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Abstract. In this paper, we study the monotonicity of positive solutions u to the problem

−∆p u +a(u)|∇u|q = f (u) in R2+, u = 0 on ∂R2+,

where p > 3
2 , q ≥ max

{
p−1,1

}
and a, f are locally Lipschitz continuous functions. We consider sign-changing

nonlinearities in the case 3
2 < p < 2 and positive nonlinearities in the case p > 2. Without any assumptions on

the boundedness of u or |∇u|, we show that u is monotone increasing with respect to the direction orthogonal
to the boundary. This improves a recent result by Esposito et al. [10], where |∇u| is assumed to be bounded
in strips. Our proof combines the geometric techniques in the plane with the celebrated sliding and moving
plane methods. Some analytic tools are also developed to deal with the lack of strong comparison and strong
maximum principles when f changes sign.

Résumé. Dans cet article, nous étudions la monotonie des solutions positives u du problème

∆p u +a(u)|∇u|q = f (u) dans R2+, u = 0 sur ∂R2+,

où p > 3
2 , q ≥ max

{
p − 1,1

}
et a, f sont des fonctions localement Lipschitz. Nous considérons des non-

linéarités qui changent de signe dans le cas 3
2 < p < 2, respectivement positives dans le cas p > 2. Sans

aucune hypothèse sur le caractère borné de u ou de |∇u|, nous montrons que u est croissante par rapport
à la direction orthogonale à la frontière. Ceci améliore un résultat récent d’Esposito et al. [10], où |∇u| est
supposé être borné dans chaque bande. Notre preuve combine les techniques géométriques dans le plan
avec les célèbres méthodes du plan glissant et du plan mobile. Certains outils analytiques sont également
développés pour traiter l’absence de principes de comparaison forte et de maximum fort lorsque f change
de signe.
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1. Introduction

Let R2+ := {
(x, y) ∈ R2

∣∣ y > 0
}

be the upper half-plane. We are interested in the monotonicity of
weak solutions to the quasilinear elliptic problem

−∆p u +a(u)|∇u|q = f (u) in R2+,

u > 0 in R2+,

u = 0 on ∂R2+,

(1)

where p > 3
2 , q ≥ max

{
p −1,1

}
, a, f : [0,+∞) → R are locally Lipschitz continuous functions and

∆p · = div(|∇·|p−2∇·) denotes the well-known p-Laplace operator. Taking into account the well-

known C 1,α regularity results in [9,19,26], we will study solutions u ∈C 1,α
loc (R2+) which verify (1) in

the weak distributional meaning. That is,∫
R2+

|∇u|p−2(∇u,∇ϕ)dx +
∫
R2+

a(u)|∇u|qϕdx =
∫
R2+

f (u)ϕdx

for all ϕ ∈C 1
c (R2+).

The monotonicity of positive solutions to semilinear elliptic problems in the N -dimensional
half-space RN+ := {

(x ′, xN ) ∈ RN
∣∣xN > 0

}
with N ≥ 2 has attracted the attention of several authors

in recent decades. The most well-known technique to treat this kind of problem is the moving
planes method. This method was first introduced by Alexandrov [1] and Serrin [25] in the context
of differential geometry and partial differential equations, respectively (see also [4,18] for some
improvements). By exploiting this method, Berestycki, Caffarelli and Nirenberg [2,3] showed that
if f is a Lipschitz function with f (0) ≥ 0 then any positive classical solution of{

−∆u = f (u) in RN+ ,

u = 0 on ∂RN+ ,
(2)

is strictly increasing in the xN -direction. Pioneering results with more restrictions on f can
also be found in Dancer’s works [7,8]. When f is merely locally Lipschitz continuous, the
monotonicity result can be established for positive solutions which are bounded on finite strips,
see [11,24]. The case f (0) < 0 is more difficult. A complete proof of the monotonicity for solutions
in this case is only known in dimension N = 2 in the works of Farina and Sciunzi [16,17].

Problem (1) is a special case of the corresponding problem in higher dimensions
−∆p u +a(u)|∇u|q = f (u) in RN+ ,

u > 0 in RN+ ,

u = 0 on ∂RN+ .

(3)

Compared to (2), this type of problem is much more difficult to deal with because of the nonlinear
nature of the operator. The comparison principles are not equivalent to maximum principles for
solutions of (3) in the case p ̸= 2. Furthermore, the singularity or degeneracy of the operator
(corresponding to 1 < p < 2 and p > 2, respectively) also causes the lack of C 2 regularity of the
weak solutions and other difficulties.
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Nevertheless, several ideas have been introduced to partially overcome such difficulties. The
monotonicity of weak solutions to (3) with a ≡ 0 was established in [13] for 2N+2

N+2 < p < 2 and
in [14,15] for p > 2 via the moving plane method. The case 1 < p < 2 and 1 < q ≤ p was studied
in [12] by means of a careful analysis of the local symmetry regions of the solutions. All these
results need the assumption that f is a positive function, i.e., f (t ) > 0 for t > 0, besides its local
Lipschitz continuity. The monotonicity of solutions to (3) with 2N+2

N+2 < p < 2 and sign-changing
locally Lipschitz continuous function f was only studied recently in the work [10].

We emphasize that when dealing with a merely locally Lipschitz continuous nonlinearity in
high dimensions, all monotonicity results in the literature require the boundedness of u or |∇u| in
strips even in the case p = 2. This restriction comes from the recovering compactness argument
in high dimensions, in which we need some boundedness of solutions in strips, so that the
sequence un(x ′, xN ) := u(x ′ + xn , xN ) is compact in C 1

loc(RN+ ) by the Arzelà–Ascoli theorem and
its limit also satisfies the given problem.

The situation is different and more interesting in dimension two because we can exploit geo-
metric techniques involving rotating and sliding lines to overcome the need for the boundedness
assumption in strips. These techniques were first introduced in [3] and were improved in [16,17]
to establish the monotonicity of solutions to the semilinear problem (2) without a priori bound-
edness assumption on the solutions. The method was also extended to obtain monotonicity re-
sults for the quasilinear problem (1) under the assumption that f is positive (see [6] for the case
p > 3

2 , a ≡ 0 and [22] for the case 3
2 < p < 2, a ̸≡ 0). However, problem (1) with sign-changing

nonlinearity f has not been studied in the literature even in the case a ≡ 0.
The aim of this paper is to study the monotonicity of solutions to problem (1) in the case p > 2

or f changes sign. As in the spirit of [6,22], we do not assume the boundedness of u or |∇u| in any
unbounded domains.

Let us now state our results. The first result concerns the monotonicity of solutions to
problem (1) when f changes sign and 3

2 < p < 2. This is a natural extension of the previous
results in previously prescribed works [6,10,22] and is not a trivial step due to the presence of f
sign-changing nonlinearity.

Theorem 1. Assume 3
2 < p < 2, q ≥ 1 and a, f : [0,+∞) → R are locally Lipschitz continuous

functions such that

f (0) ≥ 0 and Z f := {
t ∈ [0,+∞)

∣∣ f (t ) = 0
}

is a discrete set.

Let u ∈C 1,α
loc (R2+) be a solution to (1). Then u is monotone increasing with respect to the y-direction.

Furthermore,
∂u

∂y
> 0 in R2+ \

{
x ∈R2

+
∣∣u(x) ∈ Z f

}
.

Remark 2. Theorem 1 extends the main result in [22] to the sign-changing nonlinearities. It also
improves the main result in [10] in dimension two by removing the boundedness assumption of
|∇u|. Notice also that only the case a ≡ 0 was considered in [10].

Though the basic and deep ideas in Theorem 1 come from [6,22], some crucial improvements
are necessary because of the sign-changing nonlinearity of f . Two improvements are listed as
follows.

(I) To ensure the rotating and sliding lines technique functions properly, it is necessary to
demonstrate that u < ux0,s,θ in Tx0,s,θ . This is done by the use of a strong comparison
principle. Such a principle is available in the case that f is positive as in [6,22]. Since the
validity of strong comparison principles is still an open question in the case that f changes
sign, we have to take another approach. Indeed, instead of mixing rotating and sliding the
line Lx0,s,θ as in [6,22], we only slide this line upward by letting s →λ−. This allows us to gain
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more information about the monotonicity of u in Tx0,s,θ in the direction Vθ. We exploit this
and a sliding ball (see Figure 2) argument to show that u < ux0,s,θ inside Tx0,s,θ but outside the
critical set

{|∇u| = ∣∣∇ux0,s,θ
∣∣ = 0

}
. Since this kind of strong comparison principle is weaker,

we need to derive a stronger weak comparison principle that holds for domains with narrow
and small gradient parts, instead of small domains only as in [6,22].

(II) We use a sequence of sliding balls (see Figure 3) to show that ∂u
∂y > 0 on the line segment

{x}×[0,λ) and that such a line segment can be chosen in any rectangle (x0−r0, x0+r0)×[0,λ).
This information is weaker than that in [6,22], but we show that it is enough for us to get a
comparison of u and ux0,s,θ on the boundary of Tx0,s,θ . Moreover, this improvement helps us
overcome the difficulty posed by the lack of a strong maximum principle in the case of sign-
changing nonlinearity. The key step is to deduce ∂u

∂y > 0 in Σλ from ∂u
∂y ≥ 0 in Σλ, which allows

us to increase λ and ensure that u < ux0,s,θ on ∂Tx0,s,θ \ Lx0,s,θ for s ≤ λ. If f is positive as
discussed in [6,22], then utilizing a strong maximum principle for the linearized equation
would suffice. However, such a principle is not available for the case of sign-changing
nonlinearity.

Our second result extends the main result in [22] to the case p > 2.

Theorem 3. Assume p > 2, q ≥ p − 1 and a, f : [0,+∞) → R are locally Lipschitz continuous
functions such that

f (t ) > 0 for t > 0.

Let u ∈C 1,α
loc (R2+) be a solution to (1). Then u is monotone increasing with respect to the y-direction.

Furthermore,
∂u

∂y
> 0 in R2+.

Unlike Theorem 1, the proof of Theorem 3 is straightforward since we only treat positive
nonlinearities there. Such a proof, therefore, is similar to that of [22, Theorem 1.1]. We only
need to replace the weak comparison principle in [22] with a new one for p > 2 so that everything
works. The case that p > 2 and f changes sign seems to be much more difficult and is left as an
open question.

The rest of this paper is organized as follows. We recall some known results in Section 2. In
Section 3 we prove a weak comparison principle for 1 < p < 2 and two important lemmas which
will be used in the proof of Theorem 1. A weak comparison principle for p > 2 is given in Section 4,
where we also prove Theorem 3.

2. Preliminaries

In this section, we recall some known results on quasilinear elliptic equations, which will be used
in the rest of this paper. We consider the equation

−∆p w +a(w)|∇w |q = f (w) in Ω, (4)

where p > 1, q ≥ max
{

p −1,1
}
, a, f : [0,+∞) → R are locally Lipschitz continuous functions and

Ω is a domain of RN with N ≥ 1.
The following theorem extends the strong maximum principle and the Hopf lemma of

Vázquez [27] to quasilinear equations with gradient terms.

Theorem 4 ([23, Theorems 2.5.1 and 5.5.1]). Let u ∈C 1(Ω) be a non-negative weak solution to

−∆p u +a(u)|∇u|q + cur = g ≥ 0 in Ω,

where p > 1, q,r ≥ p −1, c ≥ 0, g ∈ L∞
loc(Ω), a, f are locally Lipschitz continuous functions andΩ is

a connected domain of RN . If u ̸≡ 0 in Ω, then u > 0 in Ω. Moreover for any point x0 ∈ ∂Ω where
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the interior sphere condition is satisfied, and such that u ∈C 1
(
Ω∪{x0}

)
and u(x0) = 0, we have that

∂u
∂ν > 0 for any inward directional derivative (this means that if x approaches x0 in a ball B ⊂ Ω
that has x0 on its boundary, then limx→x0

u(x)−u(x0)
|x−x0| > 0).

In the case p > 2 and f is positive, we have the following weighted Poincaré’s inequality.

Theorem 5 ([20, Theorem 2.2]). Let p > 2, q ≥ p −1 and let u ∈C 1,α
loc (Ω) be a non-negative weak

solution of (4), where a and f are locally Lipschitz continuous functions andΩ is a domain of RN

such that f (t ) > 0 for t > 0. Let Ω′ ⊂Ω be a bounded domain and define ρ = |∇u|p−2. Then there
exists CP > 0 such that the following weighted Poincaré’s inequality holds∫

Ω′
v2dx ≤CP

∫
Ω′
ρ|∇v |2dx for all v ∈ H 1

0 (Ω′,ρ),

where the space H 1
0 (Ω′,ρ) is endowed with the norm

∥v∥H 1
0 (Ω′,ρ) :=

(∫
Ω′

v2dx +
∫
Ω′
ρ|∇v |2dx

) 1
2

.

Moreover, CP → 0 as
∣∣Ω′∣∣→ 0.

In the quasilinear case, the maximum principle is not equivalent to the comparison one.
Therefore, we also recall the classical version of the strong comparison principle.

Theorem 6 ([23, Theorem 2.5.2]). Let p > 1, q ≥ max
{

p − 1,1
}

and let u, v ∈ C 1(Ω) be two
solutions to (4) such that u ≤ v in Ω, where a and f are locally Lipschitz continuous functions
andΩ is a smooth domain of RN . We denote

Z = {
x ∈Ω ∣∣ |∇u(x)|+ |∇v(x)| = 0

}
.

If x0 ∈Ω\ Z and u(x0) = v(x0), then u = v in the connected component of Ω\ Z containing x0.

One important ingredient of our later use is the following strong comparison principle for
problem (1), which holds on the entire domainΩ.

Theorem 7 ([20, Theorem 1.2]). Let p > 2N+2
N+2 , q ≥ max

{
p −1,1

}
and u, v ∈C 1,α

loc (Ω), where Ω is a
smooth connected domain of RN . Suppose that either u or v is a weak solution of (4), where a and
f are locally Lipschitz continuous functions. Moreover, assume that

−∆p u +a(u)|∇u|q − f (u) ≤−∆p v +a(v)|∇v |q − f (v) and u ≤ v in Ω

in the weak distributional sense and at least one of the following two conditions holds:

(i) either

f
(
u(x)

)> 0 in Ω or f
(
u(x)

)< 0 in Ω,

(ii) either

f
(
v(x)

)> 0 in Ω or f
(
v(x)

)< 0 in Ω.

Then either u = v inΩ or u < v inΩ.

Next, we recall that the linearized operator Lu(v,ϕ) at a fixed solution u ∈C 1,α
loc (Ω) of

−∆p u +a(u)|∇u|q = f (u) in Ω

is defined for every v,ϕ ∈ H 1(Ω,ρ) with ρ = |∇u|p−2 by

Lu(v,ϕ) :=
∫
Ω
|∇u|p−2(∇v,∇ϕ)dx + (p −2)

∫
Ω
|∇u|p−4(∇u,∇v)(∇u,∇ϕ)dx

+
∫
Ω

a′(u)|∇u|q vϕdx +q
∫
Ω

a(u)|∇u|q−2(∇u,∇v)ϕdx −
∫
Ω

f ′(u)vϕdx.
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Moreover, v ∈ H 1(Ω,ρ) is called a weak solution of the linearized equation if

Lu(v,ϕ) = 0 (5)

for allϕ ∈ H 1
0 (Ω,ρ). Here, the weighted Sobolev space H 1(Ω,ρ) is defined as the space of functions

v such that
∥v∥H 1(Ω,ρ) := ∥v∥L2(Ω) +∥∇v∥L2(Ω,ρ) <∞.

It can be also defined as the completion of smooth functions under the norm above. The space
H 1

0 (Ω,ρ) is obtained by taking the closure of C∞
c (Ω) under the same norm and ∥∇v∥L2(Ω,ρ) is an

equivalent norm in H 1
0 (Ω,ρ).

By [21] we have ∂u
∂xi

∈ H 1(Ω,ρ) for i = 1, . . . , N and

Lu

(
∂u

∂xi
,ϕ

)
= 0

for all ϕ ∈ H 1
0 (Ω,ρ). In other words, the derivatives of u are weak solutions to the linearized

equation. Furthermore, the following strong maximum principle for the linearized equation can
be deduced from [21].

Theorem 8 ([21, Theorem 1.3]). Let p > 2N+2
N+2 , q ≥ max

{
p −1,1

}
and let u ∈ C 1,α

loc (Ω) be a weak
solution of (4), where a and f are locally Lipschitz continuous functions and Ω is a smooth
connected domain of RN . Assume that either

f
(
u(x)

)> 0 in Ω or f
(
u(x)

)< 0 in Ω.

Let v be a solution of (5) such that
v ≥ 0 in Ω.

Then either v ≡ 0 inΩ or v > 0 inΩ.

The following 1D weighted Poincaré’s inequality plays an essential role in our proof of the weak
comparison principle in the case p < 2:

Lemma 9 ([12, Lemma 2.2]). Let I be an open bounded subset of R and assume that I = A ∪B,
where A and B are measurable subsets of I . Let ρ : I →R∪ {∞} be a measurable function such that
infI ρ > 0. Then for any w ∈ H 1

0 (I ), the following inequality holds∫
I

w2(t )dt ≤ 2|I |max

{
|A|sup

A

1

ρ
, |B |sup

B

1

ρ

}∫
I
ρ(t )

∣∣w ′(t )
∣∣2dt .

Last but not least, we also recall the following important elementary inequalities which will
be used later: there exist positive constants C1,C2 depending only on N , p > 1 such that for all
ξ,ξ′ ∈RN with |ξ|+ |ξ′| > 0, it holds(|ξ|p−2ξ−|ξ′|p−2ξ′,ξ−ξ′)≥C1

(|ξ|+ |ξ′|)p−2∣∣ξ−ξ′∣∣2,∣∣|ξ|p−2ξ−|ξ′|p−2ξ′
∣∣≤C2

(|ξ|+ |ξ′|)p−2∣∣ξ−ξ′∣∣. (6)

We refer to [5] for a proof of (6).

3. The case 3
2 < p < 2 and f is sign-changing

This section aims to prove Theorem 1. The weak comparison principle below is stated for
dimension N ≥ 2. In what follows, we write a point x ∈ RN as x = (x ′, xN ) ∈ RN−1 ×R. For any
setΩ⊂RN we denoteΩ′ the projection ofΩ on RN−1 in the xN -direction, i.e.,

Ω′ := {
x ′ ∈RN−1 ∣∣ (x ′, y) ∈Ω for some y ∈R}

.

The open ball of center x0 with radius r > 0 is always denoted as Br (x0).
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Theorem 10. Assume 1 < p < 2, q ≥ 1 and a, f : R→R are locally Lipschitz continuous functions.
Let Ω⊂RN be a bounded domain, L, M > 0 and u, v ∈C 1(Ω) be such that

Ω⊂ {
x ∈RN ∣∣ |xN | ≤ L

}
,

∥u∥L∞(Ω) +∥v∥L∞(Ω) +∥∇u∥L∞(Ω) +∥∇v∥L∞(Ω) ≤ M

and 
−∆p u +a(u)|∇u|q ≤ f (u) in Ω,

−∆p v +a(v)|∇v |q ≥ f (v) in Ω,

u > 0, v > 0 in Ω,

u ≤ v on ∂Ω.

(7)

Assume further that

Ω= ⋃
x′∈Ω′

{x ′}× (
Ax′ ∪Bx′

)
,

where the measurable sets Ax′ ,Bx ′ ⊂ (−L,L) satisfy

|Ax′ | ≤ δ and Bx′ ⊂ {
xN ∈ (−L,L)

∣∣ ∣∣∇u(x ′, xN )
∣∣+ ∣∣∇v(x ′, xN )

∣∣≤ δ}
.

Then there exists a constant

δ0 = δ0(N , p, q, a, f , M ,L)

such that if we assume δ≤ δ0, then it holds

u ≤ v inΩ.

Proof. Since u ≤ v on ∂Ω, the function (u − v)+ belongs to W 1,p
0 (Ω). Therefore, we may use it as

a test function in the first two inequalities of (7). Then subtracting, we get∫
Ω

(|∇u|p−2∇u −|∇v |p−2∇v,∇(u − v)+
)

dx

≤−
∫
Ω

(
a(u)|∇u|q −a(v)|∇v |q )

(u − v)+dx +
∫
Ω

(
f (u)− f (v)

)
(u − v)+dx

=−
∫
Ω

a(u)
(|∇u|q −|∇v |q )

(u − v)+dx −
∫
Ω

(
a(u)−a(v)

)|∇v |q (u − v)+dx

+
∫
Ω

(
f (u)− f (v)

)
(u − v)+dx

≤
∫
Ω
|a(u)| ∣∣|∇u|q −|∇v |q ∣∣ (u − v)+dx +

∫
Ω

∣∣a(u)−a(v)
∣∣|∇v |q (u − v)+dx

+
∫
Ω

∣∣ f (u)− f (v)
∣∣ (u − v)+dx

≤ Ma

∫
Ω

∣∣|∇u|q −|∇v |q ∣∣ (u − v)+dx + (La M q +L f )
∫
Ω

(
(u − v)+

)2dx,

where Ma = max[−M ,M ]|A| and La ,L f denote the Lipschitz constants of a and f on [−M , M ],
respectively. Combining this with (6), we deduce

C1

∫
Ω

(|∇u|+ |∇v |)p−2 ∣∣∇(u − v)+
∣∣2 dx

≤ Ma

∫
Ω

∣∣|∇u|q −|∇v |q ∣∣ (u − v)+dx + (La M q +L f )
∫
Ω

(
(u − v)+

)2dx. (8)
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By the mean value theorem and taking into account that q ≥ 1 > p
2 , we have

Ma

∫
Ω

∣∣|∇u|q −|∇v |q ∣∣(u − v)+dx

≤ qMa

∫
Ω

(|∇u|+ |∇v |)q−1 ∣∣∇(u − v)+
∣∣ (u − v)+dx

≤ qMa M q− p
2

∫
Ω

(|∇u|+ |∇v |) p−2
2

∣∣∇(u − v)+
∣∣ (u − v)+dx

≤ C1

2

∫
Ω

(|∇u|+ |∇v |)p−2 ∣∣∇(u − v)+
∣∣2 dx + q2M 2

a M 2q−p

2C1

∫
Ω

(
(u − v)+

)2dx.

Substituting this into (8), we obtain∫
Ω

(|∇u|+ |∇v |)p−2 ∣∣∇(u − v)+
∣∣2 dx ≤C

∫
Ω

(
(u − v)+

)2dx, (9)

where C =C (N , p, q, a, f , M) > 0.
Now we estimate the integral on the right-hand side of (9) by following an idea in [12].

More precisely, setting ρ = (|∇u| + |∇v |)p−2 and applying the 1D weighted Poincaré’s inequality
(Lemma 9) in the set Ix′ = Ax ′ ∪Bx ′ ⊂ (−L,L) for each x ′ ∈Ω′, we have∫

Ω

(
(u − v)+

)2dx =
∫
Ω′

∫
Ax′∪Bx′

(
(u − v)+

)2 dxN dx ′

≤ 2
∫
Ω′

∣∣Ax′ ∪Bx′
∣∣max

{
|Ax′ |sup

Ax′

1

ρ
, |Bx′ |sup

Bx′

1

ρ

}∫
Ax′∪Bx′

ρ

∣∣∣∣∂(u − v)+

∂xN

∣∣∣∣2

dxN dx ′

≤ 4L max
{
δM 2−p ,2Lδ2−p}∫

Ω
ρ
∣∣∇(u − v)+

∣∣2dx.

Plugging this into (9), we obtain∫
Ω
ρ
(
(u − v)+

)2dx ≤ 4C L max
{
δM 2−p ,2Lδ2−p}∫

Ω
ρ
(
(u − v)+

)2dx.

Hence for all δ< δ0, where δ0 > 0 is sufficiently small, we have
∫
Ωρ

(
(u−v)+

)2dx = 0. This implies
that (u − v)+ is constant in Ω. On the other hand, (u − v)+ = 0 on ∂Ω. Hence (u − v)+ = 0 in Ω,
which means u ≤ v inΩ. □

To continue, we recall some notations used in the method of moving planes with geometric
techniques in dimension two, see [6].

Notations

For given (x0, s,θ) ∈ R×R+× (−π
2 , π2

)
, let Lθ = (cosθ, sinθ) and let Vθ be the unit vector which is

orthogonal to Lθ and satisfies (Vθ,e2) ≥ 0. Besides, we denote by Lx0,s,θ the line which is parallel
to Lθ and passes through (x0, s). We also denote by Tx0,s,θ the triangle delimited by the three lines
Lx0,s,θ , {x0}×R and R× {0} (see Figure 1).

Furthermore, for any x ∈Tx0,s,θ, we define

ux0,s,θ(x) = u
(
Tx0,s,θ(x)

)
,

where Tx0,s,θ(x) is the symmetric point of x with respect to Lx0,s,θ.
Since the first equation of (1) is invariant under reflection, we know that ux0,s,θ fulfills

−∆p ux0,s,θ+a(ux0,s,θ)
∣∣∇ux0,s,θ

∣∣q = f (ux0,s,θ) in Tx0,s,θ

in the weak sense. For convenience, we shall denote

us = ux0,s,0.
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θ

x

y

x0

s

Vθ

Lx0 ,s,θ

Tx0 ,s,θ

Figure 1. The triangle Tx0,s,θ.

We also use the following notation

Z f (u) := {
z ∈R2

+
∣∣ f

(
u(z)

)= 0
}
.

The following lemma compensates for the lack of a strong comparison principle for quasilin-
ear elliptic equations with sign-changing nonlinearity. Together with Theorem 10, it will play a
vital role in our later argument.

Lemma 11. Under the assumptions of Theorem 1, let us assume that
∂u
∂Vθ

≥ 0 in Tx0,s,θ ,

u ≤ ux0,s,θ in Tx0,s,θ ,

u < ux0,s,θ on ∂Tx0,s,θ \ Lx0,s,θ

(10)

for some (x0, s,θ) ∈R×R+× (−π
2 , π2

)
. Then

u < ux0,s,θ in Tx0,s,θ \
(
Zu ∩Zux0,s,θ

)
,

where

Zu = {
z ∈R2

+
∣∣ ∣∣∇u(z)

∣∣= 0
}

and

Zux0,s,θ =
{

z ∈ Tx0,s,θ(R2
+)

∣∣ ∣∣∇ux0,s,θ(z)
∣∣= 0

}
.

Proof. If Z f = ;, then the lemma follows from the strong comparison principle (Theorem 7).
Hence in what follows we may assume Z f ̸= ;.

Since Z f is a discrete set, we can denote all zeroes of f in (0,+∞) by

µ1 <µ2 <µ3 < . . .

For convenience, we also denote µ0 = 0 (µ0 may or may not be a zero of f ).
By contradiction, assume that there exists

z ∈Tx0,s,θ \
(
Zu ∩Zux0,s,θ

)
such that u(z) = ux0,s,θ(z). Since u ∈C 1(R2+), we deduce |∇u|+ ∣∣∇ux0,s,θ

∣∣ > 0 in Bε(z) ⊂Tx0,s,θ for
some ε> 0 sufficiently small. Recall that both u and ux0,s,θ weakly solve

−∆p w +a(w)|∇w |q = f (w) in Bε(z).
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Hence we can apply the strong comparison principle (Theorem 6) to obtain

u = ux0,s,θ in Bε(z).

This in turn implies
∣∣∇u(z)

∣∣= ∣∣∇ux0,s,θ(z)
∣∣> 0. Since u is not constant in Bε(z) and Z f is a discrete

set, we can find z0 ∈ Bε(z) such that f
(
u(z0)

) ̸= 0. That is,

µk < u(z0) <µk+1 for some k ≥ 0.

Let Ω0 be the connected component of Tx0,s,θ \ Z f (u) which contains z0. By the strong
comparison principle (Theorem 7), since u(z0) = ux0,s,θ(z0), we have

u = ux0,s,θ in Ω0. (11)

BecauseΩ0 is open, there exists r0 > 0 such that

Br0 (z0) ⊂Ω0.

Now we slide the ball Br0 (z0) in direction −Vθ, keeping its center on the ray
{

z0 − tVθ
∣∣ t ≥ 0

}
,

until it touches for the first time ∂Ω0 at some point ẑ0 ∈ ∂Ω0. Then either u(ẑ0) ∈ {µk ,µk+1} or
ẑ0 ∈ {0}× (0, s). We denote by z̃0 = z0 − t0Vθ the new center of the slid ball (see Figure 2).

x

y

{u =µk }z0

z̃0

ẑ0

Figure 2. The sliding ball.

Since ∂u
∂Vθ

≥ 0 in Tx0,s,θ, for all z ∈ Br0 (z̃0) we have

µk < u(z) ≤ u(z + t0Vθ) ≤ max
Br0 (x0)

u <µk+1.

Therefore, the touching point ẑ0 must satisfy either u(ẑ0) = µk or ẑ0 ∈ {0}× (0, s). By continuity,
we also deduce from (11) that

u(ẑ0) = ux0,s,θ(ẑ0) (12)

We consider two cases.

Case 1: Either u(ẑ 0) = 0 or ẑ 0 ∈ {0}× (0, s). This implies ẑ0 ∈ ∂Tx0,s,θ \ Lx0,s,θ . Then the last in-
equality in (10) gives u(ẑ0) < ux0,s,θ(ẑ0). However, this contradicts (12).
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Case 2: u(ẑ 0) =µk for some k ≥ 1. Let us define the function

w(z) := u(z)−µk for z ∈ Br0 (z̃0).

Since 1 < p < 2 and f is locally Lipschitz continuous, we have

C w p−1 + f (u) =C w p−1 + f (u)− f (µk ) ≥C w p−1 −L f w ≥ 0 in Br0 (z̃0)

for sufficiently large C . Hence w satisfies
−∆p w +a(w +µk )|∇w |q +C w p−1 ≥ 0 in Br0 (z̃0),

w > 0 in Br0 (z̃0),

w(ẑ0) = 0.

By the Hopf lemma (Theorem 4), we have

∂u

∂ν
(ẑ0) = ∂w

∂ν
(ẑ0) < 0, (13)

where ν= ẑ0−z̃0
|ẑ0−z̃0| is the outward normal at ẑ0. In particular,

∣∣∇u(ẑ0)
∣∣ ̸= 0. Since u ∈C 1(RN+), there

exists a ball Bρ0 (ẑ0) ⊂ Tx0,s,θ such that |∇u| ̸= 0 in Bρ0 (ẑ0). By the strong comparison principle
(Theorem 6), since u(ẑ0) = ux0,s,θ(ẑ0), we have

u = ux0,s,θ in Bρ0 (ẑ0).

From (13), we can find a point z1 ∈
{

ẑ0 + tν
∣∣ t > 0

}∩Bρ0 (ẑ0) which is close to ẑ0 such that

µk−1 < u(z1) < u(ẑ0) =µk .

Therefore, from a point z0 ∈ Tx0,s,θ with u(z0) = ux0,s,θ(z0) and µk < u(z0) < µk+1, we have
found a new point z1 ∈ Tx0,s,θ satisfying u(z1) = ux0,s,θ(z1) and µk−1 < u(z1) < µk . Repeating
this argument in a finite number of times, we finally reach a point zk ∈ Tx0,s,θ such that u(zk ) =
ux0,s,θ(zk ) and µ0 < u(zk ) <µ1. Then we meet a contradiction as in Case 1. □

We recall that the strong maximum principle for the linearized operator does not hold for sign-
changing nonlinearities. However, the following weaker result will suffice for our purpose.

Lemma 12. Under the assumptions of Theorem 1, let us assume that for some λ> 0 we have

u ≤ uγ in Σγ for all γ ∈ (0,λ].

Then for every interval I ⊂R, there exists x ∈ I such that

∂u

∂y
> 0 on {x}× [0,λ),

u < uγ on {x}× [0,γ) for all γ ∈ (0,λ].

Proof. By the given assumption, we deduce

∂u

∂y
≥ 0 in Σλ.

We claim that
∂u

∂y
> 0 in Σλ \ Z f (u). (14)

To see this, let Ω be a connected component of Σλ \ Z f (u). By the strong maximum principle
for the linearized equation (Theorem 8), we know that either ∂u

∂y = 0 inΩ or ∂u
∂y > 0 inΩ. Suppose

by contradiction that the former case happens, i.e., ∂u
∂y = 0 inΩ. We take any z0 ∈Ω and define

t0 = sup
{

t ≥ 0
∣∣z0 − se2 ∈Ω for all 0 ≤ s < t

}
.
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Then z0 − t0e2 ∈ ∂Ω and u is constant on the segment
{

z0 − te2
∣∣0 ≤ t ≤ t0

}
. In particular, either

u(z0 − t0e2) = 0 or f
(
u(z0 − t0e2)

)= 0 and

u(z0) = u(z0 − t0e2).

This contradicts the fact that u(z0) > 0 and z0 ∈Σλ \ Z f (u). Hence (14) must hold.
Now we fix x0 ∈R and consider any interval I = (x0−r0, x0+r0) ⊂R. We have to show that there

exists x ∈ I such that
∂u

∂y
> 0 on {x}× [0,λ). (15)

Clearly, it suffices to prove (15) for small r0 > 0. Hence, using the boundary condition, we can
choose r0 sufficiently small such that f (u) ̸= 0 in the open square (x0 − r0, x0 + r0)× (0,2r0) ⊂Σλ.

x

λ

x0 − r0 x0 + r0

{u =µ1}

z̃0

ẑ0

Figure 3. A sequence of sliding balls.

Therefore, the ball Br0 (z0) with z0 = (x0,r0) is contained in a connected component Ω0 of{
0 < u <µ1

}∩Σλ. From (14), we know that ∂u
∂y > 0 inΩ0.

Now we slide the ball Br0 (z0) in the y-direction, keeping its center on the ray
{

z0 + te2
∣∣ t ≥ 0

}
,

where e2 = (0,1), until it touches for the first time ∂Ω0 at some point ẑ0 ∈ ∂Ω0.
If ẑ0 ∈R× {λ}, i.e., z0 = (x̂0,λ) then (15) holds with x = x̂0.
Otherwise, we have u(ẑ0) = µ1 thanks to the assumption ∂u

∂y ≥ 0. We denote by z̃0 the new
center of the slid ball (see Figure 3). We also define the function

w(z) :=µ1 −u(z) for z ∈ Br0 (z̃0).

Then w satisfies 
−∆p w +a(µ1 −w)|∇w |q +C w p−1 ≥ 0 in Br0 (z̃0),

w > 0 in Br0 (z̃0),

w(ẑ0) = 0,

for some large C > 0. By the Hopf lemma (Theorem 4), we have

∂u

∂y
(ẑ0) =−∂w

∂y
(ẑ0) > 0. (16)
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Since u ∈ C 1(RN+), there exists a ball Bρ0 (ẑ0) such that ∂u
∂y > 0 in Bρ0 (ẑ0). We may reduce ρ0 if

necessary so that

Bρ0 (ẑ0) ⊂
(⋃

t≥0
Br0 (z̃0 + te2)

)
∩Σλ.

Because of (16), we can find a point z1 ∈
{

ẑ0+te2
∣∣ t > 0

}∩Bρ0 (ẑ0) which is close to ẑ0 such that

µ1 < u(z1) <µ2.

(We use the convention that µ2 =+∞ if µ1 is the unique zero of f .) Hence there exists r1 > 0 such
that

µ1 < u(z) <µ2 for z ∈ Br1 (z1).

Moreover, we may reduce r1 if necessary to ensure⋃
t≥0

Br1 (z1 − te2) ⊂ Bρ0 (ẑ0)∪
(⋃

t≥0
Br0 (z̃0 − te2)

)
.

By construction, Br1 (z1) is contained in a connected componentΩ1 of
{
µ1 < u <µ2

}∩Σλ and

∂u

∂y
> 0 in R2

+∩
(⋃

t≥0
Br1 (z1 − te2)

)
.

We can repeat the above technique by sliding the ball Br1 (z1) in the y-direction until it touches
∂Ω1 and so on. Since Z f is discrete, this procedure will stop after a finite number of steps. We will
eventually find a ball Brk (zk ) which can be slid in the y-direction in a connected component Ωk

of
{
µk < u <µk+1

}∩Σλ such that it touches ∂Ωk at a point ẑk = (x̂k ,λ). Moreover, if we denote z̃k

the new center of the slid ball, then
∂u

∂y
> 0 in R2

+∩
(⋃

t≥0
Brk (z̃k − te2)

)
.

Hence (15) holds with x = x̂k . This completes the proof of (15).
It remains to show that

u < uγ on {x}× [0,γ) for all γ ∈ (0,λ]. (17)

To this end, let C be the connected component of
{

x ∈Σγ
∣∣ ∂u
∂y (x) > 0

}
such that {x}×[0,γ) ⊂C .

We recall that u ≤ uγ in C . By the classical strong comparison principle (Theorem 6), which holds
now since |∇u| ̸= 0 in C , we deduce that either u = uγ in C or u < uγ in C . The former case would
yield u(x,2γ) = 0, which is a contradiction. Hence u < uγ in C . In particular, (17) is verified. □

We are in a position to prove the main result of this section.

Proof of Theorem 1. Since 1 < p < 2, we deduce from the local Lipschitz continuity of f and
f (0) ≥ 0 that given t0 > 0, we have f (t )+C t p−1 ≥ 0 for all 0 < t < t0 and some C =C (t0) > 0. Hence
the Hopf lemma (Theorem 4) implies

∂u

∂y
> 0 on ∂R2

+. (18)

To show that ∂u
∂y > 0 in R2+, we carry out the moving planes procedure in three steps.

Step 1. There exists h > 0 such that
u ≤ uλ in Σλ (19)

for every 0 <λ≤ h.

To prove this, we fix some x0 ∈R. Recalling that ∂u
∂y (x0,0) > γ> 0 and u ∈C 1,α

loc (R2+). Hence there
exist h,θ0 > 0 such that

∂u

∂Vθ
≥ γ

2
> 0 in (x0 −h, x0 +h)× (0,2h) (20)

for any |θ| ≤ θ0.
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For each 0 < |θ| ≤ θ0, there exists sθ ∈ (0,h] such that

Tx0,s,θ∪Tx0,s,θ(Tx0,s,θ) ⊂ (x0 −h, x0 +h)× (0,2h) for all 0 < s ≤ sθ.

Moreover, (20) implies
u < ux0,s,θ in Tx0,s,θ

for all 0 < |θ| ≤ θ0 and 0 < s ≤ sθ. Denote

Sθ =
{

s̃ ∈ (0,h]
∣∣u ≤ ux0,s,θ in Tx0,s,θ for every 0 < s ≤ s̃

}
.

Since Sθ ̸= ;, we may set s := supSθ ≤ h. Using the sliding technique, we will claim that

s = h. (21)

Assume on contrary that s < h. By the definition of s, we have

∂u

∂Vθ
≥ 0 and u ≤ ux0,s,θ in Tx0,s,θ.

On the other hand, from (20) and the Dirichlet boundary condition, we have

u < ux0,s,θ on ∂Tx0,s,θ \ Lx0,s,θ for all 0 < s ≤ h. (22)

Therefore, we can apply Lemma 11 to deduce

u < ux0,s,θ in Tx0,s,θ \
(
Zu ∩Zux0,s̄,θ

)
. (23)

Let δ0 > 0 satisfy Theorem 10 with M = 2
(∥u∥L∞(Tx0,2h,θ) + ∥∇u∥L∞(Tx0,2h,θ)

)
and L = h. We

choose a sufficiently large compact set K ⊂Tx0,s,θ \
(
Zu ∩Zux0,s̄,θ

)
so that

Ωs = ⋃
x′∈(Ωs̄ )′

{x ′}× (
As

x′ ∪B s
x′

)
,

whereΩs :=Tx0,s,θ \ K and As
x′ ,B s

x′ satisfy∣∣As
x′

∣∣≤ δ0
2 and B s

x′ ⊂
{

xN > 0
∣∣∣ ∣∣∇u(x ′, xN )

∣∣+ ∣∣∇v(x ′, xN )
∣∣≤ δ0

2

}
.

From (23), we know that

u ≤ ux0,s,θ−C in K for some C > 0.

By continuity, there exists 0 < ε0 < h − s such that for any s < s < s +ε0, we have

u < ux0,s,θ in K (24)

and
Ωs = ⋃

x′∈(Ωs )′
{x ′}× (

As
x′ ∪B s

x′
)

with ∣∣As
x′

∣∣≤ δ0 and B s
x′ ⊂

{
xN > 0

∣∣ ∣∣∇u(x ′, xN )
∣∣+ ∣∣∇v(x ′, xN )

∣∣≤ δ0
}
.

From (22) and (24), we have u ≤ ux0,s,θ on ∂(Tx0,s,θ \K ). Therefore, Theorem 10 can be applied
with v = ux0,s,θ andΩ=Ωs to yield

u ≤ ux0,s,θ in Tx0,s,θ \ K . (25)

Combining (24) and (25), we get

u ≤ ux0,s,θ in Tx0,s,θ

for all s < s < s + ε0. This contradicts the definition of s and (21) is proved. Hence for every
0 <λ≤ h and 0 < |θ| ≤ θ0, we have

u ≤ ux0,λ,θ in Tx0,λ,θ .

Let θ→ 0+ and θ→ 0−, we obtain (19).
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Step 2. Let us define
Λ= {

λ̃> 0
∣∣u ≤ uλ in Σλ for all 0 <λ≤ λ̃}

.

By Step 1,Λ ̸= ;. Hence we can set λ := supΛ. We claim that

λ=∞. (26)

Assume by contradiction that λ<∞. From the definition of λ we have

u ≤ uλ in Σλ for all λ ∈ (0,λ]

and hence
∂u

∂y
≥ 0 in Σ

λ
.

We show that there exists some x ∈R such that
∂u

∂y
(x,λ) > 0. (27)

Suppose by contradiction that ∂u
∂y (x,λ) = 0 for all x ∈R. There are two cases:

Case 1: f
(
u(x ,λ)

)= 0 for all x ∈R. Since Z f is discrete, we deduce u(x,λ) = µ for all x ∈ R and
some µ ∈ Z f \ {0}. Then w :=µ−u ≥ 0 in Σ

λ
. Moreover,

−∆p w −a(µ−w)|∇w |q +C w p−1 =− f (µ−w)+C w p−1 ≥ 0 in B
λ/2

(
(x,λ/2)

)
for sufficiently large C . Hence the strong maximum principle (Theorem 4) implies w ≡ 0 or w > 0
in B

λ/2

(
(x,λ/2)

)
. The former cannot happen because w(x,0) =µ−u(x,0) =µ> 0. Hence w > 0 in

B
λ/2

(
(x,λ/2)

)
. Now the Hopf lemma yields ∂w

∂y (x,λ) < 0, which means ∂u
∂y (x,λ) > 0 for all x ∈R.

Case 2: f
(
u(x0,λ)

) ̸= 0 for some x0 ∈R. By continuity, there exists a small r > 0 such that f (u) is
either strictly positive or strictly negative in Br

(
(x0,λ)

)
. Let us define

u∗(x, y) =
{

u(x, y) if 0 ≤ y ≤λ,

u(x,2λ− y) if λ≤ y ≤ 2λ,

and

u∗(x, y) =
{

u(x,2λ− y) if 0 ≤ y ≤λ,

u(x, y) if λ≤ y ≤ 2λ.

Since u ∈ C 1,α
loc (R2+) and ∂u

∂y = 0 on R× {λ}, we get that u∗,u∗ ∈ C 1(R2+) and u∗,u∗ are weak
solutions of

−∆p w +a(w)|∇w |q = f (w) in Br
(
(x0,λ)

)
.

On the other hand, u∗ ≤ u∗ in Σ2λ and u∗(x,λ) = u∗(x,λ) for all x ∈R. By the strong comparison

principle (Theorem 7) we deduce u∗ = u∗ in Br
(
(x0,λ)

)
. That means u = u

λ
in Br

(
(x0,λ)

)
.

However, this contradicts Lemma 12 with I = (x0 − r, x0 + r ).

Hence (27) holds. This implies ∂u
∂y > 0 in Br

(
(x,λ)

)
for some r > 0. Exploiting this fact and

Lemma 12 with I = (x − r , x + r ), we find x1 ∈ (x − r , x + r ) and ε̃> 0 such that
∂u

∂y
> 0 on {x1}× [0,λ+ ε̃], and u < uλ on {x1}× [0,λ) for all λ ∈ (0,λ]. (28)

From the second assertion in (28) we have

u
λ
−u >C on the compact set {x1}× [0,λ− ε̃/2]

for some C > 0. (We may reduce ε̃ if necessary so that λ− ε̃/2 > 0.) Hence there exists 0 < ε< ε̃/4
such that

uλ−u > C

2
> 0 on {x1}× [0,λ− ε̃/2] for all λ ∈ [λ,λ+ε].
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On the other hand, exploiting the first assertion in (28), we deduce

uλ−u > 0 on {x1}× [λ− ε̃/2,λ) for all λ ∈ [λ,λ+ε].

Therefore,
u < uλ on {x1}× [0,λ) for all λ ∈ (0,λ+ε]. (29)

This implies the existence of some small θ1 > 0 such that

u < ux1,s,θ on {x1}× [0, s] for all 0 < s ≤λ+ε and 0 < |θ| < θ1. (30)

Indeed, assume (30) does not hold. Then there exist yn , sn ,θn for each n ∈N such that

u(x1, yn) ≥ ux1,sn ,θn (x1, yn), 0 < yn ≤ sn ≤λ+ε, 0 < |θn | < 1

n
. (31)

Up to a subsequence, we may assume (yn , sn ,θn) → (y0, s0,0) with 0 ≤ y0 ≤ s0 ≤ λ+ε. Hence the
first inequality in (31) gives

u(x1, y0) ≥ us0 (x1, y0).

In view of (29), this only happens if y0 = s0. The first inequality in (31) now yields

∂u

∂y
(x1, s0) ≤ 0,

which is a contradiction with the first inequality of (28). Hence (30) must hold.
Combining (30) with the Dirichlet boundary condition of u, we have

u < ux1,s,θ on ∂Tx1,s,θ \ Lx1,s,θ for all 0 < s ≤λ+ε and 0 < |θ| < θ1. (32)

With the help of (32), for each 0 < |θ| < min{θ0,θ1}, we can repeat the sliding technique in
Step 1 to show that

u ≤ ux1,λ,θ in Tx0,λ,θ for all 0 <λ≤λ+ε.

By letting θ→ 0, we obtain u ≤ uλ in Σλ for all 0 < λ≤ λ+ε. This contradicts the definition of λ.
Thus, (26) is proved.

Step 3: Conclusion. Step 2 implies that u is monotone increasing with respect to the y-direction.
Moreover, claim (14) in the proof of Lemma 12 indicates

∂u

∂y
> 0 in R2

+ \ Z f (u).

Combining this with (18), we complete the proof of the theorem. □

4. The case p > 2 and f is positive

To prove Theorem 3, we start with the following weak comparison principle for small domains.

Theorem 13. Assume p > 2, q ≥ p
2 and a, f : [0,+∞) → R are locally Lipschitz continuous

functions such that
f (t ) > 0 for t > 0.

LetΩ⊂RN be a bounded domain, L, M > 0 and u, v ∈C 1(Ω) be such that

∥u∥L∞(Ω) +∥v∥L∞(Ω) +∥∇u∥L∞(Ω) +∥∇v∥L∞(Ω) ≤ M

and 
−∆p u +a(u)|∇u|q ≤ f (u) in Ω,

−∆p v +a(v)|∇v |q ≥ f (v) in Ω,

u > 0, v > 0 in Ω,

u ≤ v on ∂Ω.
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Then there exists a constant
δ0 = δ0(N , p, q, a, f , M)

such that if we assume |Ω| ≤ δ0, then it holds

u ≤ v in Ω.

Proof. Using the same arguments as in the proof of Theorem 10, we obtain (9). That is,∫
Ω

(|∇u|+ |∇v |)p−2 ∣∣∇(u − v)+
∣∣2 dx ≤C

∫
Ω

(
(u − v)+

)2dx, (33)

where C = C (N , p, q, a, f , M) > 0. Applying the weighted Poincaré inequality (Theorem 5) to the
right-hand side of (33), we derive∫

Ω

(|∇u|+ |∇v |)p−2 ∣∣∇(u − v)+
∣∣2 dx ≤CCP (|Ω|)

∫
Ω
|∇u|p−2 ∣∣∇(u − v)+

∣∣2 dx

≤CCP (|Ω|)
∫
Ω

(|∇u|+ |∇v |)p−2 ∣∣∇(u − v)+
∣∣2 dx,

(34)

where the Poincaré constant CP (|Ω|) → 0, as |Ω| → 0. Now, we choose δ0 > 0 sufficiently small
such that the condition |Ω| ≤ δ0 implies

CCP (|Ω|) < 1.

Then we deduce from (34) that∫
Ω

(|∇u|+ |∇v |)p−2 ∣∣∇(u − v)+
∣∣2 dx = 0.

As in the proof of Theorem 10, this indicates u ≤ v inΩ. □

Proof of Theorem 3. Since f is positive, the strong comparison principle (Theorem 7) and the
strong maximum principle for the linearized equation (Theorem 8) hold for any domainΩ⊂R2+.

The proof of Theorem 3 is similar to that of Theorem 1, but it is easier. Instead of using The-
orem 10, Lemma 11 and Lemma 12, we need to exploit Theorem 13, Theorem 7 and Theorem 8,
respectively.

Alternatively, one may also repeat the same arguments in [22] using Theorem 13 above instead
of [22, Proposition 2.2] there.

The detailed proof therefore will be omitted. □
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