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Abstract. In this paper, we study the monotonicity of positive solutions u to the problem
~Apu+a|Vul? = f(w) in R%, u=0 on dRE,

where p > %, q = max{p-1,1} and a, f arelocally Lipschitz continuous functions. We consider sign-changing
nonlinearities in the case % < p <2 and positive nonlinearities in the case p > 2. Without any assumptions on
the boundedness of u or |Vu|, we show that u is monotone increasing with respect to the direction orthogonal
to the boundary. This improves a recent result by Esposito et al. [10], where |[Vu| is assumed to be bounded
in strips. Our proof combines the geometric techniques in the plane with the celebrated sliding and moving
plane methods. Some analytic tools are also developed to deal with the lack of strong comparison and strong

maximum principles when f changes sign.
Résumé. Dans cet article, nous étudions la monotonie des solutions positives u du probleme

Apu+a)|Vul? = f(u) dans RS, u=0 sur dR?,
ol p > %, q = max{p — 1,1} et a, f sont des fonctions localement Lipschitz. Nous considérons des non-
linéarités qui changent de signe dans le cas % < p < 2, respectivement positives dans le cas p > 2. Sans
aucune hypothese sur le caractére borné de u ou de [Vu|, nous montrons que u est croissante par rapport
a la direction orthogonale a la frontiere. Ceci améliore un résultat récent d’Esposito et al. [10], ou [Vu| est
supposé étre borné dans chaque bande. Notre preuve combine les techniques géométriques dans le plan
avec les célebres méthodes du plan glissant et du plan mobile. Certains outils analytiques sont également
développés pour traiter 'absence de principes de comparaison forte et de maximum fort lorsque f change

de signe.
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1. Introduction

Let R2 := {(x,y) € R? | y > 0} be the upper half-plane. We are interested in the monotonicity of
weak solutions to the quasilinear elliptic problem

—Apu+aW)|Vul¥=f(u) inR%,
u>0 in RZ, (1)
u=0 on 0R?,

where p > 3 q= max{ p-1, 1}, a, f: [0,+00) — R are locally Lipschitz continuous functions and
Ap- = div(]V-|P~2V.) denotes the well-known p-Laplace operator. Taking into account the well-
known C1@ regularity results in [9,19,26], we will study solutions u € CII(;Z‘ (Ri) which verify (1) in
the weak distributional meaning. That is,

f IVul”_Z(Vu,V(p)dx+f a(u)IVulq(pdxzf
R2 R2 R

, fwedx
2
forallp e CC1 (R‘f‘r).

The monotonicity of positive solutions to semilinear elliptic problems in the N-dimensional
half-space RY := {(x',xn) € RN | xn >0} with N > 2 has attracted the attention of several authors
in recent decades. The most well-known technique to treat this kind of problem is the moving
planes method. This method was first introduced by Alexandrov [1] and Serrin [25] in the context
of differential geometry and partial differential equations, respectively (see also [4,18] for some
improvements). By exploiting this method, Berestycki, Caffarelli and Nirenberg [2,3] showed that
if f is a Lipschitz function with f(0) = 0 then any positive classical solution of

~Au=f(u) inRY,
u=0 on oRY,

is strictly increasing in the xpy-direction. Pioneering results with more restrictions on f can

also be found in Dancer’s works [7,8]. When f is merely locally Lipschitz continuous, the

monotonicity result can be established for positive solutions which are bounded on finite strips,

see [11,24]. The case f(0) < 0is more difficult. A complete proof of the monotonicity for solutions

in this case is only known in dimension N = 2 in the works of Farina and Sciunzi [16,17].
Problem (1) is a special case of the corresponding problem in higher dimensions

—Apu+aW|Vul?=f(w) inRY,

u>0 in RY, 3)

u=0 on oRY.
Compared to (2), this type of problem is much more difficult to deal with because of the nonlinear
nature of the operator. The comparison principles are not equivalent to maximum principles for
solutions of (3) in the case p # 2. Furthermore, the singularity or degeneracy of the operator

(corresponding to 1 < p < 2 and p > 2, respectively) also causes the lack of C? regularity of the
weak solutions and other difficulties.

)
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Nevertheless, several ideas have been introduced to partially overcome such difficulties. The
monotonicity of weak solutions to (3) with a = 0 was established in [13] for zla:rzz < p <2and
in [14,15] for p > 2 via the moving plane method. The case 1 < p <2 and 1 < g < p was studied
in [12] by means of a careful analysis of the local symmetry regions of the solutions. All these
results need the assumption that f is a positive function, i.e., f(#) > 0 for ¢ > 0, besides its local
Lipschitz continuity. The monotonicity of solutions to (3) with 21</V :22 < p < 2 and sign-changing
locally Lipschitz continuous function f was only studied recently in the work [10].

We emphasize that when dealing with a merely locally Lipschitz continuous nonlinearity in
high dimensions, all monotonicity results in the literature require the boundedness of v or [Vu| in
strips even in the case p = 2. This restriction comes from the recovering compactness argument
in high dimensions, in which we need some boundedness of solutions in strips, so that the
sequence uy(x', xy) := u(x' + x,, Xxy) is compact in Cﬁ)c([}'&i\[ ) by the Arzela—Ascoli theorem and
its limit also satisfies the given problem.

The situation is different and more interesting in dimension two because we can exploit geo-
metric techniques involving rotating and sliding lines to overcome the need for the boundedness
assumption in strips. These techniques were first introduced in [3] and were improved in [16,17]
to establish the monotonicity of solutions to the semilinear problem (2) without a priori bound-
edness assumption on the solutions. The method was also extended to obtain monotonicity re-
sults for the quasilinear problem (1) under the assumption that f is positive (see [6] for the case
p> %, a = 0 and [22] for the case % < p <2, a#0). However, problem (1) with sign-changing
nonlinearity f has not been studied in the literature even in the case a = 0.

The aim of this paper is to study the monotonicity of solutions to problem (1) in the case p > 2
or f changes sign. As in the spirit of [6,22], we do not assume the boundedness of u or [Vu| in any
unbounded domains.

Let us now state our results. The first result concerns the monotonicity of solutions to
problem (1) when f changes sign and % < p < 2. This is a natural extension of the previous
results in previously prescribed works [6,10,22] and is not a trivial step due to the presence of f
sign-changing nonlinearity.

Theorem 1. Assume % <p<2,qg=1anda,f:[0,+00) — R are locally Lipschitz continuous
functions such that

f©) =0 and Zs:={r€[0,+00) | f(t) =0} isa discrete set.

Letuce CIIO"CX(RTZF) be a solution to (1). Then u is monotone increasing with respect to the y-direction.
Furthermore,

ou N 2

E>0 in B3\ {x e R} | u(x) € Z}.

Remark 2. Theorem 1 extends the main result in [22] to the sign-changing nonlinearities. It also
improves the main result in [10] in dimension two by removing the boundedness assumption of
|Vul. Notice also that only the case a = 0 was considered in [10].

Though the basic and deep ideas in Theorem 1 come from [6,22], some crucial improvements
are necessary because of the sign-changing nonlinearity of f. Two improvements are listed as
follows.

(D To ensure the rotating and sliding lines technique functions properly, it is necessary to
demonstrate that u < uy, 9 in I, 9. This is done by the use of a strong comparison
principle. Such a principle is available in the case that f is positive as in [6,22]. Since the
validity of strong comparison principles is still an open question in the case that f changes
sign, we have to take another approach. Indeed, instead of mixing rotating and sliding the
line Ly, ¢ as in [6,22], we only slide this line upward by letting s — A™. This allows us to gain
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more information about the monotonicity of u in 9, ;¢ in the direction V. We exploit this
and a sliding ball (see Figure 2) argument to show that u < uy, ;¢ inside 9, ; g but outside the
critical set {IVuI = |VuxO_ s,gl = 0}. Since this kind of strong comparison principle is weaker,
we need to derive a stronger weak comparison principle that holds for domains with narrow
and small gradient parts, instead of small domains only as in [6,22].

(I) We use a sequence of sliding balls (see Figure 3) to show that g—; > 0 on the line segment
{x} x [0, 1) and that such a line segment can be chosen in any rectangle (xy —rg, xo + o) % [0, A).
This information is weaker than that in [6,22], but we show that it is enough for us to get a
comparison of u and uy, ;g on the boundary of 9, ; 9. Moreover, this improvement helps us
overcome the difficulty posed by the lack of a strong maximum principle in the case of sign-
changing nonlinearity. The key step is to deduce g—; >0in X, from g—l; = 0in X, which allows
us to increase A and ensure that u < uy, ;9 on 09, 59 \ Ly, 59 for s < A. If f is positive as
discussed in [6,22], then utilizing a strong maximum principle for the linearized equation
would suffice. However, such a principle is not available for the case of sign-changing
nonlinearity.

Our second result extends the main result in [22] to the case p > 2.

Theorem 3. Assume p >2, g = p—1 and a, f: [0,+00) — R are locally Lipschitz continuous
functions such that
f)>0fort>0.

Letue CIIO'Z(R_%) be a solution to (1). Then u is monotone increasing with respect to the y-direction.
Furthermore,

Ou >0 in [RE_2
ay *

Unlike Theorem 1, the proof of Theorem 3 is straightforward since we only treat positive
nonlinearities there. Such a proof, therefore, is similar to that of [22, Theorem 1.1]. We only
need to replace the weak comparison principle in [22] with a new one for p > 2 so that everything
works. The case that p > 2 and f changes sign seems to be much more difficult and is left as an
open question.

The rest of this paper is organized as follows. We recall some known results in Section 2. In
Section 3 we prove a weak comparison principle for 1 < p < 2 and two important lemmas which
will be used in the proof of Theorem 1. A weak comparison principle for p > 2 is given in Section 4,
where we also prove Theorem 3.

2. Preliminaries

In this section, we recall some known results on quasilinear elliptic equations, which will be used
in the rest of this paper. We consider the equation
-Apw+aw)Vw|? = f(w) in Q, 4)

where p>1,q= rnax{p -1, 1}, a, f: [0,+00) — R are locally Lipschitz continuous functions and
Qis a domain of RN with N> 1.

The following theorem extends the strong maximum principle and the Hopf lemma of
Vézquez [27] to quasilinear equations with gradient terms.

Theorem 4 ([23, Theorems 2.5.1 and 5.5.1]). Let u € C'(Q) be a non-negative weak solution to
-Apu+a)VulT+cu" =g=0 inQ,

wherep>1,q,rzp-1,¢20,ge Ly (Q), a, f arelocally Lipschitz continuous functions and ) is

a connected domain of RV. Ifu #0 in Q, then u > 0 in Q. Moreover for any point xq € 0Q where
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the interior sphere condition is satisfied, and such that u € C'(QuU{xo}) and u(xo) = 0, we have that
% > 0 for any inward directional derivative (this means that if x approaches xy in a ball B c Q

that has xo on its boundary, thenlimy_, y, ”(f;:—)':o(l’“’) >0).

In the case p > 2 and f is positive, we have the following weighted Poincaré’s inequality.

a

Theorem 5 ([20, Theorem 2.2]). Letp>2,qg=p—-1andletuc Cllo’C (Q) be a non-negative weak

solution of (4), where a and f are locally Lipschitz continuous functions and Q is a domain of RV
such that f(t) > 0 for t > 0. Let Q' < Q be a bounded domain and define p = |VulP~2. Then there
exists Cp > 0 such that the following weighted Poincaré’s inequality holds

fUZdXSCPf pIVvl*dx forall ve H Q' p),
! QI

where the space H(} (@', p) is endowed with the norm

1
[Vl 21 = vPdx+ |Vv|2dx ’
HO (Q’,p) : Q' Q' p :

Moreover, Cp — 0 as |Q'| — 0.

In the quasilinear case, the maximum principle is not equivalent to the comparison one.
Therefore, we also recall the classical version of the strong comparison principle.

Theorem 6 ([23, Theorem 2.5.2]). Let p > 1, q = max{p — 1,1} and let u,v € C(Q) be two
solutions to (4) such that u < v in Q, where a and f are locally Lipschitz continuous functions
and Q is a smooth domain of RY. We denote

Z={xeQ ’ IVu(x)|+|Vv(x)| = 0}.
Ifxo € Q\ Z and u(xy) = v(xp), then u = v in the connected component of Q\ Z containing xy.

One important ingredient of our later use is the following strong comparison principle for
problem (1), which holds on the entire domain Q.

Theorem 7 ([20, Theorem 1.2]). Letp > 2]@’:22, g=max{p-1,1} andu,ve Cllo’(‘f (Q), whereQ isa

smooth connected domain of RN . Suppose that either u or v is a weak solution of (4), where a and
f are locally Lipschitz continuous functions. Moreover, assume that

—Apu+a@)|Vul!— fw) < -Apv+aW)Vul? - f(v) and u<v inQ
in the weak distributional sense and at least one of the following two conditions holds:
(1) either
fluw)>0 inQ or f(ux)<0 inQ,
(ii) either
flv)>0 inQ or f(vx))<0 inQ.
Theneitheru=vinQoru<vinQ.
Next, we recall that the linearized operator L, (v, ¢) at a fixed solution u € Cllo'g(Q) of
—Apu+a)Vul!=f(u) in Q
is defined for every v, ¢ € H! (Q, p) with p = |Vu|P~2 by

Ly (v, ) ::f |Vu|”‘2(vV,V<p)dx+(p—2)f IVulP~(Vu, Vo) (Vu, Ve)dx
Q Q

+f a' (w)|Vul7vedx + qf a(u)quIq_z(Vu,Vv)qodx—f f(wvedx.
Q Q Q



74 Hieu Thanh Nguyen, Phuong Le and Thanh Chi Vo

Moreover, v € H(Q, p) is called a weak solution of the linearized equation if
Ly(v,0)=0 5)
forallg e H& (Q, p). Here, the weighted Sobolev space H L, p) is defined as the space of functions
v such that
" V"Hl(QyP) = || U"LZ(Q) + ”vy"LZ(Q,p) < 00.
It can be also defined as the completion of smooth functions under the norm above. The space
H& (Q, p) is obtained by taking the closure of CZ°(€2) under the same norm and [|Vv/|| 12(Q.p) is an

equivalent norm in H L@, p).
By [21] we have € HY(Q, p)fori=1,...,Nand

L, (au )
ox;’ 7

for all ¢ € Hé (Q,p). In other words, the derivatives of u are weak solutions to the linearized
equation. Furthermore, the following strong maximum principle for the linearized equation can
be deduced from [21].

Theorem 8 ([21, Theorem 1.3]). Let p > 25:22, g=max{p-1,1} andletu e Cllo'g(f_l) be a weak

solution of (4), where a and f are locally Lipschitz continuous functions and Q is a smooth
connected domain of RN . Assume that either

fluw)>0 inQ or f(ux)<0 inQ.
Let v be a solution of (5) such that
v=0 in Q.
Then eitherv=0inQorv>0inQ.

The following 1D weighted Poincaré’s inequality plays an essential role in our proof of the weak
comparison principle in the case p < 2:

Lemma 9 ([12, Lemma 2.2]). Let I be an open bounded subset of R and assume that I = AU B,
where A and B are measurable subsets of I. Let p: I — R U {oo} be a measurable function such that
inf; p > 0. Then for any w € H& (I), the following inequality holds

1 1
fwz(t)dtszlllmax{|A|sup—,|B|sup—}fp(t)|w’(t)|2dt.
I A P B PJJI

Last but not least, we also recall the following important elementary inequalities which will
be used later: there exist positive constants Cj,C, depending only on N, p > 1 such that for all
&, & e RN with || +1&'| > 0, it holds

(1E1P726 = (E'P72E e = &) = Cy (1€ +1E1)P 2 e €',

1E1P728 —18"1P728 | < Gy (1€l +1&")P 2 e - &)
We refer to [5] for a proof of (6).

(6)

3. The case 3 < p <2 and f is sign-changing

This section aims to prove Theorem 1. The weak comparison principle below is stated for
dimension N = 2. In what follows, we write a point x € RN as x = (x',xn) € RM¥-1 x R. For any
set Q < RN we denote Q' the projection of Q on RN~1 in the xp-direction, i.e.,

Q= {x eR"!|(x/,y) €Q for some yeR}.

The open ball of center xy with radius r > 0 is always denoted as B, (xg).
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Theorem 10. Assumel<p<2,q=1anda, f:R— R arelocally Lipschitz continuous functions.
Let Q < RY be a bounded domain, L, M > 0 and u, v € C1(Q) be such that

Qc{xeRY||xyl= L},

lullzeo) + IVl o) + VUl 1o () + IV VI 1oo() = M

and
—Apu+a)|Vul? < f(u) in Q,
~Apv+aW)IVol? = f(v) inQ, o
u>0,v>0 in Q,
usv on 0Q.
Assume further that

Q= "t x (Ay UBy),

x'eQ)

where the measurable sets Ay, By < (—L, L) satisfy
|Ay|<6 and Byc{xye(-L L) ||Vul xn)|+|Vvx, xn)| <6}
Then there exists a constant
60=00(N,p,q,a,f,M,L)
such that if we assume 6 < 8y, then it holds
usvin.

Proof. Since u < v on 0Q, the function (u — v)* belongs to WO1 'P(Q). Therefore, we may use it as
a test function in the first two inequalities of (7). Then subtracting, we get

fQ(WuV’*ZVu—|Vu|P*2vU,V(u—u)+)dx
< —fQ(a(u)quIq—a(v)IVUIq)(u— u)*dx+fﬂ(f(u)—f(u))(u— v)tdx
:—fﬂa(u)(IVulq—IVvlq)(u— u)*dx—fﬂ(a(u)—a(u))wuw(u— v)tdx
+fg(f(u)—f(v))(u— v)*dx
ngla(u)||IVu|q—|Vv|q|(u—v)+dx+fg|a(u)—a(v)||V1/|q(u—v)+dx
+fQ |fw) - F)] (u-v)*dx
sMan||w|‘7—|vU|‘i|(u— u)+dx+(Lan+Lf)fQ((u— v)*)’dx,

where M, = max|—p,plAl and Lg, L¢ denote the Lipschitz constants of a and f on [-M, M],
respectively. Combining this with (6), we deduce

le (IVul + Vo))’ |V(u-v)*]* dx
Q

sMaf ||Vu|”7—|Vv|’7|(u—v)+dx+(L,1M‘7+Lf)f((u—v)+)2dx. 8)
Q Q
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By the mean value theorem and taking into account that g =1 > £, we have

Ma/ [IVul? = Vol (u—-v)"dx
Q
< unf (Vul + Vo)) V- 0)*| (u—v)*dx
Q

-2
< M M7 % fﬂ(wm +190) T V- 0)*| (- v)*dx

a P2 100y |2 szﬁquf”/ a2
< > L(IVLLI—HVUI) |Vw-v)*|"dx+ 2C, Q((u »)*) dx.

Substituting this into (8), we obtain
f (IVul+1Vv))P 2 |V(u-v)*|*dx < Cf ((u-v)*)dx, )
Q Q

where C=C(N, p,q,a, f, M) > 0.

Now we estimate the integral on the right-hand side of (9) by following an idea in [12].
More precisely, setting p = (|Vul + |VU|)p % and applying the 1D weighted Poincaré’s inequality
(Lemma9) in the set I,y = Ay U By < (=L, L) for each x' € ', we have

f (- 0)*)2dx = f f (4= )" dandy!
Q Q A UB

<2f |A UB \max{lA |su 1 | B,/ |su l}f '6(u—v)+
T * AXPP' * BXPP Axlqu,p Oxn

2
dxydx’

s4Lmax{6M2_p,2L52_p}f p|V(u—-v)*| dx.
Q
Plugging this into (9), we obtain
[ p((u- v)*)zdxs 4CLmax{6M27”,2L627p}f p((u- v)*)zdx.
Q Q

Hence for all § < 8¢, where 6 > 0 is sufficiently small, we have fQ p((u - v)*)zdx = 0. This implies
that (u— v)" is constant in Q. On the other hand, (#—v)™ =0 on 0Q. Hence (u—v)" =0in Q,
which means u < vin Q. U

To continue, we recall some notations used in the method of moving planes with geometric
techniques in dimension two, see [6].

Notations

For given (xg,s,0) e Rx Ry x (—5,%), let Ly = (cosf,sin®) and let Vj be the unit vector which is

orthogonal to Ly and satisfies (Vjp, e2) = 0. Besides, we denote by Ly, ;¢ the line which is parallel
to Lg and passes through (x, s). We also denote by 9, ;¢ the triangle delimited by the three lines
Ly,,5,6, 1x0} x Rand R x {0} (see Figure 1).

Furthermore, for any x € 9 ; 9, we define

Uyy,s,0(X) = u(Txo,s,B (x)),

where Ty, 50(x) is the symmetric point of x with respect to Ly, 5.

Since the first equation of (1) is invariant under reflection, we know that u,, ;¢ fulfills

_Ap Uxy,s,0 T a(uxg,s,e) |Vuxo,s,9|q = f(uxg,s,e) in f)/—xo,s,e

in the weak sense. For convenience, we shall denote

Us = Uxy,s,0-
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on ,5,0
Vo

g—xg,s,ﬂ

X0 X

Figure 1. The triangle 9, s 0.

We also use the following notation
Zpwy = {zeRE | f(u(z)) =0}

The following lemma compensates for the lack of a strong comparison principle for quasilin-
ear elliptic equations with sign-changing nonlinearity. Together with Theorem 10, it will play a
vital role in our later argument.

Lemma 11. Under the assumptions of Theorem 1, let us assume that

ou :
WV >0 n %0,5,9’
U= Uy, s,0 in g—xo,s,(% (10)

U<Ugsp ON 0Ty 50\ Ly so
for some (xg,5,0) ERx Ry x (%, %). Then
U<Uyysp N Txys0\(Zun Zuxo,s,ﬂ)’
where
Zy ={zeR%||Vu(2)| = 0}
and
Zuy o = 12 € Ty 50 @) | [Vidy 50 ()| = 0}

Proof. If Zy = @, then the lemma follows from the strong comparison principle (Theorem 7).
Hence in what follows we may assume Zy # @.
Since Zy is a discrete set, we can denote all zeroes of f in (0, +oo) by

H1<p2<p3<...

For convenience, we also denote py = 0 (19 may or may not be a zero of f).
By contradiction, assume that there exists

Z€E gjxo,s,@ \ (ZM n Zuxo,s,e)

such that u(2) = uy, 50 (2). Since u € Cl(IRTi), we deduce |Vul + [Viy, 59| > 0 in Be(2) € Ty, s for
some ¢ > 0 sufficiently small. Recall that both u and u,, ;9 weakly solve

—Apw+aw)Vw|? = f(w) in Be(2).
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Hence we can apply the strong comparison principle (Theorem 6) to obtain
U=lUysg In Be(2).

This in turn implies |Vu(2)| = |V, 5,0(2)| > 0. Since u is not constant in B (2) and Zy is a discrete
set, we can find zj € B, (Z) such that f(u(zp)) # 0. That is,

Uik < u(zg) < Ug+1 forsome k=0.

Let Qg be the connected component of I 59\ Zr,) which contains zp. By the strong
comparison principle (Theorem 7), since u(zp) = 1y, 50 (z0), we have

U=lUy s in Qo. (11
Because Qg is open, there exists ry > 0 such that
Bro (ZO) < QO‘

Now we slide the ball By, (zo) in direction —Vj, keeping its center on the ray {zo — tVy | ¢ = 0},
until it touches for the first time 6Q)y at some point Zy € 0Q¢. Then either u(zy) € {tg, Ux+1} OF
Zp € {0} x (0, s). We denote by z, = zp — fp Vp the new center of the slid ball (see Figure 2).

fu=pi}

Figure 2. The sliding ball.

Since (;3712 = 0in Iy, s, for all z € By, (Zp) we have

Pr<u(z) =ulz+1tpVp) < max u< fisr.
Bro(xo)

Therefore, the touching point Zy, must satisfy either u(Zy) = i or Zp € {0} x (0, s). By continuity,
we also deduce from (11) that

U(Zo) = Uy, s5,0(20) (12)
We consider two cases.

Case 1: Either u(zZy) = 0 or Zg € {0} x (0, s). This implies Zg € 09,50 \ Ly, 0. Then the last in-
equality in (10) gives u(Zo) < Uy, 5,0(Z0). However, this contradicts (12).
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Case 2: u(zg) = puy for some k > 1. Let us define the function
w(z) = u(z)—ur for z e By, (Zo).
Since 1 < p <2 and f is locally Lipschitz continuous, we have
CwP™' + f(w)=CwP™ + f(w) - f(ur) = CwP —Lyw=0  in By (Zo)
for sufficiently large C. Hence w satisfies

—Apw+a(w+p)Vw|9+CwP~ 120 in By, (Z),
w>0 in Bro(ZO)»
LU(E()) =0.

By the Hopf lemma (Theorem 4), we have

O o= 2 2 <0 (13)
— 2y =—(2 ,

v VT 5y 0

where v = ég:;"l is the outward normal at Zy. In particular, |Vu(Zo)| # 0. Since u € C*(RY), there

exists a ball By, (Zg) © Jy,,s,0 such that [Vu| # 0 in By, (Zp). By the strong comparison principle
(Theorem 6), since ©(Zp) = Uy, s, (Z0), we have

U= Uy e in Bp(Zp).
From (13), we can find a point z; € {Zo + tv‘ t>0in By, (Zp) which is close to Zy such that
Pi—1 < u(z1) < u(zp) = -

Therefore, from a point zg € I, 59 With u(zg) = Uy, 50(20) and pi < u(zo) < pgs+1, we have
found a new point z; € 9, s satisfying u(z1) = uy, s0(2z1) and pr_; < u(z1) < pg. Repeating
this argument in a finite number of times, we finally reach a point z; € 9, ;¢ such that u(z;) =
Uy,,s,0(2k) and po < u(zg) < 1. Then we meet a contradiction as in Case 1. O

We recall that the strong maximum principle for the linearized operator does not hold for sign-
changing nonlinearities. However, the following weaker result will suffice for our purpose.

Lemma 12. Under the assumptions of Theorem 1, let us assume that for some A > 0 we have
usuy, inZyforallye(0,A]
Then for every interval I C R, there exists X € I such that
ou -
— >0 on {x}x[0,7A),
oy
u<uy on{x}x|[0,y) forallye(0,A].

Proof. By the given assumption, we deduce

6_u >0 in X,.
oy
We claim that
%u o in 53\ Z (14)
oy fw-
To see this, let Q be a connected component of X3 \ Z¢(,). By the strong maximum principle
for the linearized equation (Theorem 8), we know that either g—'}f =0in Q or g—; > 0in Q. Suppose

by contradiction that the former case happens, i.e., g—’y‘ =01in Q. We take any zj € Q and define

fo=sup{r=0|zg—se, e Qforall0< s< r}.
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Then zg — fye, € 0Q and u is constant on the segment {zy — te; |0 <t < fp}. In particular, either
u(zo — toez) =0 or f(u(zo— tpex)) =0 and

u(zo) = u(zo — foeo).

This contradicts the fact that u(zg) >0and zg e 23\ Z ru)- Hence (14) must hold.
Now we fix xo € R and consider any interval I = (xo—ro, Xo + 19) < R. We have to show that there
exists x € I such that

ou _
— >0 on {X}x[0,7). (15)
oy

Clearly, it suffices to prove (15) for small ry > 0. Hence, using the boundary condition, we can
choose ry sufficiently small such that f(u) # 0 in the open square (x — rg, Xo + 7o) x (0,2r9) € Z;.

fu=p1}

X0 —T10 Xp+T10 X
Figure 3. A sequence of sliding balls.

Therefore, the ball B;,(z9) with zg = (xg, rp) is contained in a connected component Qg of
{0<u<p}nZ,. From (14), we know that g—;‘ > 0in Q.

Now we slide the ball By, (z) in the y-direction, keeping its center on the ray {zo + te, | =0},
where e, = (0, 1), until it touches for the first time Q) at some point Zy € 0.

IfZy e R x {1}, i.e., zg = (Xp, A) then (15) holds with X = X.

Otherwise, we have u(zy) = y; thanks to the assumption g—; = 0. We denote by z the new
center of the slid ball (see Figure 3). We also define the function

w(z) = —u(z) for ze By (Zp).

Then w satisfies
—Apw+a(p - w)|Vw|?+CwP~' 20 in By, (Zo),
w>0 in By, (Zy),
w(Zp) =0,

for some large C > 0. By the Hopflemma (Theorem 4), we have

a_u(")—_a_w(A )>0 (16)
6}/ z0) = 6}/ 20 .
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Since u € CI(RTE'), there exists a ball By, (Zp) such that g—; > 0 in By, (Zo). We may reduce pq if
necessary so that

Bpo (Zp) < U Bl’o (Zop+ter)|NZy.
=0
Because of (16), we can find a point z; € {20 +tey | t> 0} N By, (Zp) which is close to Zy such that
H1 < u(zy) < .

(We use the convention that py = +oo if y; is the unique zero of f.) Hence there exists r; > 0 such
that
i <u(z)<pp for ze By (z1).
Moreover, we may reduce r if necessary to ensure
U Br1 (z1 —tex) BPO (Zg)u (U Bro (zo — [62)) .
=0 =0
By construction, By, (z1) is contained in a connected component Q; of {u; < u <y} N X, and

ou .
—>0inR{n
dy

U B (21— teg)).

=0
We can repeat the above technique by sliding the ball B;, (z1) in the y-direction until it touches
0Qy and so on. Since Zy is discrete, this procedure will stop after a finite number of steps. We will
eventually find a ball B;, (zx) which can be slid in the y-direction in a connected component Q
of {,uk <u< Nk+1} N X, such that it touches 0Q at a point Z; = (X, A). Moreover, if we denote z
the new center of the slid ball, then
ou 0 in RZn | By, (k- ter) |.
oy =0
Hence (15) holds with X = Xi.. This completes the proof of (15).
It remains to show that

u < uy on {x} x [0,y) forall y € (0,A]. a7

To this end, let € be the connected component of {x €2y | % (x) > O} such that {x} x [0,y) € 6.
We recall that u < u, in 6. By the classical strong comparison principle (Theorem 6), which holds
now since |Vu| # 0 in €, we deduce that either u = uy in € or u < uy in 6. The former case would
yield u(x,2y) = 0, which is a contradiction. Hence u < u, in 6. In particular, (17) is verified. O

We are in a position to prove the main result of this section.

Proof of Theorem 1. Since 1 < p < 2, we deduce from the local Lipschitz continuity of f and
£(0) = 0 that given ty > 0, we have f()+CtP~! = 0forall 0 < t < #y and some C = C(fy) > 0. Hence
the Hopflemma (Theorem 4) implies

ou
3y >0 on OR?. (18)

To show that g—;‘ > 0in R2, we carry out the moving planes procedure in three steps.

Step 1. There exists /2 > 0 such that
usuy in Xy (19)
foreveryO< A <h. e
To prove this, we fix some xj € R. Recalling that g—; (x0,0)>y>0and ue Cllo’g (R?). Hence there

exist h, 0y > 0 such that

(%zgm in (xo—h,xo +h) x (0,2h) 20)

for any |0] < 6.
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For each 0 < |0] < 6y, there exists sg € (0, h] such that
T 10,50 Y Txy,5,0(Txp,5,0) € (X0 —h,x0+ h) x (0,2h) forall 0<s< sp.

Moreover, (20) implies
U<Uyse N Ty

forall0 < |0]| <6y and 0 < s < sg. Denote
So={5€(0,h]|u<uy 59 in Ty, sp forevery 0<s=<3}.

Since Sg # @, we may set §:=sup Sy < h. Using the sliding technique, we will claim that

s=h.
Assume on contrary that § < h. By the definition of §, we have
ou .
m 20 and wu=uy 59 In Iy s50-

On the other hand, from (20) and the Dirichlet boundary condition, we have
U<Uyso ON 0Ty s0\Ly e forall0<s<h.
Therefore, we can apply Lemma 11 to deduce

U<Ugso N T50\(Zun Zug sp)-

21

(22

(23)

Let §¢ > 0 satisfy Theorem 10 with M = 2(||u||LoO(%0v2hy6) + ”Vu”L‘x’(%o,zh,a)) and L = h. We

choose a sufficiently large compact set K < T, 50\ (Zu N Zu, ) s0 that
S _ ! s s
Q= U {x'} x (A}, UB}),
x'e( Q)
where Q° := I, ;9\ K and Ai,,ch, satisfy
|Ai,| < % and Bf;, c {xN > 0‘ [Vulx, xp)| + | Vo, xn)| < %}
From (23), we know that
U=y 59— Cin K forsome C>0.
By continuity, there exists 0 < €9 < h — § such that for any s < s < §+ &9, we have

U<Uysg InK

and
Q= |J 'yx (A5 UBy)
X' e(Qs)!
with
|A%| <60 and By c{xy>0||Vulx',xn)|+ |V, xn)| < 60}

(24)

From (22) and (24), we have u < uy, 59 on 8(9, s \ K). Therefore, Theorem 10 can be applied

with v = uy, 59 and Q = Q° to yield
US Uy 5o N Ty 0 \K.
Combining (24) and (25), we get

in g
US Uy 50 N Ty 50

(25)

for all s < s < 5+ ¢&p. This contradicts the definition of 5 and (21) is proved. Hence for every

0<A<hand0<|0| <6y, we have
U= U260 in f/-xo,lﬂ'

Letd — 0" and § — 0~, we obtain (19).
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Step 2. Let us define N N
={1>0|u<u, in 2, forall 0<A=<A}.
By Step 1, A # @¢. Hence we can set A := sup A. We claim that
A = oo. (26)
Assume by contradiction that A < co. From the definition of A we have

u<uy in X, forall /IE(O,E]

and hence
Ou, 0 inZX;
ay A
We show that there exists some X € R such that
] _
21 >o. @7)
ay

Suppose by contradiction that g—)’f (x, )_L) =0 for all x € R. There are two cases:

Case 1: f(u(x,A)) =0 for all x € R. Since Zy is discrete, we deduce u(x, A) = p for all x € R and
some [ € Zf \{0}. Then w:=p—u=0in Zf. Moreover,

—Apw—alp— w) Vw9 +CwP ' =-f(u-w)+CwP1>0 in B (x,/TIZ))

1ol
for sufficiently large C. Hence the strong maximum principle (Theorem 4) implies w =0 or w >0
in BMZ((X MZ)) The former cannot happen because w(x,0) = p—u(x,0) = ¢ > 0. Hence w > 0 in

B;,,((x,A/2)). Now the Hopflemma yields a“’ (x,4) <0, which means a” (x,4) > 0 for all x € R.

Case2: f (u(xo,/T)) # 0 for some xp € R. By continuity, there exists a small r > 0 such that f(u) is
either strictly positive or strictly negative in B, ((xo,A)). Let us define

u(x, ifo<y<A,
U (x,y) = y)- T y=t
ux,2A-y) if Asy=<24;,

and _ _
N ux,2A-y) ifo=sy<a,
u(x,y) = — -
u(x,y) if l=sy=<2A.
Since u € CI“(RZ) and a—” 0 on R x {A}, we get that u,,u* € Cl(ﬂ?ﬁ) and u,,u* are weak
solutions of B
—Apw+aw)|Vw|¥ = f(w) in B((xg,A)).
On the other hand, u, < u* in Z,7 and u. (x, A) = u*(x, A) for all x € R. By the strong comparison

principle (Theorem 7) we deduce U, = u* in Br((xo,/l)) That means u = uy in B,((xo,ﬂt))
However, this contradicts Lemma 12 with I = (xg — 1, xo + 7).

Hence (27) holds. This implies 3% > 0 in B;((%, /T)) for some 7 > 0. Exploiting this fact and

Lemmal2withI=(x—-7,x+7), we ﬁnd X1 € (x—r1,x+71)and € > 0 such that
Z—z >0 on {x} % [0,/T+ﬂ, and u<uy on {x1}x[0,A) forall A€ (0,/1]. (28)
From the second assertion in (28) we have
up—u> C on the compact set {x;} x [0, A— £/2]

for some C > 0. (We may reduce ¢ if necessary so that A —&/2 > 0.) Hence there exists 0 < £ < £/4
such that

C _ _
uy—u> 5 >0 on {x;} x[0,A—¢/2] forall Ae [A,A+¢€].
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On the other hand, exploiting the first assertion in (28), we deduce
uy—u>0 on {x}x [A—E/2,2) forall A€ [A,A+E].
Therefore, B
u<uy on {x;} x[0,A) forall 1€ (0,A+¢&]. (29)
This implies the existence of some small §; > 0 such that
U<uy 0 0N {x1}x[0,s] forall 0<s< A+Zand 0< 0] < 6. (30)

Indeed, assume (30) does not hold. Then there exist y;, s,;,08, for each n € N such that
- _ 1
U(X1,Yn) = Uy 5,0, (X1, Vn)y 0<Yyn<sp<A+g 0<|O4l< e (31

Up to a subsequence, we may assume (¥, Sn,0,) — (30, $0,0) with 0 < yp < 59 < A+ . Hence the
first inequality in (31) gives
u(x1, yo) = usy (X1, yo).
In view of (29), this only happens if yy = s¢. The first inequality in (31) now yields

ou
——(x1,80) =0,
oy

which is a contradiction with the first inequality of (28). Hence (30) must hold.
Combining (30) with the Dirichlet boundary condition of u, we have
U< Uy s ON 0Ty 59\ Ly 59 forall 0<ss< A+€ and 0< 10| <6);. (32)

With the help of (32), for each 0 < |8] < min{fy,0;}, we can repeat the sliding technique in
Step 1 to show that 3
U<Uy 20 in Tya0 forall 0<A<A+e
By letting & — 0, we obtain u < uy in Xy forall0 < A < A+ E. This contradicts the definition of A.
Thus, (26) is proved.

Step 3: Conclusion. Step 2 implies that u is monotone increasing with respect to the y-direction.
Moreover, claim (14) in the proof of Lemma 12 indicates

ou . 9
$>0 in R{\ Zpy.-

Combining this with (18), we complete the proof of the theorem. O

4. The case p > 2 and f is positive

To prove Theorem 3, we start with the following weak comparison principle for small domains.

Theorem 13. Assume p > 2, q = g and a, f: [0,+00) — R are locally Lipschitz continuous
functions such that
f()>0 for t>0.
Let Q < RN be a bounded domain, L, M >0 and u, v € C*(Q) be such that
lullzeoy + 1Vl o) + IVl pooq) + IV VI foo() = M

and

—Apu+a)|Vul? < f(u) in Q,

~Apv+aW)IVol?=f(v) inQ,

u>0,v>0 in Q,

u<sv on 0Q.
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Then there exists a constant
60=00(N,p,q,a,f,M)
such that if we assume |Q| < 6y, then it holds

u<svin Q.
Proof. Using the same arguments as in the proof of Theorem 10, we obtain (9). That is,
[ (IVul+ |Vl/|)p_2 |V(u-— v)+|2dx < Cf ((u- v)+)2dx, (33)
Q Q

where C = C(N, p, q,a, f, M) > 0. Applying the weighted Poincaré inequality (Theorem 5) to the
right-hand side of (33), we derive

f (IVul+1Vul)P 2 |V - )P dx < CCP(|Q|)f IVulP2|V(u—v)*|*dx
< CCp(|Q|)f (IVul +1Vul)P 2| V- v)* | dx,
Q

where the Poincaré constant Cp(|Q2]) — 0, as |Q] — 0. Now, we choose §( > 0 sufficiently small
such that the condition Q] < §( implies

CCp(IQ) < 1.
Then we deduce from (34) that

f (IVul+ Vo))’ |V(u-v)*|*dx =0.
Q
As in the proof of Theorem 10, this indicates u < v in Q. 0

Proof of Theorem 3. Since f is positive, the strong comparison principle (Theorem 7) and the
strong maximum principle for the linearized equation (Theorem 8) hold for any domain Q c R?.

The proof of Theorem 3 is similar to that of Theorem 1, but it is easier. Instead of using The-
orem 10, Lemma 11 and Lemma 12, we need to exploit Theorem 13, Theorem 7 and Theorem 8,
respectively.

Alternatively, one may also repeat the same arguments in [22] using Theorem 13 above instead
of [22, Proposition 2.2] there.

The detailed proof therefore will be omitted. U
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