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Abstract. In this paper, we give a necessary and sufficient condition that any space-like projection of a sub-
manifold with co-dimension 2 in Lorentz–Minkowski space is locally strictly convex, and give its applications.

Résumé. Dans cet article, nous donnons une condition nécessaire et suffisante pour que toute projection
d’une sous-variété de co-dimension 2 dans l’espace de Lorentz–Minkowski soit localement strictement
convexe, et nous donnons ses applications.
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1. Introduction

Let Rn+1
1 be Lorentz–Minkowski (n+1)-space with signature (+·· ·+−) and set Rn

0 := {
(x,0) ; x ∈ Rn

}
which can be identified with Euclidean n-space. We fix a connected (n−1)-manifold M n−1 (n ≥ 2)
without boundary. It is well-known that an immersion f : M n−1 → Rn

0 is locally strictly convex at

p ∈ M n−1 if and only if the second fundamental form α
f
p of f at p is definite. The following fact is

well-known:

Fact 1 ([3]). If M n−1 (n ≥ 3) is compact and f is locally strictly convex at each point of M n−1, then
M n−1 is diffeomorphic to the (n −1)-sphere Sn−1 and f (M n−1) bounds a convex domain in Rn

0 .
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Let F : N m → Rn+1
1 be an immersion defined on an m-manifold N m . A point p ∈ N m is called

time-like, light-like or space-like if the restriction of the canonical Lorentzian metric 〈·, ·〉 of Rn+1
1

to dF (Tp N m) is Lorentzian, degenerate or Riemannian, respectively. A point p ∈ N m is said to be
cocausal if it is not time-like. Moreover, the immersion F is said to be cocausal (resp. space-like)
if all points on N m are cocausal (resp. space-like). We denote by ∇ the Levi-Civita connection on
Rn+1

1 . Let F : M n−1 → Rn+1
1 be an immersion and let N (p) (⊂ Rn+1

1 ) be the normal space of F at
p ∈ M n−1. We set

βF
p,n(x) := 〈∇xdF (X ),n

〉
(x ∈ Tp M n−1, n ∈N (p)),

where X is a vector field of M n−1 satisfying Xp = x. The right-hand side is independent of the
choice of X . If p is not light-like, the second fundamental form αF

p is well-defined as an N (p)-
valued bilinear form so that

〈
αF

p (x,x),n
〉=βF

p,n(x) (x ∈ Tp M n−1, n ∈N (p)).

Definition 1. We say that F is essentially cocausal at p if p is a cocausal point and each βF
p,n(x)

(x ∈ Tp M n−1 \ {0}) does not vanish for any choice of space-like vector n ∈N (p). In this setting, F is
called an essentially cocausal immersion if it is essentially cocausal for each p ∈ M n−1.

One cannot replace “for any choice” with “for some choice”: in fact, if n = 2 and G(t ) =
(t + t 2,0, t − t 2) (t ∈ R), then βG

p,n(x0) = 〈G ′′(0),n〉 (x0 := d/dt
∣∣

t=0) does not vanish when n =
(1,1,1) ∈N (0) but does vanish if n = (0,1,0) ∈N (0), where ′ means d/dt . We remark that, when
n = 2, F is a regular curve in R3

1 which is essentially cocausal at t = t0 if and only if the osculating
plane P of F at t = t0 exists (i.e. F ′(t0) and F ′′(t0) are linearly independent) and the plane P is
not time-like (in the case of G , the osculating plane P is time-like). At a space-like point, the
following simplification is possible:

Proposition 2. A cocausal immersion F : M n−1 → Rn+1
1 is essentially cocausal at a space-like point

p if and only if αF
p (x,x) does not vanish and is not time-like for each x ∈ Tp M n−1 \ {0}.

Proof. Since v := αF
p (x,x) belongs to N (p), v is time-like if and only if there exists a space-

like vector n ∈ N (p) such that 〈v,n〉 (= βF
p,n(x)) vanishes. Using this, one can easily obtain the

assertion. □

Example 3. Consider a space-like immersion F : M n−1 → Rn+1
1 (n ≥ 4) into the light-cone Λn .

The shape operator A satisfies 〈A(x),x〉 =−S(x,x) (x ∈ T M n−1), where S is the Schouten tensor on
the conformally flat manifold M n−1 (cf. [2]). By [5, (1.2)],

〈
αF

p (x,x),αF
p (x,x)

〉= 2〈x,x〉S(x,x) holds.
By Proposition 2, F is essentially cocausal if only if S is positive semi-definite on M n−1.

If F (M n−1) is a strictly convex hypersurface lying in a space-like hyperplane Π in Rn+1
1 , then it

is clear that F and any small deformation of F in Rn+1
1 towards the outside of Π are essentially

cocausal. So, there are many examples of essentially cocausal immersions not lying in any
hyperplane in Rn+1

1 . For a time-like vector v ∈ Rn+1
1 , Π(v) := {

x ∈ Rn+1
1 ; 〈x,v〉 = 0

}
is a space-like

hyperplane in Rn+1
1 . We denote by πv : Rn+1

1 → Π(v) the orthogonal projection. In this paper,
such a projection is called a space-like projection. Let F : M n−1 → Rn+1

1 be an immersion. We set
fv :=πv ◦F .

Theorem 4. For p ∈ M n−1, F is an essentially cocausal immersion at p if and only if fv is a locally
strictly convex immersion around p for any time-like vector v in Rn+1

1 .

Proof. We fix a unit time-like vector v arbitrarily. Since we can write fv = F +〈F,v〉v,

d fv(X ) = dF (X )+〈
dF (X ),v

〉
v and ∇X d fv(X ) =∇X dF (X )+〈∇X dF (X ),v

〉
v (1)
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hold for any vector field X of M n−1. We can give the following construction (∗) of a unit normal
vector field n of fv for the time-like vector v:

We assume p is not time-like. Then, there exists a neighborhood U of p such that
Π(v)∩N (q) (q ∈U ) is one dimensional, sinceΠ(v) and N (q) have different causalities.
So there exists a space-like normal vector field n on U which is perpendicular to v. We
set n := n/

p〈n,n〉.
(∗)

Then, n is a unit normal vector field of fv inΠ(v) (cf. the first equality of (1)). We have

(h(x,x) :=)
〈∇xd fv(X ),np

〉= 〈∇xdF (X ),np
〉=βF

p,np
(x) (x ∈ Tp M n−1), (2)

where X is a vector field on U satisfying Xp = x. We remark that h can be identified with the
second fundamental form of fv.

We assume the essential cocausality of F and fix a unit time-like vector v. ThenΠ(v) is a space-
like hyperplane in Rn+1

1 . Since F is essentially cocausal at p, (2) with the fact that np is a space-
like vector belonging to N (p) implies that h(x,x) ̸= 0 for each x ∈ Tp M n−1 \ {0}, proving the local
strict convexity.

We then assume the local strict convexity. If p is time-like, then there exists x ∈ Tp M n−1 such
that v := dFp (x) is a time-like vector, and πv ◦F is not an immersion at p, contradiction. So we
may assume p is not time-like. We fix a space-like normal vector n0 ∈ N (p) arbitrarily. Let n⊥

0
be the vector subspace of Rn+1

1 consisting of the vectors perpendicular to n0. Since n⊥
0 is time-

like, there exists a time-like vector v ∈ n⊥
0 . By (∗), the vector n0 can be considered as a normal

vector of fv at p. Since n0 is space-like, (2) implies the essential cocausality of F . In fact, we have
0 ̸= h(x,x) =βp,n0 (x) for each x ∈ Tp M n−1 \ {0}. □

2. Applications

Proposition 5. Suppose that Γ : R → R3
1 is an l -periodic (l > 0) regular curve which is cocausal.

Then for any future-pointing time-like vector v ∈ R3
1, the map γv : [0, l ] ∋ t 7→ πv ◦Γ(t ) ∈ Π(v) is a

closed regular curve on Π(v). Moreover, the value ιΓ of the rotation index of the map γv as a plane
curve is independent of the choice of v (called the rotation index of Γ).

Proof. Since γv is a regular closed curve in Π(v), the rotation index ιγv depends continuously on
v and we obtain the conclusion. □

Remark 6. In [4], the rotation index is defined for closed space-like regular curve in R3
1.

As an application of Theorem 4, we give the following:

Theorem 7. Suppose that M n−1 (n ≥ 2) is compact and F : M n−1 → Rn+1
1 is an essentially cocausal

immersion. If n = 2, we assume also that ιF =±1. Then:

(i) M n−1 is diffeomorphic to the (n −1)-sphere Sn−1 and F is an embedding.
(ii) πv ◦F (M n−1) bounds a convex domain inΠ(v) for any time-like vector v of Rn+1

1 .

Remark 8. In Ye and Ma [6], a space-like closed regular curve such that its osculating plane at
each point is space-like is said to be “strong space-like”, which implies essentially cocausality,
but the converse is not true. When n = 2 and F is strong space-like, the theorem was shown in [6,
Lemma 2.1].

Proof of Theorem 7. If n ≥ 3, then fv :=πv◦F is an embedding and fv(M n−1) is the boundary of a
convex domain by Fact 1, proving the theorem. So we may assume n = 2 and the rotation index of
F is equal to ±1. Then fv is locally strictly convex with index ±1 by Theorem 4 and Proposition 5.
In particular, F is an embedding. □
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Example 9. If we consider the map F0 : R/2πZ ∋ t 7→ (
cos t , sin t , (sin3t )/9

) ∈ R3
1, then it satisfies

the assumption of Theorem 7. In fact, F ′
0 and F ′′

0 are linearly independent at each point of R/2πZ.
Since

〈
F ′

0(t ),F ′
0(t )

〉= (
17−cos6t

)
/18 and

〈
F ′′

0 (t ),F ′′
0 (t )

〉= cos2(3t ), F0 is essentially cocausal. For
a time-like vector v := (1,0,2)/

p
3, the image of πv ◦ F0

(
[0,2π]

)
is a strictly convex curve in the

planeΠ(v) as in Figure 1, right.

It is well-known that a compact conformally flat space-like hypersurface in the light-cone Λn

is diffeomorphic to the (n −1)-sphere Sn−1 (cf. [1]). By Example 3, we obtain the following:

Corollary 10. Let F : M n−1 → Rn+1
1 (n ≥ 4) be a space-like immersion with positive semi-definite

Schouten tensor S whose image is lying on the light-cone Λn in Rn+1
1 . If M n−1 is compact, then

πv ◦F (M n−1) is a boundary of a convex domain inΠ(v) for any time-like vector v ∈ Rn+1
1 .

For example, a section of Λn by a space-like hyperplane satisfies the assumption. If M n−1 is
complete and the trace of S is bounded below by a positive constant c, then the Ricci tensor of
M n−1 satisfies Ric ≥ cds2, where ds2 is the first fundamental form. By Myers’s Theorem with
Corollary 10, M n−1 is diffeomorphic to Sn−1. In [1, Prop. 5.2], another condition for a given
complete hypersurface inΛn to be compact is given.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. The image of F0 and the image of πv ◦F0
(
[0,2π]

)
for v := (1,0,2)/

p
3.

Ye and Ma [6] showed the existence of a compact space-like maximal surface bounded by
a given strong space-like curve of rotation index ±1 embedded in R3

1. Moreover, they showed
that such a surface is a graph over a convex domain, this last conclusion follows also from the
following:

Corollary 11. Let N n (n ≥ 2) be a compact connected manifold with boundary M n−1, and let
Φ : N n → Rn+1

1 be a cocausal immersion. Suppose that the restriction F := Φ∣∣
M n−1 is essentially

cocausal. When n = 2, suppose also that |ιF | is equal to one. Then M n−1 is diffeomorphic to Sn−1,
andΦ(N n) is a graph over the closed convex domain πv ◦Φ(N n) for any choice of a time-like vector
v of Rn+1

1 .

Proof. By Theorem 7, F (M n−1) bounds a convex domain D in Π(v). Since Φ is cocausal, ϕ :=
πv ◦Φ : N n → Π(v) is an immersion. If there exists p ∈ N n \ M n−1 such that ϕ(p) does not lie
on D, then there must exist q ∈ N n \ M n−1 giving the maximum of the continuous function
δ(x) := d

(
D,ϕ(x)

)
(x ∈ N n), where d is the canonical Euclidean distance function on Π(v). Then

q must be a critical point of the map ϕ, which contradicts that ϕ is an immersion. Thus,
ϕ

(
N n \ M n−1

)
is a subset of D, and we can conclude that ϕ(N n) coincides with the closure D

in Π(v). We then suppose that ϕ−1(y) is an infinite set for some y ∈ D. Since N n is compact,
we can find an accumulation point p of ϕ−1(y) in N n . However, it contradicts the fact that ϕ is
an immersion at p. So ϕ−1(y) is a finite set for each y ∈ D. Since N n is connected and ϕ is an
immersion, the cardinality of the set ϕ−1(y) does not depend on y . So we denote it by m. By
Theorem 7, we know that ϕ

∣∣
M n−1 is injective and M n−1 is diffeomorphic to Sn−1. In particular,

we have m = 1, that is, ϕ is also an injection. Thus, Φ(N n) is a graph over the closed domain D,
proving the assertion. □
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The authors hope that “essential cocausality” will be widely recognized by geometers and
physicists as a new convexity for submanifolds of co-dimension 2. These statements are no
longer expected when the ambient space is the Euclidean space (F0 as in the left of Figure 1 into
the xz-plane is not convex).
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