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Abstract. The braid group B4 naturally acts on the rational projective plane P2(Q), this action corresponds
to the classical integral reduced Burau representation of B4. The first result of this paper is a classification
of the orbits of this action. The Burau representation then defines an action of B4 on P2(

Z(q)
)
, where q is

a formal parameter and Z(q) is the field of rational functions in q with integer coefficients. We study orbits
of the B4-action on P2(

Z(q)
)
, and show existence of embeddings of the q-deformed projective line P1(

Z(q)
)

that precisely correspond to the notion of q-rationals due to Morier-Genoud and Ovsienko.

Résumé. Le groupe de tresses B4 agit naturellement sur le plan projectif rationnel P2(Q). Cette action est
donnée par la classique représentation de Burau entière de B4. Le premier résultat de cet article consiste
en une classification des orbites de cette action. La représentation de Burau permet ensuite de définir une
action de B4 sur P2(

Z(q)
)
, où q est un paramètre formel et Z(q) le corps des fractions rationnelles en q , à

coefficients entiers. On étudie les orbites de cette action de B4 sur P2(
Z(q)

)
, et on montre l’existence d’un

plongement de la q-déformation de la droite projective rationnelle P1(
Z(q)

)
qui coïncide précisément avec

la notion de q-rationnels due à Morier-Genoud et Ovsienko.
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1. Introduction and main results

The 4-strands Artin braid group B4 is generated by three elements σ1,σ2,σ3 with braid relations

σ1σ2σ1 =σ2σ1σ2, σ2σ3σ2 =σ3σ2σ3,

and commutation relation σ1σ3 =σ3σ1.
The classical reduced Burau representation of B4 is a group homomorphism

ρq : B4 −→ GL3(Λ),
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where Λ := Z[q, q−1] is the ring of Laurent polynomials in one (formal) variable q with integer
coefficients, defined by

ρq (σ1) =
q 1 0

0 1 0
0 0 1

 , ρq (σ2) =
 1 0 0
−q q 1
0 0 1

 , ρq (σ3) =
1 0 0

0 1 0
0 −q q

 . (1)

Note that, for the sake of convenience and following [5,12] we have chosen the parameter q =−t ,
where t is a more standard choice of parameter used in the theory of braid groups.

The Burau representation goes back to Werner Burau [4] who used it to interpret the Alexander
polynomial of knots in algebraic terms. Faithfulness of the representation (1) is a long standing
open problem. For more details about the Burau representation, see [2,8].

The main goal of this paper is to study the natural projective version of the Burau representa-
tion, which is the action of B4 on the projective planeP2(Λ) with coefficients in the fieldΛ :=Z(q).
Recall that the field Λ is the same as the field Q(q) of rational functions in q and every F (q) ∈Λ
can be written in the form

F (q) = R(q)

S(q)
,

where R and S are polynomials in q with integer coefficients. The action of B4 onP2(Λ) is defined
as the projectivization of (1). We will still denote by ρq this projective version of the Burau
representation

ρq : B4 −→ PGL3(Λ).

We understand this action as q-deformation, or “quantization” of the rational projective plane.
Our approach is similar to that of [11] where the case of the projective line was investigated.

1.1. The case q = 1, classification of orbits

In the special case q = 1, the homomorphism (1) is the integral Burau representation,

ρ : B4 −→ SL(3,Z),

defined for the generators by

ρ(σ1) =
1 1 0

0 1 0
0 0 1

 , ρ(σ2) =
 1 0 0
−1 1 1
0 0 1

 , ρ(σ3) =
1 0 0

0 1 0
0 −1 1

 .

Note that, unlike the Burau representation ρq for which the question is wide open, it is known
that the integral representation ρ has a nontrivial kernel. The kernel of ρ is a normal subgroup
of B4, called a braid Torelli group and denoted by BI4. Smythe in [17] found a set of normal
generators of BI4, i.e. a set of elements whose normal closure is BI4. Smythe’s set of normal
generators of BI4 is

{
τ2

1,τ2
3,∆2

}
, where

τ1 = (σ1σ2σ1)2, τ3 = (σ3σ2σ3)2 and ∆=σ1σ2σ3σ1σ2σ1. (2)

Note that ∆ is the Garside element, whose square ∆2 = (σ1σ2σ3)4 generates the center of B4.
More recently Brendle, Margalit, and Putman gave a topological description of normal gener-

ators of BIn for all n, in [3].
The identification of the kernels of specializations of Burau representation at roots of unity

was raised in [18] and developped in [5].
The projective version of ρ gives rise to an action of B4 on the rational projective plane P2(Q)

that by slightly abusing the notation we also denote by ρ

ρ : B4 −→ PSL3(Z) æP2(Q).
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Recall that the group PSL3(Z) actually coincides with SL3(Z). Let us describe the action of B4 on
P2(Q) more explicitly. Every point p ∈P2(Q) has integer homogeneous coordinates:

p = [r : s : t ],

where r, s, t ∈Z are mutually prime. Every point has exactly two such representatives, that differ
by the sign. The SL3(Z)-action preserves this convention, and so does the B4-action we are
interested in. The B4-action on P2(Q) is then

ρ(σ1) : [r : s : t ] 7−→ [r + s : s : t ],

ρ(σ2) : [r : s : t ] 7−→ [r : s + t − r : t ],

ρ(σ3) : [r : s : t ] 7−→ [r : s : t − s].

(3)

While the group SL3(Z) acts transitively on P2(Q), the action of the braid group B4 does not have
this transitivity property. For example, the point [1 : 0 : 1] is fixed by ρ and constitutes the only
orbit consisting of one point.

Our first main result is a complete description of the orbits in P2(Q) for the B4-action (3).
Despite the fact that the question has a classic nature, we did not find this statement in the
literature.

Theorem 1.

(i) Under the B4-action, the rational projective plane is decomposed into infinitely many
orbits as follows

P2(Q) = {
[1 : 0 : 1]

} ⊔ OrbB4

(
[0 : 1 : 0]

) ⊔ ⊔
n≥2

0<m<n/2
m∧n=1

OrbB4

(
[m : n : m]

)
.

(ii) For every couple (m,n) of coprime integers, the orbit OrbB4

(
[m : n : m]

)
consists of the

following points

OrbB4

(
[m : n : m]

)={
[r : s : t ]

∣∣∣∣∣
{

gcd(r − t , s) = n

r, t ≡±m mod (n)

}
,

and
OrbB4

(
[0 : 1 : 0]

)= {
[r : s : t ]

∣∣gcd(r − t , s) = 1
}

.

This theorem will be proved in Sections 2.1 and 2.3. Besides the singleton orbit
{
[1 : 0 : 1]

}
,

every B4-orbit contains infinitely many points. Moreover, we will show that every such orbit is
dense in P2(Q). However, the orbit of the point [0 : 1 : 0] is (conjecturally) the “largest” orbit in
the following sense. For every N ∈N, the orbit OrbB4

(
[0 : 1 : 0]

)
contains at least three times more

points in the subset
{
[r : s : t ]

∣∣ |r |, |s|, |t | ≤ N
}

of the rational plane than the union of the other
orbits. Although we do not have a proof of this statement, we will give the numerical evidence
for this “experimental fact”. We will refer to this orbit as the “principal orbit” and use the special
notation

O1 := OrbB4

(
[0 : 1 : 0]

)
.

Let Stab[m:n:m] ⊂ B4 be the stabilizer of a point [m : n : m]. Clearly, BI4 ⊂ Stab[m:n:m]. The next
result gives a complete description of the stabilizers modulo the braid Torelli group BI4. Note
in particular that the stabilizer Stab[0:1:0] of the point [0 : 1 : 0] is generated by σ2, ∆ and τ1.

Theorem 2. Let n ∈N∗, and 0 ≤ m < n coprime to n. Then

Stab[m:n:m] /BI4 =


〈τ1∆,σ2〉 if n ≥ 3,

〈τ1∆,σ2,σ1σ
2
2σ3〉 if n = 2,

〈τ1,∆,σ2〉 if n = 1.

This statement will be proved in Section 2.5.
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1.2. Quantization procedure, comparison to q-rationals

We introduce the notion of quantization of the rational projective plane P2(Q). The quantization
map is a set-valued function

Q : P2(Q) −→P
(
P2(Λ)

)
.

It associates to every point p = [r : s : t ] of P2(Q) an infinite set of points
[
R(q) : S(q) : T (q)

]
,

called the quantization of p, where R, S and T are polynomials in q with integer coefficients. The
precise definition is as follows. For every p ∈P2(Q) in the orbit of [m : n : m], we set

Q(p) := {
ρq (β)

(
[m : n : m]

)∣∣β s.t. ρ(β)
(
[m : n : m]

)= p
}

. (4)

We will be mostly interested in the quantization of the principal orbit O1. The image of O1 with
respect to the quantization map will be denoted by Oq .

The above quantization procedure is analogous to the notion of q-deformed rationals intro-
duced in [11]. The main difference is that the image of one point by our quantization map (4)
consists of an infinite number of points. We will explain this phenomenon is Section 5.

Let us briefly describe the quantization procedure of Morier-Genoud and Ovsienko using the
terms which are closest to our context. Consider the rational projective line P1(Q) equipped with
the standard transitive action of the modular group PSL(2,Z)(

a b
c d

)
: [r : s] 7−→ [

ar +bs : cr +d s
]
.

The PSL(2,Z)-action can also be considered as an action of the braid group B3 (the center acts
trivially). The Burau representation ρq of B3 then defines a PSL(2,Z)-action on P1(Λ). For the
generators,

ρq (σ1) : [r : s] 7−→ [qr + s : s], ρq (σ2) : [r : s] 7−→ [r : q(s − r )].

The quantization of Morier-Genoud and Ovsienko is the unique map

Q : P1(Q) −→P1(Λ)

that commutes with the PSL(2,Z)-action and sends [0 : 1] to [0 : 1] (this point remains un-
changed). It associates to a point [r : s] a pair of monic polynomials with positive integer
coefficients

(
R(q),S(q)

)
. In other words, the q-rationals are defined as the orbit of the point

[0 : 1] ∈P1(Λ) under the Burau representation.
The notion of q-rationals enjoys a number of remarkable properties, we mention only few of

them:

• the “total positivity” property [11] that means roughly speaking that the topology ofP1(Q)
is preserved by quantization;

• the unimodality property, conjectured in [11] and eventually proved in [13], asserts that
the sequences of coefficients of the polynomials R(q) and S(q) are unimodal;

• a connection to the Jones polynomial of rational knots [11,16];
• the stabilization phenomenon that led to the notion of a q-deformed real number [10].

An application of q-rationals to the Burau representation of B3 was suggested in [12], where the
information about the polynomials arising in the process of quantization of P1(Q) was sufficient
to guarantee faithfulness of specializations of the Burau representation. This application is an
important motivation for our study, we hope that the polynomials R,S,T will be useful for the
study of the Burau representation of B4.
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1.3. An embedding of the projective line

Consider the following embedding of the projective line into the projective plane

P1(Q)
ι

,−→P2(Q)

[r : s] 7−→ [r : s : 0].

It is easy to see that its image belongs to the principal orbit O1. Similarly, we define the embedding

P1(Λ)
ιq
,−→P2(Λ)

[R(q) : S(q)] 7−→ [R(q) : S(q) : 0].

We will prove that the above embeddings commute with quantization.

Theorem 3. The quantization of the projective line in the sense of [11] and our quantization
commute with the embeddings. In other words, for every [r : s] ∈P1(Q), we have

ιq
(
Q

(
[r : s]

)) ∈Q
(
ι
(
[r : s]

))
.

This statement will be proved in Section 4.2.
The other natural embedding of the projective line into the projective plane, namely [r : s] 7→

[0 : r : s] also commutes with quantization.

2. The structure of orbits

In this section, we prove Theorem 1 and Theorem 2, and we introduce the braided Euclidean
algorithm.

2.1. Proof of Theorem 1, first part

In this section, we prove Theorem 1 in one direction. We check that the orbits OrbB4

(
[m : n : m]

)
with different values of (coprime) m and n and 0 ≤ m < n/2, are indeed disjoint.

Lemma 4.

(i) For every [r : s : t ] ∈P2(Q), the number

n := gcd(r − t , s)

is invariant under the action of B4.
(ii) Up to the sign, the number r mod (n) = t mod (n) is invariant under the action of B4.

Proof.

(i). As gcd(r + s − t , s) = gcd(r − t , s + r − t ) = gcd(r − t , s), the actions of the generators σ1, σ2, σ3

given by (3) do not change the quantity gcd(r − t , s).

(ii). The quantities r mod (n) and t mod (n) coincide because n divides r − t so r ≡ t mod (n).
Because of the sign change [r : s : t ] = [−r : −s : −t ], this value is only defined up to the sign. It is
straightforward to check that it is invariant under the action of the generators of B4. □

The above lemma implies that if a point [r : s : t ] belongs to the orbit of [m : n : m], then
gcd(r−t , s) = n, and r and t are congruent to±m modulo n. In particular we deduce that different
points [m : n : m], with n ∈ N∗ and m coprime to n such that 0 ≤ m < n/2, belong to different
orbits.
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2.2. The condition 0 ≤ m < n/2, further examples of orbits

Let us now explain why the condition 0 ≤ m < n/2 is necessary to have disjoint orbits. Consider a
point [m : n : m] ∈P2(Q) with m < n. One then has

[m : n : m] = ρ
(
σ1σ

2
2σ3

)(
[n −m : n : n −m]

)
,

so that [m : n : m] and [n − m : n : n − m] belong to the same orbit. Therefore the condition
0 ≤ m < n/2 is indeed necessary to have different orbits. Note also that when n ≥ 2, one cannot
take m = 0 since [0 : n : 0] = [0 : 1 : 0], so that the condition reads 0 < m < n/2 in this case.

Example 5.

(i) For n = 2, our list of orbits contains only one orbit, which is the orbit of [1 : 2 : 1]. More
explicitly, the orbit OrbB4

(
[1 : 2 : 1]

)
consists of the points [r : s : t ] such that r and t are

odd, s is even and gcd(r − t , s) = 2.
(ii) For n = 3, there is also only one orbit, the orbit of [1 : 3 : 1]. The point [2 : 3 : 2] is recovered

for instance by

[1 : 3 : 1]
σ3−→ [1 : 3 : −2]

σ2
2−→ [1 : −3 : −2] = [−1 : 3 : 2]

σ1−→ [2 : 3 : 2].

The orbit OrbB4

(
[1 : 3 : 1]

)
consists of the points [r : s : t ] such that s is a multiple of 3, and

gcd(r − t , s) = 3.

2.3. An Euclid-like algorithm, end of the proof of Theorem 1

In this subsection, we finish the proof of Theorem 1. We show that every point of P2(Q) belongs
to the orbit of [m : n : m] for some m and n. To this end, we construct an explicit way to go from
a point [r : s : t ], to the corresponding representative [m : n : m]. Note that this algorithm fits into
the framework of Jacobi–Perron type multicontinued fraction algorithm as described in [15].

Braided Euclidean algorithm

Input. We start with a point [r : s : t ] ̸= [1 : 0 : 1], with r, s, t ∈ Z, mutually prime. We can
assume that s ≥ 0.

Step 1 of the algorithm. If s = 0, then apply σ2 to replace s by t − r , and if necessary
change signs to get s > 0.
Write the Euclidean division of r by s and t by s:

r = sa1 + r ′ t = sc1 + t ′.

Apply σ−a1
1 σ

c1
3 , so that [r : s : t ] 7→ [r ′ : s : t ′] =: [r1 : s1 : t1].

Step 2 of the algorithm. While ri − ti ̸= 0, repeat:
Write the upper Euclidean division of si by (ri − ti ), i.e.

si = (ri − ti )b2i + s′ with 0 < s′ ≤ |ri − ti |.
Apply σb2i

2 and put si+1 := s′.
Write the Euclidean divisions of ri and ti by si+1:

ri = si+1a2i+1 + r ′ and ti = si+1c2i+1 + t ′.

Apply σ−a2i+1
1 σ

c2i+1
3 and put ri+1 := r ′ and ti+1 := t ′.

Termination of the algorithm. If we have arrived to ri = ti , we do not proceed further.
Here the algorithm terminates.
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Example 6. Let us apply the algorithm to the point x = [37 : 30 : 12]. As gcd(37−12,30) = 5 and
37 ≡ 2 mod (5), we know that x is in the orbit of [2 : 5 : 2].

First step: 37 = 30∗1+7 so x
σ−1

1−−→ [7 : 30 : 12].
Second step: 30 = |7−12|∗5+5 so [7 : 30 : 12]

σ−5
2−−→ [7 : 5 : 12] and then [7 : 5 : 12]

σ−1
1 σ2

3−−−−→ [2 : 5 : 2].
Finally the braid σ−1

1 σ2
3σ

−5
2 σ−1

1 sends x to the representative of its orbit, [2 : 5 : 2].

Proposition 7.

(i) The braided Euclidean algorithm described above terminates.
(ii) Given a point p = [r : s : t ] ∈ P2(Q), with n = gcd(r − t , s) and m = r mod (n), the braided

Euclidean algorithm provides a braid βp ∈ B4 such that

ρ(βp )(p) = [m : n : m].

Proof. At each step of the algorithm, by the Euclidean division property, the following inequali-
ties hold:

(I) |ri+1 − ti+1| < si+1 < |ri − ti | < si ;
(II) 0 ≤ ri < si , 0 ≤ ti < si .

Therefore the sequences (si )i and
(|ri − ti |

)
i are strictly decreasing. The sequence

(|ri − ti |
)

i
reaches 0 in a finite number N of steps, so the algorithm terminates.

Moreover, when i = N , we have rN = tN so in the end we get a point of the type [m : n : m],
with 0 ≤ m < n by (II).

Furthermore, Lemma 4 ensures that gcd(r − t , s) = gcd(m −m,n) = n and r, t ≡ m mod (n).
At each step the algorithm uses the action of one elementary braid σi , so one can recover a

braid βp sending the starting point [r : s : t ] to the representative [m : n : m]. This braid can be
expressed as

βp =σ
−a2k+1
1 σ

c2k+1
3 σ

b2k
2 · · ·σ−a3

1 σ
c3
3 σ

b2
2 σ

−a1
1 σ

c1
3 σ

b0
2 ,

where b0 = δs,0 and the ai ’s and ci ’s are uniquely defined by the algorithm. □

Remark 8. The algorithm does not take into account the fact that [m : n : m] is in the same orbit
as [n−m : n : n−m]. If we really want to have only the representatives of the form [m : n : m] with
m < n/2 in the end of the algorithm, we can just add σ1σ

2
2σ3 as a final step in case we reached

the wrong representative.

Proposition 7 implies that the rational projective line P2(Q) is indeed a union of the B4-orbits
OrbB4

(
[m : n : m]

)
. Theorem 1 is proved.

2.4. Connection to multidimensional continued fractions

Let us explain in which sense our braided Euclidean algorithm is a Jacobi–Perron type multi-
dimensional continued fractions (MCF) algorithm. For a clear description of these algorithms,
see [7,15].

Proposition 9. Consider the following subsets of R3+:

I0 =
{
(r, s, t )

∣∣ s = min(r, s, t )
}
,

I1 =
{
(r, s, t )

∣∣ t < s ≤ r
}
,

I2 =
{
(r, s, t )

∣∣ t < r < s
}
,

I ′2 =
{
(r, s, t )

∣∣r < t < s
}
,

I3 =
{
(r, s, t )

∣∣r < s ≤ t
}
.
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Then the braided Euclidean algorithm is an({
I0, I1, I2, I ′2, I3

}
,
{
ρ4(σ1σ

−1
3 ),ρ4(σ1),ρ4(σ2),ρ4(σ−1

2 ),ρ4(σ−1
3 )

})
MCF algorithm.

Proof. It is just a restatement of the steps of the braided Euclidean algorithm. □

2.5. Stabilizers of the points [m : n : m].

In this subsection, we give a proof of Theorem 2.
Given a point [r : s : t ] ∈P2(Q), its stabilizer (for the action given by ρ) is a subgroup of B4:

Stab[r :s:t ] ⊂ B4.

We describe stabilizers of the representative points [m : n : m] of each orbit. The braid Torelli
group BI4 = ker(ρ) is obviously a subgroup of every stabilizer. Recall from (2) that it is normally
generated by τ2

1, τ2
3 and ∆.

Theorem 2. Let n ∈N∗ and 0 ≤ m < n coprime to n. Then

Stab[m:n:m] /BI4 =


〈τ1∆,σ2〉 if n ≥ 3,

〈τ1∆,σ2,σ1σ
2
2σ3〉 if n = 2,

〈τ1,∆,σ2〉 if n = 1.

Proof. For convenience, column vectors of M3,1(Q) will be denoted in line: (u, v, w). Let β ∈
Stab[m:n:m], and let M = ρ(β):

M =
a e b

x f y
c g d

 .

Since the action of B4 fixes (1,0,1), one has

b = 1−a, d = 1− c, y =−x.

By definition, β stabilizes [m : n : m], so either M(m,n,m) = (m,n,m), or M(m,n,m) =
(−m,−n,−m).

First, let us suppose that M(m,n,m) = (m,n,m). Then the eigenspace associated to 1 has
dimension more than 2, and (0,1,0) = 1

n (m,n,m)−m(1,0,1) belongs to this space. Therefore
e = g = 0 and f = 1. Moreover det(M) = 1 implies that c = a −1. The matrix M is then

M =
 a 0 1−a

x 1 −x
a −1 0 2−a

 .

Multiplying β by σx
2 to the left, we can suppose that x = 0. It is straightforward to check that for

all a ∈Z,

ρ
(
(τ1∆)a−1)=

 a 0 1−a
0 1 0

a −1 0 2−a

 ,

so the matrix M is in the group generated by ρ(σ2) and ρ(τ1∆).
Now, let us suppose that M(m,n,m) = (−m,−n,−m). This means

ma +ne +m(1−a) =−m

n f =−n

mc +ng +m(1− c) =−m
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so e = g =−2 m
n , and f =−1. Moreover, the matrix M has 1 and −1 as eigenvalues, and det(M) = 1,

therefore the eigenspace associated to −1 must have dimension 2. Taking the trace, we get
−1 = Tr(M) = a + f + 1− c, so c = a + 1. As before, we can multiply β by σx

2 to the left to get
x = 0, so

M =
 a −2m/n 1−a

0 −1 0
a +1 −2m/n −a

 .

Notice that M(0,1,0) = (−2 m
n ,−1,−2 m

n

)
, so ρ(β)

(
[0 : 1 : 0]

)= [2m : n : 2m]. The points [0 : 1 : 0] and
[2m : n : 2m] are in the same orbit only if n = 2 or n = 1. So if n ≥ 3, this case is impossible.

If n = 2, then m = 1 and

M =
 a −1 1−a

0 −1 0
a +1 −1 −a

= ρ
(
(τ1∆)−a−1σ2(σ1σ

2
2σ3)

)
.

Finally, if n = 1, then m = 0, and

M =
 a 0 1−a

0 −1 0
a +1 0 −a

= ρ
(
τ1(τ1∆)a+1),

and this completes the proof. □

3. Topology and geometry of orbits

In this section, we investigate the way the orbits fill the rational projective plane. In particular,
we highlight the symmetries of the orbits, that are carried by an affine property of the principal
orbit O1. Finally, we outline an experimental dominance property of the principal orbit that
distinguishes it from the other orbits.

3.1. Topology of orbits

Note that the standard embedding into the real projective plane P2(Q) ⊂ RP2 equips P2(Q) with
the natural topology induced by the Euclidean norm in R3. We will use this topology to study the
question of density of orbits.

Proposition 10. Each orbit, except for the singleton orbit
{
[1 : 0 : 1]

}
, is dense in P2(Q).

Proof. Let us show that the orbit of [m0 : n0 : m0] is dense, for n0 ∈N∗ and m0 coprime to n0 such
that m0 < n0. It suffices to check that for each representative [m : n : m] with m < n/2, there exists
a sequence of points in OrbB4

(
[m0 : n0 : m0]

)
converging to [m : n : m].

Consider the following sequence of points in P2(Q)

Pk :=
[

m + n0 +m0 −m

n0k +1
: n + n0 −n

n0k +1
: m + m0 −m

n0k +1

]
−−−−−→
k→+∞

[m : n : m].

For all k ∈N∗,

Pk = [
(n0k +1)m +n0 +m0 −m : (n0k +1)n +n0 −n : (n0k +1)m +m0 −m

]
= [

n0(km +1)+m0 : n0(kn +1) : n0km +m0
]
,

with n0(km + 1)+m0, n0(kn + 1), n0km +m0 mutually prime because m0 and n0 are coprime.
And

gcd
(
n0(km +1)+m0 − (n0km +m0),n0(kn +1)

)= gcd
(
n0,n0(kn +1)

)= n0,

therefore the point Pk is in the orbit of [m0 : n0 : m0], for all k ∈N∗. □
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Figure 1. Sketch of the orbits in P2(Q) with the affine chart [r : s : 1]. Each color represents
an orbit, dark blue is for the principal orbit.

Proposition 10 implies that the orbits (except for the singleton orbit
{
[1 : 0 : 1]

}
) are neither

closed nor open.

3.2. Symmetries of orbits

We show that every orbit is stable by an action of the dihedral group D4.

Proposition 11. The orbits are stable under the action of the dihedral group D4 acting on the
plane with origin placed at (1,0).

Proof. The action of the dihedral group D4 is generated by the rotation of π/2 around the point
(1,0) = [1 : 0 : 1] and the symmetry with respect to the horizontal axis. Therefore, it is enough to
check that for every point [x : y : 1] the image by the rotation [−y +1 : x −1 : 1] and the image by
the symmetry [x : −y : 1] are in the same orbit as [x : y : 1].

Let x = a/b and y = c/d be irreducible fractions, and let δ= gcd(b,d), with b = δb′ and d = δd ′,
so that [x : y : 1] = [

ad ′ : b′c : d ′b
]

with ad ′, b′c and d ′b mutually prime. Then [x : y : 1] is in the
orbit of the representative [m : n : m] with n = gcd

(
a −b,c

)
and m ≡ ad ′ mod (n).

Now [x : −y : 1] = [
ad ′ : −b′c : d ′b

]
so it is also in the orbit of [m : n : m].

Similarly,
[−y + 1 : x − 1 : 1

] = [−bc ′ + bd ′ : ad ′ − bd ′ : bd ′] with gcd
(
bc ′, ad ′ − bd ′) = n and

−bc ′+bd ′ ≡ bd ′ ≡ m mod (n), so the point is again in the same orbit. □

3.3. Affine lines in O1

The principal orbit O1 has one particular property: among all orbits, it is the only one that
contains infinitely many straight lines of P2(Q), see Figure 1.

Proposition 12. Let r /s ∈Q. The affine line of Q2 (embedded inP2(Q) by (x, y) 7→ [x : y : 1]) having
slope r /s and passing through the point (0,c/d) is entirely in O1 if and only if

cs1 + r d1 =±1

with s1 = s/(s ∧d) and d1 = d/(s ∧d).
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Moreover, the only vertical lines that are in O1 are those of the form

D =
{(

r ±1

r
,λ

)
, λ ∈Q

}
with r ∈N∗.

Proof. Let c/d ∈Q in irreducible form. As (0,c/d) 7→ [0 : c : d ] with gcd(c,d) = 1, the point (0,c/d)
is already in O1. Let us suppose that the line passing through (0,c/d) and of slope r /s is in O1.
Then for all λ ∈Q, the point

(
λ,r /sλ+ c/d

)
is in O1. We have[

λ : r
s λ+ c

d : 1
]
= [

αd s : rαd + cβs :βd s
]= [

αd s1 : rαd1 + cβs1 :βd s1
]
,

where d1 = d/(d ∧ s) and s1 = s/(d ∧ s). As the three coordinates of this point are not necessarily
mutually prime, the fact that the point is in O1 means that

gcd
(
αd s1,αr d1 +βcs1,d s1β

)= gcd
(
d s1(α−β),αr d1 +βcs1

)
,

or, since α and β are coprime,

gcd
(
d s1,αr d1 +βcs1

)= gcd
(
d s1(α−β),αr d1 +βcs1

)
.

In particular, if we take α = β = 1, then we get that r d1 + cs1 divides d s1. Note that this means
that r ∧ c divides d or s, so actually r ∧ c = 1. Now take α = (c +d)s1 and β = (s − r )d1, so that
αr d1 +βcs1 = (r d1 + cs1)d s1. We get

d s1 =±(r d1 + cs1)d s1,

so r d1 + cs1 =±1. For this argument to be valid, we need to check that the α and β chosen above
are coprime. We check that β is coprime to α−β, which is equivalent :

gcd
(
α−β,β

)= gcd
(
r d1 + cs1, (s − r )d1

)
= gcd

(
r d1 + cs1, s − r

)
because d1 ∧ cs1 = 1

= gcd
(
r d1 + cs1,r

)
because r d1 + cs1 divides s

= gcd
(
cs1,r

)
= 1.

This concludes the argument.
Conversely, let us suppose that r d1 + cs1 = ±1. Let λ = α/β in irreducible form. Let us check

the criteria for the point
[
αd s : rαd + cβs : βd s

] = [
αd s1 : rαd1 + cβs1 : βd s1

]
to be in O1. First

note that the greatest common divisor of αd s1, βd s1 and rαd1 + cβs1 is gcd
(
d s1,rαd1 + cβs1

)
.

One has

gcd
(
αd s1 −βd s1,rαd1 + cβs1

)= gcd
(
(α−β)d s1,r d1(α−β)±β

)
because r d1 + cs1 =±1

= gcd
(
d s1,r d1(α−β)±β

)
= gcd

(
d s1,rαd1 + cβs1

)
.

Therefore, when divided by gcd(d s1,rαd1+cβs1), we get that
[
αd s1 : rαd1+cβs1 :βd s1

]
is in O1,

and so the entire line is in the principal orbit.
For the vertical lines, let us suppose that the line

{(
a/b,λ

)}
is in O1. Then the point [a/b :0:1] =

[a : 0 : b] is in O1, so gcd
(
a −b,0

)= 1, meaning that a −b =±1.
Conversely, it is straightforward to check that the line

{(
(r ±1)/r,λ

)}
is entirely in O1.

Proposition 12 is proved. □
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Figure 2. Partial rational density of O1 for d = 1, . . . ,500.

3.4. Experimental statistics: asymptotical growth of orbits

Let us explain why in a certain sense, the principal orbit is much bigger than the others. Although
we have no precise statement, computer experimentations clearly demonstrate this phenome-
non.

Definition 13. Let A be a subset of Q2
>0. Let d ∈ N∗. Let Sd be the set of positive rationals with

numerator and denominator lower that d (when written in irreducible form). We say that A has
rational density α when:

♯
(

A∩S2
d

)
♯S2

d

−−−−−→
d→+∞

α.

Remark 14. As the natural density for positive integers, this rational density is a way to state the
visual intuition that the principal orbit takes the major part of the projective plane (around 3/4
of the plane). This definition of rational density was inspired by the work done in [9].

The following conjecture relies on the exact computation of the values ♯
(
O1 ∩ S2

d

)
/♯S2

d for
d ≤ 500, see Figure 2.

Conjecture 15. The principal orbit O1 has rational density greater than 0.75.

4. Quantization of P2(Q)

Now we can come back to the Burau representation ρq where q is a formal variable. The study of
the case q = 1 in the previous section motivates us to focus on the principal orbit.

4.1. Quantizing the principal orbit

Definition 16. By analogy with the case where q = 1, let us denote by Oq the orbit of the point
[0 : 1 : 0] ∈P2

(
Z(q)

)
under the action of B4 via the reduced Burau representation ρq , and let us call

it the quantized principal orbit.
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Remark 17. With this definition, a point [r : s : t ] ∈ O1 has infinitely many quantizations,
depending on the braid chosen to connect [r : s : t ] to [0 : 1 : 0].

Given a braid β such that ρ(β)
(
[0 : 1 : 0]

)= [r : s : t ], the quantizations of the point [r : s : t ] are
reached by ρq

(
βStab[0:1:0]

)(
[0 : 1 : 0]

)
. Yet, the generators computed in Proposition 2 have a trivial

action on [0 : 1 : 0] via ρq , as

ρq (σ2) =
 1 0 0
−q q 1
0 0 1

 , ρq (τ1) =
−q3 0 q +1

0 −q3 −q2 +1
0 0 1

 , ρq (∆) =
 0 0 q

0 −q2 0
q3 0 0

 .

Therefore, the split of the point [r : s : t ] in several quantizations actually comes from the braid
Torelli group BI4. For instance, the braid σ3τ

2
1σ

−1
3 is quantized as

ρq (σ3τ
2
1σ

−1
3 ) =

q6 q5 +q4 −q2 −q −q5 −q4 +q2 +q
0 q4 +q3 −q q6 −q4 −q3 +q
0 q4 +q3 −q −1 q6 −q4 −q3 +q +1

 .

Definition 18. The quantization map is a set-valued function defined by

Q : O1 −→P
(
P2(Λ)

)
p 7−→ {

ρq (β)
(
[0 : 1 : 0]

)∣∣β s.t. ρ(β)
(
[0 : 1 : 0]

)= p
}

.

For p ∈ O1, the image Q(p) is called the quantization of p, and an element [R : S : T ] of Q(p) will
be called a deformation of p.

Remark 19. According to the previous remark, for p ∈O1, if we denote by βp the braid provided
by the braided Euclidean algorithm such that ρ(βp )

(
[0 : 1 : 0]

)= p, we have

Q(p) = {
ρq (βpγ)

(
[0 : 1 : 0]

)∣∣γ ∈BI4
}

.

Example 20. Let us quantize the point [7 : 18 : 14].

(i) Thanks to the braided Euclidean algorithm, we compute the braidβ=σ2
2σ1σ

−3
3 σ−3

2 σ3
1σ

−2
3

such that ρ(β)
(
[0 : 1 : 0]

)= [7 : 18 : 14]. Then

ρq (β)
(
[0 : 1 : 0]

)= [
R(q) : S(q) : T (q)

]
,

with

R(q) = q9 +2q8 +3q7 +3q6 +q5 −q4 −q3 −q2,

S(q) =−q11 −2q10 −2q9 +q8 +6q7 +11q6 +10q5 +4q4 −q3 −4q2 −3q −1,

T (q) = q8 +3q7 +6q6 +6q5 +3q4 −2q2 −2q −1.

Note that these polynomials have positive and negative coefficients, and the positive
(resp. the negative) parts are unimodal.

(ii) Let us also compute ρq
(
βσ3τ

2
1σ

−1
3

)(
[0 : 1 : 0]

)= [
R ′(q) : S′(q) : T ′(q)

]
:

R ′(q) = q15 +2q14 +3q13 +3q12 −3q10 −3q9 +3q7 +3q6 +q5 −q4 −q3 −q2,

S′(q) =−q17 −2q16 −2q15 +q14 +7q13 +13q12 +11q11 +q10 −9q9 −10q8 −2q7 +7q6 +9q5

+4q4 −q3 −4q2 −3q −1,

T ′(q) = q14 +3q13 +6q12 +6q11 +2q10 −3q9 −5q8 −2q7 +3q6 +5q5 +3q4 −2q2 −2q −1.

Again, these polynomials have positive and negative parts, and each part is unimodal.
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4.2. Proof of Theorem 3

Let r and s be two coprime integers, with s > 0, and such that

Q
(
[r : s]

)= [
R(q) : S(q)

]
q

with R(q), S(q) two coprime polynomials. Let us apply the braided Euclidean algorithm to the
point [r : s : 0]. As the third coordinate of the point is zero, the algorithm follows exactly the steps
of the usual Euclidean algorithm, so the braid provided is

β=σ
−a2k+1
1 σ

a2k
2 · · ·σ−a3

1 σ
a2
2 σ

−a1
1 ,

with the ai ’s being the coefficients of the continued fraction:
r

s
= a1 + 1

a2 + 1

. . .+ 1
a2k+1

= [a1, a2, . . . , a2k+1].

One of the quantizations of [r : s : 0] is ρq (β−1) · [0 : 1 : 0].

ρq (β−1) = ρq (σ1)a1ρq (σ2)−a2 · · ·ρq (σ1)a2k+1 =
(

Mq ⋆

0 1

)
,

where Mq is the image of the 3-strand braid β by the Burau representation of B3, because of the
following commutative diagramme.

B3 GL2(Λ)

B4 GL3(Λ)

ρq

ρq

σi 7→σi M 7→
(

M 0
0 1

)

As a 3-strand braid, β sends [0 : 1] on [r : s], so the second column of Mq is the unique
deformation of [r : s] in the sense of [11], that is

(
R(q),S(q)

)
, and thus

[
R(q) : S(q) : 0

]
is among

the deformations of the point [r : s : 0].
The case of the other natural embedding [r : s] 7→ [0 : r : s] is exactly symmetric.
Theorem 3 is proved.

4.3. Special specializations

The obstruction to the unicity of quantization comes from the fact that the inclusion ker(ρq ) ⊂
BI4 is strict (the braid Torelli group is “too big”). We investigate specializations of q at complex
values for which the reverse inclusion holds.

Definition 21. For z ∈C∗, let evz : PGL3(Λ) → PGL3(C) be the evaluation map at q = z.

Notation 22. Let j := e
2iπ

3 be one of the third roots of unity.

Lemma 23. The only complex values z for which BI4 ⊂ ker(evz ρq ) are 1,−1, j , j 2.

Proof. Recall that BI4 is normally generated by τ2
1, τ2

3 and∆2 defined in (2), and that ρq(∆2)=q4I .
We can compute for all k ∈N,

ρq (τ2
1)k =

q6k 0 [k]q6 f1(q)
0 q6k [k]q6 f2(q)
0 0 1

 ,

with

{
f1(q) =−q4 −q3 +q +1 =−(q −1)(q +1)(q2 +q +1),

f2(q) = q5 −q3 −q2 +1 = (q −1)2(q +1)(q2 +q +1).
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Likewise,

ρq (τ2
3)k =

 1 0 0
−[k]q6 g1(q) q6k 0
−[k]q6 g2(q) 0 q6k

 ,

with

{
g1(q) = q6 −q4 −q3 +q = q(q −1)2(q +1)(q2 +q +1),

g2(q) = q6 +q5 −q3 −q2 =−q2(q −1)(q +1)(q2 +q +1).

If q = z ∈ {
1,−1, j , j 2

}
, then evz

(
ρq (τ2

1)
) = evz

(
ρz (τ2

3)
) = I , so the whole normal group gener-

ated by τ2
1, τ2

3 and ∆2 is in ker(evz ρq ).
Conversely, if z ∉ {

1,−1, j , j 2
}
, then f1(z) ̸= 0 so evz

(
ρq (τ2

1)
) ̸= I , and BI4 ̸⊂ ker(evz ρq ). □

Remark 24. For q = 1, the statement is obvious, as ker(ev1ρq ) = ker(ρ) =BI4 by definition. For
q =−1, we have ker(ev−1ρq ) = P4, the pure braid group with 4 strands.

For q = z a primitive third root of unity, the inclusion BI4 ⊂ ker(evz ρq ) is strict. For instance,
evz

(
ρq (σ3

1)
)= I .

Definition 25. Let p = [r : s : t ] ∈O1. The j -deformed point associated to p is defined by

[r : s : t ] j := ev j
(
ρq (β)

)(
[0 : 1 : 0]

)
,

for any β ∈ B4 such that ρ(β)
(
[0 : 1 : 0]

)= p.

Example 26. Let p = [1 : 5 : 3]. The braid β = σ2
2σ1σ

−3
3 satisfies ρ(β)

(
[0 : 1 : 0]

) = p. Then the
j -analogue of p is

[1 : 5 : 3] j = [1 : − j : 0].

Remark 27. During experimentations, we noticed that for every point [r : s : t ] ∈ O1 we looked
at, the j -analogue [R : S : T ] = [r : s : t ] j satisfies that R and T are either 0 or invertible in Z[ j ]
(that is N (R) ≤ 1, N (T ) ≤ 1) and that N (S) ∈ {

0,1,3
}
, where N denotes the norm of the ring of

integers Z[ j ].

4.4. Minimal unimodal quantization

The aim of this paragraph is to choose one particular deformation of a point p ∈ O1 among the
quantization Q(p).

Definition 28. Let R(q) ∈ Z[q]. We say that R is piecewise unimodal when its sequence of coeffi-
cients (a0, a1, . . . , an) is divided in subsequences of alternatively positive and negative coefficients(+|a0|, . . . ,+|ai1 |

)
,
(−|ai1+1|, . . . ,−|ai2 |

)
, . . . , each subsequence being unimodal.

Let [R : S : T ] ∈ P2(Λ), renormalized such that R,S and T are polynomials in q. We say that
[R : S : T ] is fully piecewise unimodal when R, S and T are piecewise unimodal.

Example 29. The deformation of [3 : 6 : 4] obtained via the braided Euclidean algorithm is[
q5 +q4 +q3,−q10 −2q9 −2q8 −2q7 −q6 +q5 +3q4 +4q3 +3q2 +2q +1, q3 +q2 +q +1

]
.

This deformation is fully piecewise unimodal. In particular, in the second coordinate the
sequence of coefficients is

(
1,2,3,4,3,1,−1,−2,−2,−2,−1

)
, so it has two pieces and each is

unimodal.

Remark 30. Some deformations of points in the principal orbit are not fully piecewise unimodal.
For instance, in Q

(
[21 : 29 : 11]

)
, there is

[
R(q) : S(q) : T (q)

]
with

S(q) = q13 +3q12 +6q11 +8q10 +8q9 +5q8 +2q7 +q6 +2q5 +2q4 −q3 −3q2 −3q −2,

which is not piecewise unimodal.
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Conjecture 31. Let p ∈O1. There is a unique deformation [R : S : T ] of p in Q(p) such that deg(R),
deg(S) and deg(T ) are minimal.

Definition 32. Assuming the conjecture above, we can define the quantization of a point p ∈O1 to
be the minimal (in degrees) deformation of p. If p = [r : s : t ], we denote this minimal deformation
by [r : s : t ]q .

Remark 33. This definition would match with the quantization of the projective rational line
embedded in P2(Q), because if [r : s]q = [R : S], then [R : S : 0] is minimal by unicity of the
quantization of [r : s]. Moreover in this case, the deformation of [r : s : 0] is fully piecewise
unimodal.

4.5. Examples and experimentations

To support our conjecture, we sum up some of the examples we computed.

Example 34 (Non unimodality). Using the braided Euclidean algorithm, we computed defor-
mations of [r : s : t ] for all the triplets of nonnegative integers (r, s, t ) (satisfying the condition
(r − t )∧ s = 1 to be in O1) bounded by 100. In this set of examples, only 1,518 (over 302,172) were
not fully piecewise unimodular, the first one (for the lexicographic order) occuring for the triplet
(10,67,3), for which the polynomials are

R(q) =−q15 −2q14 −q13 +q12 +4q11 +5q10 +3q9 +q8,

S(q) =−q15 −3q14 −4q13 −3q12 +q11 +6q10 +8q9 +8q8 +7q7 +8q6 +9q5 +10q4 +9q3 +7q2

+4q +1,

T (q) = q10 +q9 +q8.

For every point whose deformation using the braided Euclidean algorithm was not fully piece-
wise unimodal, we found another deformation that is fully piecewise unimodal, by applying vari-
ations of the braided Euclidean algorithm. For instance, the braid β=σ−10

2 σ−3
1 σ3σ

2
2σ

−1
1 satisfies

ρ(β)
(
[0 : 1 : 0]

)= [10 : 67 : 3], and we have ρq (β)
(
[0 : 1 : 0]

)= [
R ′(q) : S′(q) : T ′(q)

]
with

R ′(q) =−q14 −2q13 −3q12 −2q11 −q10 −q9,

S′(q) = q15 +q14 −3q12 −5q11 −6q10 −7q9 −7q8 −7q7 −7q6 −7q5 −7q4 −6q3 −4q2 −2q −1,

T ′(q) =−q16 −q15 −q14,

which are piecewise unimodal.
However, we can find a third deformation of [10 : 67 : 3] such that the degrees of the three

coordinates are together minimal. Indeed, with β′′ = σ−9
2 σ2

1σ
3
2σ

2
1σ

−3
3 σ2σ3τ

2
1τ3(σ2σ3)2, we get

ρq (β′′) = [R ′′ : S′′ : T ′′]:

R ′′(q) = q12 +2q11 +3q10 +3q9 +q8,

S′′(q) = q12 +3q11 +6q10 +8q9 +8q8 +7q7 +7q6 +7q5 +7q4 +6q3 +4q2 +2q +1,

T ′′(q) = q10 +q9 +q8.

Examples 35 (Minimality of degrees). Let us focus on three significative examples, the points
[2 : 1 : 1], [3 : 1 : 5] and [21 : 29 : 11]. For these three points, we computed many different
deformations in their quantizations. Indeed, for a given point p, one can compute the braid
given by the braided Euclidean algorithm, βp , and then multiply by any element of BI4 to get
another deformation of the point.

Let us denote by σ(a,b,c) the braid σa
1σ

b
2σ

c
3 with a,b,c ∈Z.
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For each point p, we computed the deformations corresponding to the braids βpγτγ
−1, for

τ ∈ {
τ2

1,τ2
1τ

2
3

}
and γ ∈ {

σ(a1,b1,c1)σ(a2,b2,c2) . . .σ(aN ,bN ,cN )
∣∣ − 4 ≤ ai ,bi ,ci < 4, 0 < N < 3

}
.

These parameters were chosen according to the computation power of our computer. With this
method, we reach 16,514 braids.

(i) p = [2 : 1 : 1]
The braided Euclidean algorithm gives βp = σ2

1σ
−1
3 , and the corresponding deforma-

tion is [q + 1 : 1 : 1]. Among the 16,514 deformations we looked at, the deformation
[q +1 : 1 : 1] is minimal in degrees. There were 3,522 non fully piecewise unimodal defor-
mations, the minimal one (in degrees) being

R(q) =−q20 −4q19 −8q18 −10q17 −7q16 +7q14 +10q13 +11q12 +12q11 +11q10 +5q9 −3q8

−7q7 −6q6 −2q5 −q4 −2q3 −2q2 −q,

S(q) =−q19 −3q18 −5q17 −5q16 −2q15 +2q14 +4q13 +5q12 +7q11 +9q10 +7q9 −5q7 −6q6

−2q5 −q3 −2q2 −q,

T (q) =−q19 −4q18 −8q17 −10q16 −7q15 +6q13 +9q12 +11q11 +13q10 +12q9 +5q8 −3q7 −8q6

−6q5 −2q4 −q3 −2q2 −2q −1.

(ii) p = [3 : 1 : 5]
We applied the same protocol to this second point. Here the braided Euclidean

algorithm returns βp = σ3
1σ

−5
3 , leading to the deformation

[
q6 + q5 + q4 : q4 : q4 + q3 +

q2 + q +1
]
. There were 2,737 non fully piecewise unimodal deformations. However, we

found that the braid β′ = σ3
1σ

−5
3 σ2σ3τ

2
1τ

2
3(σ2σ3)2 provides polynomials of lower degrees

than with βp , indeed

ρq (β′)
(
[0 : 1 : 0]

)= [
q4 +2q3 +q2 −1 : q3 +q2 −1 : q3 +2q2 +2q

]
.

Therefore even if the braided Euclidean algorithm is efficient, it is not always the most
efficient. It seems that

[
q4 + 2q3 + q2 − 1 : q3 + q2 − 1 : q3 + 2q2 + 2q

]
is the minimal

deformation for [3 : 1 : 5].
(iii) p = [21 : 29 : 11]

In this example, the braided Euclidean algorithm leads to a non fully piecewise uni-
modal deformation of p. In this example, there are 2,219 non fully piecewise unimodal
deformations. The minimal deformation seems to be the one given by the braided Eu-
clidean algorithm. The lowest deformation we found that is fully piecewise unimodal is

R(q) = q14 +2q13 +4q12 +5q11 +5q10 +3q9 +q8 +q6 +2q5 +q4 −q3 −2q2 −q,

S(q) = q14 +3q13 +6q12 +8q11 +8q10 +5q9 +q8 −q7 +q6 +4q5 +3q4 −q3 −4q2 −4q −1,

T (q) = q12 +2q11 +3q10 +3q9 +2q8 −q6 +q4 +q3 −q.

5. Discussion: open problems and future prospects

Several open problems and conjectures were spotted during experimentations with both actions
by ρ and ρq on the projective rational plane. In this section, we briefly discuss the general status
of the subject.

5.1. Non-uniqueness of quantization

In geometrical context, quantization usually leads to an extension of the quantized space. For
instance, in geometric quantization the initial symplectic manifold increases its dimension by
one and becomes a contact manifold. The canonical choice of the quantized rational numbers
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in [11] is due to the fact that the quantized space (the projective line) is one-dimensional in
this case. However, even in this situation the quantization is not unique: the second, “left”
quantization was developed in [1]. Non-uniqueness was also observed in the complex case [14].
The choice of a canonical representative of a quantized point p ∈P2(Q) is a challenging problem.

5.2. Distribution of orbits

The exact structure of the orbits of the action of B4 on the rational projective plane is still
mysterious. Based on large computations, we conjecture that the principal orbit takes around
3/4 of the plane, in the sense of Proposition 10. This experimental fact still remains to be proven.

Moreover, what happen for the other orbits is unknown, even if we suspect that the rational
density decreases when n grows (where an orbit is represented by a point [m : n : m]). In
particular, it would be interesting to study more precisely the group of symmetries for each orbit.

5.3. Specialization at roots of unity

The evaluation of q at a primitive third root of unity j is a particularly simple situation thanks
to the inclusion BI4 ⊂ ker(ev j ρq ). It could be worth investigating whether evualuation at
other roots of unity is far from the case of the third roots. The link between the theory of
q-rationals and the Burau representation of B3 was used with success in [12] to study the
faithfulness of specializations of this representation. For the braid group B4, we hope that our
quantization could perform the same type of progress. The kernel of the specializations of Burau
representation at roots of unity was studied in [5,6], following a paper of Squier [18].

5.4. Almost unimodality

Our computations of quantized points of the projective rational plane suggested that a large
majority of the deformations are fully piecewise unimodal. We lack an explanation for this
phenomenon, but it could be the sign that some deformations are better than others. The next
step would be to find a combinatorial interpretation of these deformations, where unimodality
would be derived from the combinatorial model.
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[13] E. K. Oğuz and M. Ravichandran, “Rank Polynomials of Fence Posets are Unimodal”,
Discrete Math. 346 (2023), no. 2, article no. 113218 (20 pages).

[14] V. Ovsienko, “Towards quantized complex numbers: q-deformed Gaussian integers and the
Picard group”, Open Commun. Nonlinear Math. Phys. 1 (2021), pp. 73–93.
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