tn}n≥1 be a sequence of positive integers tending to infinity with tn ≥ 3 for
any n ≥ 1. For any positive number N ≥ 2,

dimH
{

x ∈ (0,1) : tn ≤ an(x) < N tn ,∀ n ≥ 1
}= liminf

n→∞
log(t1t2 . . . tn)

2log(t1t2 . . . tn)+ log tn+1
.

Lemma 13 ([17]). For any β> 0, let

F∗(β) =
{

x ∈ [0,1) : liminf
n→∞

log an+1(x)

log qn(x)
≥β

}
.

Then dimH F∗(β) = 1
β+2 .

Lemma 14 ([4,16]). For any a,b > 1, we have:

dimH
{

x ∈ [0,1) : an(x) ≥ abn
for infinitely many n ≥ 1

}
= dimH

{
x ∈ [0,1) : an(x) ≥ abn

for all n ≥ 1
}= 1

1+b
.

Lemma 15 ([6]).

dimH
{

x ∈ [0,1) : an(x) →∞ as n →∞}= 1

2
.

Lemma 16 ([6]). Let

Jβ =
{

x ∈ [0,1) : an+1(x) ≥ qn(x)β for infinitely many n ∈N}
.

Then dimH Jβ = 2
β+2 .

For any m ∈N, let

Em = {
x ∈ [0,1) : 1 ≤ an(x) ≤ m for any n ≥ 1

}
. (3)

Jarník proved the Hausdorff dimension of Em in his celebrated paper [12] from which one can
conclude that the set of badly approximable numbers, numbers which have bounded partial
quotients, has full Hausdorff dimension.

Lemma 17 ([12]). For any m ≥ 8,

1− 1

m log2
≤ dimH Em ≤ 1− 1

8m logm
.

In particular, the set

E =
{

x ∈ [0,1) : sup
n≥1

an(x) <∞
}

has Hausdorff dimension 1.

Next, we present the mass distribution principle, which is a useful classical tool to obtain the
lower bound of the Hausdorff dimension of a set.
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Lemma 18 ([2, Proposition 2.3]). Let E ⊆ (0,1) be a Borel set and let µ be a finite measure with
µ(E) > 0. If

liminf
r→0

logµ
(
B(x,r )

)
logr

≥ s for all x ∈ E ,

where B(x,r ) denotes the open ball with center at x and radius r , then we have dimH E ≥ s.

To end this section, we state an auxiliary lemma that relates the Hausdorff dimension of a set
and that of its image under a Hölder map.

Lemma 19 ([2]). Let F be a subset of R. Let f : F → R be a map for which there exist c > 0 and
0 <α≤ 1 such that ∣∣ f (x)− f (y)

∣∣≤ c|x − y |α, for all x, y ∈ F.

Then we have

dimH f (F ) ≤ 1

α
dimH F.

3. Proof of Theorem 2

For the upper bound of the Hausdorff dimension, it is clear that

Λ1 ⊆
{

x ∈ (0,1) : an+1(x) ≥ n, for all n ≥ 1
}
.

Then by Lemma 15, we have that

dimHΛ1 ≤ 1

2
.

For the lower bound of the Hausdorff dimension, fix an integer m ≥ 3. Then,

Λ1 ⊇
{

x ∈ (0,1) : mn ≤ an(x) < 2mn , for all n ≥ 1
}

since

2(m +m2 +·· ·+mn) = 2m(mn −1)

m −1
< mn+1.

Hence, by Lemma 12, we have

dimHΛ1 ≥ 1

2
.

4. Proof of Theorem 3

For a given integer m ≥ 8, let Em be the set of real numbers in [0,1) whose partial quotients are at
most equal to m, as defined in (3). Let nk = (k +1)3 for any k ≥ 1.

Em =
{

x ∈ [0,1) : ank (x) =
nk−1∑
i=1

ai (x) for any k ≥ 1 and 1 ≤ ai (x) ≤ m for i ̸= nk for any k ≥ 1

}
.

In the following, we shall illustrate that the constructed set Em is large enough in the sense of the
Hausdorff dimension by establishing the relationship between Em and Em . For brevity, we shall
make use of a kind of symbolic space described below.

For any integer n ≥ 1, set

Dn =
{

(a1, a2, . . . , an) ∈Nn :
ank =∑nk−1

i=1 ai for any nk ≤ n,

and 1 ≤ ai ≤ m for 1 ≤ i ̸= nk ≤ n for any k ≥ 1

}
,

and let

D =
∞⋃

n=0
Dn , (D0 :=;).
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For any n ≥ 1 and (a1, a2, . . . , an) ∈ Dn , we define

Jn(a1, a2, . . . , an) = ⋃
an+1

In+1(a1, a2, . . . , an , an+1),

where the union is taken over all an+1 such that (a1, a2, . . . , an , an+1) ∈ Dn+1. We call
Jn(a1, a2, . . . , an) a fundamental interval of order n. Then,

Em = ⋂
n≥1

⋃
(a1,...,an )∈Dn

In(a1, a2, . . . , an)

= ⋂
n≥1

⋃
(a1,...,an )∈Dn

Jn(a1, a2, . . . , an).

For ϵ> 0. Let k0 be an integer such that for all integer k ≥ k0, we have

2ϵ((k+1)3−k) ≥ 16(2m)k+422k(k+5)k !.

We define a map f : Em → Em , y 7→ x where x is obtained from y by eliminating the terms{
ank ,k ≥ 1

}
from its continued fraction. Clearly, f is bijective. Besides, we shall show that the

map f has the Hölder property.

Lemma 20. The map f is a 1
(1+ϵ)2 −Hölder function.

Proof. Fix (a1, a2, . . . , ak0 ) ∈ Dk0 . Let t (n) = max
{
k ∈N : nk ≤ n

}
. Call (b1, . . . ,bn−t (n)) the sequence

obtained from (a1, a2, . . . , ak0 ) by deleting the terms an1 , . . . , ant (n) . Let

E(a1, a2, . . . , ak0 ) = In−k (b1, . . . ,bk0−k )∩Em .

Consider y1, y2 ∈ J (a1, a2, . . . , ak0 ) with y1 ̸= y2 and x1 = f (y1) and x2 = f (y2). Denote by n the
smallest integer n such that an+1(y1) ̸= an+1(y2). Then n ≥ k0. Write k = t (n), so

(k +1)3 = nk ≤ n < nk+1 = (k +2)3.

First of all, we shall give an estimation for the largest partial quotient. For every integer l ≥ k0,
we have

anl =
nl−1∑
i=1

ai

≤ (l +1)3m +
l−1∑
i=1

ani

≤ (l +1)3m + l 3m +2
l−2∑
i=1

ani

≤ . . .

≤ m(l +1)3 +m
l−2∑
i=1

2i−1(l +1− i )3 +2l−2an1

≤ 2l−2(l +1)4m +2l+1m ≤ 22l+5.

Secondly, we estimate the gap between y1 and y2. It is easy to find that

y1 ∈ Jn+1
(
a1(y1), a2(y1), . . . , an+1(y1)

)⊂ In+1
(
a1(y1), a2(y1), . . . , an+1(y1)

)
and

y2 ∈ Jn+1
(
a1(y2), a2(y2), . . . , an+1(y2)

)⊂ In+1
(
a1(y2), a2(y2), . . . , an+1(y2)

)
.

Without loss of generality, we assume that n is even and an+1(y1) < an+1(y2). According to the
position of the largest term, we will distinguish two cases.

If n +2 ̸= nk+1, we have

y2 ∈
m⋃
σ=1

In+2
(
a1(y2), a2(y2), . . . , an+1(y2),σ

)
,
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then the gap between y1 and y2 is not less than the distance between the right endpoint of

In+1
(
a1(y2), a2(y2), . . . , an+1(y2)

)
and the right endpoint of In+2

(
a1(y2), a2(y2), . . . , an+1(y2),m

)
. By the definition of n, we have that

n +1 ̸= nk+1, then

|y1 − y2| ≥
∣∣∣∣ (m +1)pn+1(y2)+pn(y2)

(m +1)qn+1(y2)+qn(y2)
− pn+1(y2)

qn+1(y2)

∣∣∣∣
≥ 1[

(m +1)qn+1(y2)+qn(y2)
]
qn+1(y2)

≥ 1[
(m +1)(m +1)qn(y2)+qn(y2)

]
(m +1)qn(y2)

≥ 1

2(m +2)3q2
n

(y2)
.

By Lemma 10 and the conditions on k0, we have

q2ϵ
n (y2) > 2ϵ(n−1) ≥ 2ϵ[(k+1)3−1] ≥ 2(m +2)3,

hence

|y1 − y2| ≥ 1

2(m +2)3q2
n

(y2)
≥ 1

q2(1+ϵ)
n

(y2)
.

If n + 2 = nk+1, then the gap between y1 and y2 is not less than the distance be-
tween the right endpoint of In+1

(
a1(y2), a2(y2), . . . , an+1(y2)

)
and the right endpoint of

In+2
(
a1(y2), a2(y2), . . . , an+1(y2), ank+1 (y2)

)
. Hence

|y1 − y2| ≥
∣∣∣∣
(
ank+1 (y2)+1

)
pn+1(y2)+pn(y2)(

ank+1 (y2)+1
)
qn+1(y2)+qn(y2)

− pn+1(y2)

qn+1(y2)

∣∣∣∣
≥ 1[(

ank+1 (y2)+1
)
qn+1(y2)+qn(y2)

]
qn+1(y2)

≥ 1[(
ank+1 (y2)+1

)
(m +1)qn(y2)+qn(y2)

]
(m +1)qn(y2)

≥ 1

16m2ank+1 (y2)q2
n

(y2)
.

By Lemma 10 and the conditions on k0, we have

q2ϵ
n (y2) > 2ϵ(n−1) ≥ 2ϵ[(k+1)3−1] ≥ 16m222k+7 ≥ 16m2ank+1 (y2),

hence

|y1 − y2| ≥ 1

16m2ank+1(y2)q2
n

(y2)
≥ 1

q2(1+ϵ)
n

(y2)
.

Thirdly, we show the Hölder property of the map f . Since a j (x1) = a j (x2) for any 1 ≤ j ≤ n−k,

|x1 −x2| ≤ 1

q2
n−k

(x2)
.

By Lemma 11, using the estimation of the largest partial quotient above, we have

qn(y2) ≤ qn−k (x2)
(
an1 (y2)+1

)(
an2 (y2)+1

) · · ·(ank (y2)+1
)

≤ 2kΠk
j=1an j (y2)qn−k (x2)

≤ 2k ak
nk

(y2)qn−k (x2)

≤ 22k2+6k qn−k (x2).
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By Lemma 10, we obtain

qnk−k (x2) ≥ 2
(k+1)3−k−1

2 .

Hence,
qn(y2) ≤ q1+ϵ

n−k (x2).

Combining these inequalities, it follows that∣∣ f (y1)− f (y2)
∣∣= |x1 −x2| ≤ |y1 − y2|

1
(1+ϵ)2 . □

Finally, since Em is a countable union of sets J (a1, a2, . . . , ak0 ), by Lemma 19 and the countable
stability of Hausdorff dimension, we have

dimH Em ≥ 1

(1+ϵ)2 dimH Em .

On account of the arbitrariness of ϵ, we deduce Theorem 3.

5. Proofs of Theorems 4, 5 and 8

5.1. Proof of Theorem 4

For any x ∈Λ3, except the point x0 = [1,1, . . . ] whose partial quotients are all the integer 1, there
is an integer N such that aN (x) ≥ 2, then we have for any n > N , an(x) ≥ 22n−N−1

. Thus we have

Λ3 ⊂
∞⋃

N=1

{
x ∈ (0,1) : an(x) ≥ 22n−N−1

for all n ∈N
}

.

By Lemma 14, we have the upper bound

dimHΛ3 ≤ 1

3
.

For the lower bound, by Lemma 10, it is obvious that

F∗(1) ⊂Λ3,

where F∗(β) is defined in Lemma 13 and from this lemma we readily have

dimHΛ3 ≥ 1

3
.

5.2. Proof of Theorems 5 and 8

Since qn(x) ≥ ∑n
i=1 ai (x) holds for any x ∈ (0,1), by Lemma 10, it is obvious that J1 ⊂ Λ4 and

J1 ⊂Λ6, where Jβ is defined in Lemma 16, from which it follows that

dimHΛ4 ≥ 2

3
and dimHΛ6 ≥ 2

3
.

6. Proof of Theorem 7

Recall that

Λ5 :=
{

x ∈ (0,1) : ∀ n ∈N an+1(x) ≥
n∏

j=1
a j (x)+

n∑
j=1

a j (x)

}
The upper bound follows from the fact that Λ5 ⊆Λ3 and Theorem 4. To prove the lower bound,
we define the subset

Λ̂ :=
{

x ∈ (0,1) : a1(x) ≥ 2 and ∀ n ∈N an+1(x) ≥ 2
n∏

j=1
a j (x)

}
.

and prove the desired result via the two propositions below.
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Proposition 21. We have

Λ̂⊆Λ5 ∩
⋃

a≥2
I1(a).

Proof. Take x ∈ Λ̂ and write (an)n≥1 = (an(x))n≥1. It suffices to show that for all n ∈Nwe have
n∏

j=1
a j ≥

n∑
j=1

a j . (4)

When n = 1, we trivially have (4). Take n = 2. The inequality a1a2 ≤ a1 + a2 occurs if and only if
either a1 = 1 or a2 = 1. However, we have a1 ≥ 2 and a2 ≥ 2a1, so (4) holds. If (4) did not hold for
n = 3, we would have

(a1 +a2)a3 < a1a2a3 < a1 +a2 +a3,

and we conclude the contradiction

2 ≤ 2a2
1 ≤ a3 < a1 +a2

a1 +a2 −1
≤ 2.

The last inequality holds because a1+a2 > 2. Assume that we have shown (4) for some n = N ≥ 3.
If (4) was false for n = N +1, we would have

an+1

n∑
j=1

a j ≤ an+1

n∏
j=1

a j <
n+1∑
j=1

a j .

Arguing as above, we conclude the contradiction

2 ≤ an+1 <
∑n

j=1 a j∑n
j=1 a j −1

< 2.

Therefore, (4) holds for all n ∈N and x ∈ Λ̂. □

Proposition 22. We have

dimH Λ̂= 1

3
.

Proof. The upper bound for dimH Λ̂ follows from Λ̂⊆Λ3. For the lower bound, consider the set

Λ̂′ :=
{

x ∈ [0,1) : ∃ N ∈N, ∀ n ∈N, an+N+1(x) ≥ 2
n∏

j=1
aN+ j (x)

}
∩ ⋃

a≥2
I1(a).

Applying Lemma 19, we may show that dimH Λ̂
′ = dimH Λ̂. Take any ϵ > 0 and x ∈ F∗(1+ ϵ) with

a1(x) ≥ 2, then there is some large M ∈N for which for all n ∈Nwe have

an+M (x) ≥ (
qn+M (x)

)1+ϵ

≥ (
qM

(
a1(x), . . . , aM (x)

))1+ϵ (qn
(
aM+1(x), . . . , aM+n(x)

))1+ϵ

≥ 2qn
(
aM+1(x), . . . , aM+n(x)

)
> 2

n∏
j=1

aM+ j (x).

In other words, F∗(1+ϵ)∩⋃
a≥2 I1(a) ⊆ Λ̂. Since for all n ∈N and all (b1, . . . ,bn) ∈Nn we have

dimH F∗(1+ϵ)∩ In(b1, . . . ,bn) = dimH F∗(1+ϵ),

we may conclude
1

3+ϵ ≤ dimH Λ̂,

and the result follows. □
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7. Final remarks

The bounds provided by Lemma 10 are too crude to apply the natural covering argument.
Certainly, from Lemma 10, we conclude that for any positive integer n and any n-tuple of positive
integers (a1, . . . , an) we have

n∏
j=1

a j ≤ qn(a1, . . . , an) ≤ 2n
n∏

j=1
a j .

For small ε> 0 write s = 2
3 +ε and let H s denote the Hausdorff s-measure ofΛ4. Then, the natural

covering and these bounds yield a not so useful estimate

H s (Λ4) ≤ liminf
m→∞

∑
n≥m

∑
(a1,a2,...,an )

∣∣Jn(a1, a2, . . . , an
∣∣s

≤ liminf
m→∞

∑
n≥m

∑
(a1,a2,...,an )

(
2n

q3
n

)s

≍ liminf
m→∞

∑
n≥m

2ns

2n

∑
(a1,a2,...,an )

1 =∞.

However, if a1 · · ·an and qn(a1, . . . , an) were equivalent (up to a multiplicative constant indepen-
dent of n), a natural covering argument would lead to the desired conclusion. This suggests that
we could try to argue as in Theorem 8 to solve our conjecture. That is, we might have to work with
a suitable superset ofΛ4.
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