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Abstract. We propose to analyse the discretization of the Stokes problem with nonconforming finite elements
in light of the T-coercivity. First we exhibit a family of operators to prove T-coercivity and we show that the
stability constant is equal to the classical one up to a constant which depends on the Babuska-Aziz constant.
Then we explicit the stability constants with respect to the shape regularity parameter for order 1 in 2 or
3 dimensions, and order 2 in 2 dimensions. In this last case, we improve the result of the original Fortin—
Soulie paper. Second, we illustrate the importance of using a divergence-free velocity reconstruction on some
numerical experiments.

Résumé. Nous proposons d’analyser la discrétisation du probléeme de Stokes avec des éléments finis non
conformes a la lumiere de la T-coercivité. Tout d’abord, pour prouver la T-coercivité, nous exhibons une
famille d’opérateurs et nous montrons que la constante de stabilité est égale a la constante de stabilité
classique, a une constante pres qui dépend de la constante de Babuska—Aziz. Par la suite, nous explicitons
les constantes de stabilité par rapport au parametre de régularité de forme pour 'ordre 1 en dimension 2 ou
3, etl’ordre 2 en dimension 2. Dans ce dernier cas, nous améliorons le résultat de I'article original de Fortin—
Soulie. Ensuite nous illustrons I'importance d’utiliser une méthode de projection conforme dans H(div) pour
certaines expériences numériques.
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1. Introduction

The Stokes problem describes the steady state of incompressible Newtonian flows. It follows from
the Navier-Stokes equations [32]. With regard to numerical analysis, the study of Stokes problem
helps to build an appropriate approximation of the Navier-Stokes equations. We consider here
a discretization with nonconforming finite elements [22,29]. We propose to state the discrete
inf-sup condition in light of the T-coercivity (cf. [17] for Helmholtz-like problems, see [20,33,36]
for the neutron diffusion equation), which allows to estimate the discrete error constant. In
Section 2, we recall the T-coercivity theory [17], which is known to be an equivalent reformulation
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116 Erell Jamelot

of the Banach-Necas—-Babuska Theorem and we apply it to the continuous Stokes problem. We
give details on the triangulation, and we apply the T-coercivity to the discretization of Stokes
problem with nonconforming mixed finite elements. For the Stokes problem, in the discrete case,
this amounts to finding a Fortin operator. In Section 3, we precise the proof of the well-posedness
in the case of order 1 and 2 nonconforming mixed finite elements. In Section 4, we illustrate the
importance of using a divergence-free velocity on some numerical experiments.

2. Exact and discrete T-coercivity for Stokes problem
2.1. T-coercivity and application to Stokes problem

We recall here the T-coercivity theory as written in [17]. Consider first the variational problem,
where V and W are two Hilbert spaces and f € V':

Find ue VsuchthatVve W, a(u,v) = (f,v)y. (@)

Classically, we know that Problem (1) is well-posed if a(-,-) satisfies the stability and the solv-
ability conditions of the so-called Banach-Necas-Babuska (BNB) Theorem (see e.g. [27, Theo-
rem 25.9]). For some models, one can also prove the well-posedness using the T-coercivity the-
ory (cf. [17] for Helmholtz-like problems, see [20,33,36] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a(-,-) be a continuous and bilinear form
over V. x W. Itis T-coercive if

3T e L(V,W), bijective, 3ar>0 Y veV,|aw, Tv)|=arlvl. @)

Itis proved in [16,17] that the T-coercivity condition is equivalent to the stability and solvability
conditions of the BNB Theorem. Whereas the BNB Theorem relies on an abstract inf-sup
condition, T-coercivity uses explicit inf-sup operators, both at the continuous and discrete levels.
Notice that if the pair (T, ar) satisfies (2), then for all A > 0, the pair (T),ar,) = (AT, Aa7) also
satisfies (2). Thus, there exists an infinity of pairs (T, a7) and (T}, @1, ) 150 satisfying (2).

Theorem 2 (well-posedness). Let a(-,-) be a continuous bilinear form. Suppose that the form
a(-,-) is T-coercive. Then Problem (1) is well-posed.

Let Q be a connected bounded domain of [Rd, d = 2,3, with a polygonal (d = 2) or Lipschitz
polyhedral (d = 3) boundary Q2. We consider Stokes problem:
—vAu+gradp =f,

Find (u, p) such that { diva=0, 3)

with Dirichlet boundary conditions for the velocity u and a normalization condition for the
pressure p:

u=0 on 69,[ p=0.
Q

The vector field u represents the velocity of the fluid and the scalar field p represents its pres-
sure divided by the fluid density which is supposed to be constant. The first equation of (3) corre-
sponds to the momentum balance equation and the second one corresponds to the conservation
of the mass. The constant parameter v > 0 is the kinematic viscosity of the fluid. The vector field
fe H™1(Q) represents a body forces divided by the fluid density.

Before stating the variational formulation of Problem (3), we provide some definitions and
reminders. Let us set L2(Q) = (L2(Q))%, H Q) = (H2 (@)%, H1(Q) = (H'(@)“ its dual space
and L7, (Q) ={q € L*(Q)| [ g = 0}. We recall that H(div; Q) = {ve L*(Q) | divve L*(Q)}. Let hg
be the diameter of Q. We recall the Poincaré-Steklov inequality [26, Lemma 3.24]:

J3Cps >0 suchthat Vve H& Q), vl 2q) = Cpshallgrad v 2 (q,. 4)
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Thanks to this result, in H, 1(Q), the semi-norm is equivalent to the natural norm, so that the
scalar product reads (v, w) @ = = (grad v, grad w)y2 o, and the normis || v|| @ = = llgrad vlip2 o).

Letv,we H(l) Q). We denote by (v; )l: (resp. (wl)lzl) the components of v (resp w), and we set
Gradv = (0;v; )l o1 € 12(Q), where 12(Q) = (LZ(Q))dXd. We have:

d
(Gradv, Gradw), o), = (v, W)y1 ) = Z(v,,w,)H1(Q)

and

d
— 112 —
”V”Hé(Q) = (]2_1“ Vj ”Hé (Q)) = ”GradV”[LZ(Q)-

Nl—

LetussetV= {v € Hé (Q) | divv = 0}. The vector space Vis a closed subset of H(l) (©). We denote by
V+ the orthogonal of Vin H} (). We recall the following result.

Proposition 3 ([32, Corollary 1.2.4]). The operator div: H(l)(Q) — L2(Q) is an isomorphism of V*
onto I2,,,(Q). We call Cg;y the constant such that:

Vpe L;m,(Q),EI!VEVL such that divv=p and ||V||H(1)(Q) < Caivllplliz2(q)- (5)
The constant Cg;y depends only on the domain Q. Recall that we have

V%, o = leurdvig, o + lIdivel?

H) Q) ~ 12(Q) 2o zlp ||L2(Q)’

hence Cg;y = 1. Using Proposition 3, we can define a lifting in H(Q) of a function v € L%(Q):
Corollary4. Forallve L2(Q), there exists s € H (Q) such that:

divs=v and |[sllyzgq)+ hallGrads| 2y < Cahallvl2q), (6)
where the dimensionless constant Cq depends on Cgiy and Cps.

Proof. Let v = fQ v/|Q|, and sy € H (Q) be such that divsp = v - v and |Gradspllj2q) <
Caivllvll ;2 () (cf. Proposition 3). Let d € {1,...,d}. We consider s := sg + v(xq — xgeq € H(Q),
where x; = fQ x4 11Q|. We have: divs = v and IIGradsll[Lz(Q) < dell I/||L2(Q), where Cgiy = Cgiv + 1.

Using 1nequahty (4), one can prove that [|slly2q) < haCallVl 12(q), where Cq = Cps Cgiy + 1. Setting
Cq = Cq + Cgiy, We obtain (6). O

Actually, the constant Cgjy is such that Cg;y, = 1/8(Q) where (Q2), known as the Babuska-Aziz
constant, is the inf-sup condition (or Ladyzhenskaya—-Babuska-Brezzi condition):

» di

p
€Ly \O0} vemh o} 191122 () V) @

Generally, the value of B(Q) is not known explicitly. In [6], Bernardi et al. established results on
the discrete approximation of §(Q2) using conforming finite elements. Recently, Gallistl proposed
in [30] a numerical scheme with adaptive meshes for computing approximations to (Q). In the
case of d = 2, Costabel and Dauge [21] established the following bound:

Theorem 5 ([21, Theorem 2.3]). Let Q c R? be a domain contained in a ball of radius R, star-
shaped with respect to a concentric ball of radius p. Then

Nl—

P A
ﬁ(Q)Z\/ER(H 1 RZ) =z 8)
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Let us detail the bound for some remarkable domains. If Q is a ball, S(Q) = % and if Q is
a square, BQ) = 2%@ Suppose now that Q is stretched in some direction by a factor k, then
B =5 k Finally, if Q is L-shaped (resp. cross-shaped) such that L = ki, where L is the largest
length and [ is the smallest length of an edge, then f(Q0) = —= 5 \fk (resp. B(Q) = 4k)

The variational formulation of Problem (3) reads:
Find (u, p) € Hy(Q) x L2, (Q) such that

{v(u, Vi@~ (P divv) 2 = EVpg Y veH(Q),

zmv

9)
(q, leu)LZ(Q) - 0 V q € LZIHV(Q)
Classically, one proves that Problem (9) is well-posed using Poincaré-Steklov inequality (4) and
Proposition 3. Check for instance the proof of [32, Theorem 1.5.1].
Let us set & = H}(Q) x L, (), which is a Hilbert space which we endow with the following

zmv
norm: )
2
| @)l = (W15 ) + v 2141 (10)
We consider now the following bilinear symmetric and continuous form:
X xX —R
as: o / I oqs .o (11D
(u y ]9 ) X (Vy 67) —_ V(u ’V)Hll)(Q) - (p ,leV)LZ(Q) — (q, leu )LZ(Q)'

We can write Problem (3) in an equivalent way as follows:
Find (u, p) € & such that as((u, p), (v,9)) = EVpig Vg eX. (12)
Let us prove that Problem (12) is well-posed using the T-coercivity theory.

Proposition 6. The bilinear form as(-,-) is T -coercive:

3T e LX), bijective, dar >0,V (0,p) e,
(13)
as((u’,p’), T, p’))) > ar| @, p)|%-
Proof. We follow here the proof given in [5,9,19]. Let us consider (u/, p') € Z and let us build
W*,q*) =T, p") € X satisfying (2) (with V = &’). We need three main steps.

Step 1. According to Proposition 3, there exists v,y € H(l)(Q) such that: divV, = p’ in Q and
v < Caivllp’ . =v iy ivv, =v 1p'
IVpr ) ) = Caivll P'll2(q)- Let us set vy Vyy so that divv,y p' and
1V g < V™' CawllPll (- (14)
Let us set (v*, g*) := (yu' - v, —yp'), with y > 0. We obtain:
as(@', p), 7", 4")) = vyl o + V1P 12 0) = VO Vg - (15)

Step 2. In order to bound the last term of (15), we use Young inequality and then inequality (14),
so that for all > 0:
-1
/ n n Cdiv
(u yvp’)H(l)(Q) = Ellu ”H(l)(Q) + 7( ) Ip ||L2(Q)' (16)

Step 3. Using the bound (16) in (15) and choosing n =y, we get:

-1
-2 Y
as(’, ph), v*, ¢™) ZV( 1% ”HI(Q) 1—7(Cdiv) )Ilp IILZ(Q))

Consider now y = (Cgjy)?. We obtain:

as((', p), (v, 4*)) = 5 v((Can)? I’ [ V2P 1)

NI»—!
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Reminding that Cg, = 1, it comes:
%
as((w', p, %, q") = 5 | @', p) 15 17)

We obtain (13) with a1 = %
The operator T such that T((u/, p')) = (v*, ¢*) is linear and continuous. We have indeed:

)] PR Nl AN S Tl e
= 27* 10l ) + 210 1 ) 17V 1P I 2
=271l ) + C(Can)” + YWV ZIP Iz -

We deduce that:
1

IT(@, 21|l 4 < Comax || @, ) || 5 Where Crnax = Cdiv(max(z + (Cdiv)2,2(cdiv)2))§. (18)

Remark that, given (v*, ¢*) € Z, choosing (W', p') = (y 'v* =y v+, -y~ ¢*) yields T((/, p))
(v*, g*). Hence, the operator T € £ (%) is bijective.

O

We can now prove the following result.
Theorem 7. Problem (12) is well-posed. It admits one and only one solution such that:

lallg @) < v Iflg-1 @),
VieH 1 (Q),{ @ e (19)

||P||L2(Q) = Cdiv”f”H—l(Q)-
Proof. According to Proposition 6, the continuous bilinear form as(-,-) is T-coercive. Hence,
according to Theorem 2, Problem (12) is well-posed. Let us prove (19). Consider (u, p) the unique
solution of Problem (12). Choosing v = 0, we obtain that V q € 12_,,(Q), (g,divu) 2@ = 0, so

that u € V. Now, choosing v = u and using Cauchy-Schwarz inequality, we have: V||U||H1( o=

(f,u)H(l)(Q) Ifllg-1 0 lallg ), SO that: lallg ) = v~ [1fllg-1(q)- Next, we choose in (12) v=7, €

V4, where divv, = —p (see Proposition 3). Sinceue Vand vy, € V1, we have (u, Vp)Hé(Q) 0. This
gives:

-(p, diVVp)LZ(Q) = "p“iz(m = <f)vp>H(lJ(Q) = ||f||H—1(Q) ||Vp "Hé(Q) = Cdiv”f"H—l(Q) P2y

SO that: ” p”L2(Q) < CdiV”f”H’l(Q) . O

2.2. Comments on the stability constant

Using (18) in (17), we have:

as((', p"), (v*, g%) = a7 (Crma) |, P || o | 0%, 6 || o

Letus set | Tll := supy PEX\(0,0) W. According to (18), we have the bound: || T|ll < Crax-
’ ’ Pl
Hence, we have:
as(', p), v*,4%) = ~——| ', p Mo llv™, g o

([Pl

We recover the first Banach-Necas-Babuska condition [27, Theorem 25.9, (BNB1)].
Thus, the T-coercivity approach gives an overestimate of the stability constant a given below:

ar as(', p"), (v, q))

>q:= inf sup
T " e\ 00 w,pez00 @) | o |V @) | 4
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It suggests that the stability constant a is proportional to the parameter v and depends on the
constant Cgjy, therefore on the shape of the domain. More precisely, our estimate gives:

-1
(Cdiv\/ 2+ (Cdiv)z) if 1< Caiy = V2,

(\/E(Cdiv)z)_l if Caiv = V2.

In our computations, @t depends on the choice of the parameters n and v, so that it could be
further optimized to minimize HTZTTlll Studying the bilinear form ag((u’ P, T((v, q))) leads to an
alternative variational formulation of Stokes problem, as proposed in [19]. It does not depend on
the parameters 1 and y because it is coercive. However, the new variational formulation requires
a specific treatment of the right-hand side.

14
as_—x
2

2.3. Conforming discretization and discrete well-posedness

If we were using a conforming discretization to solve Problem (12) (e.g. Taylor-Hood finite ele-
ments [47]), we would use the bilinear form ag(-,-) to state the discrete variational formulation.
Let us call the discrete spaces X ; © H(l)(Q) and Q < I2,,(Q). Then to prove the discrete T-
coercivity, we would need to state the discrete counterpart to Proposition 3. To do so, we can

build a linear operator I1;: X — X, ;, known as Fortin operator, such that (see e.g. [8, §8.4.1]):
E| CC such that Vve H1 (Q), ||GradHCV||l2(Q) = CC ||GradV|||L2 > (20)
VveH (Q), (divIlev, gp)r2(q) = (divv, gp) 2y, Y gh € Qc p- 21)

Using a nonconforming discretization, we will not use the bilinear form as(-,-) to exhibit the
discrete variational formulation, but we will need a similar operator to (20)-(21) to prove the
discrete T-coercivity, which is stated in Theorem 16.

2.4. Discretization notations

We call (O, (xdr)g,:l) the Cartesian coordinates system, of orthonormal basis (ed/)Z,zl. Consider
(I1) 1, asimplicial triangulation sequence of Q, where /i denotes the mesh size. The triangulations
are regular in the sense of Ciarlet. For a triangulation 97, we use the following index sets:
» Ik denotes the index set of the elements, such that 97, := U¢e 4, K¢ is the set of elements.
o .Zr denotes the index set of the facets!, such that &}, := regp Fris the set of facets.
Let #p = #LU9), where V f € ¥}, F;cQandV f € #), Fy e 0Q.
¢ s denotes the index set of the vertices, such that (S;) je.s, is the set of vertices.
Let Fs = Flu.sL, where V je g, S;eQand V je #L, S; Q.
We also define the following index subsets:
e V0esk, I ={fe gV |FreKe}, Fso={jeIs|S;e K.
o Vje Y, jK,j = {[GJK’S]' EK[}, Nj = card(JK,j).
For all ¢ € ¥, we call hy the diameter of K, and p, the diameter of the sphere inscribed in Ky,
and we let: oy = h—;’, h = maxye g, hy. When (97},) 5, is a shape-regular triangulation sequence (see
e.g. [26, Definition 11.2]), there exists a constant o > 1, called the shape regularity parameter,
such that for all k, for all ¢ € .$x, 0y < 0. For all f € g, Mg denotes the barycenter of Fy, and
by n r its unit normal (outward oriented if F € 0Q). Forall j € g, forall £ € S ;, A e denotes
the barycentric coordinate of S; in Ky, Fj, denotes the face opposite to vertex S; in element

1The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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Ky, and x; ¢, denotes its barycenter. We call #; , the outward normal vector of F; , and of norm
|F,el = 1Fj el

Let us introduce spaces of piecewise regular elements.

Weset Z,H' = {ve L*(Q)| V £ € Ik, v|, € H'(K,)}, endowed with the scalar product:

o 2 _ 2
(v, w)p= ) (gradv,grad w)izx,, lviy= ) lgrad vilp, -
le gk le gk

We set Z,H! = (2, H 1)d, endowed with the scalar product:

W, W)= ) (Gradv,Gradw)yz ), iy =Y IIGradvlliz(K[).
eIy ledx
Let fe ﬂlf; such that Fy = 0K, ndKg and ny is outward K, oriented. The jump of v € 27, H! across
the facet Fris defined as follows: [U]Ff = U|KL - v|KR. For f € J}?, we set: [U]Ff = v|Ff.
We set Z,H(div) = {ve L*(Q)| V ¢ € jK,v|K[ € H(div; Ky)}, and we define the operator div,
such that for all ve 2, H(div), divj, v € L?(Q) is such that:

Vqel? (@), (divpv,q) 2= 2 (divv,q) 2,
leFk
We use the notation A < B for A < CB where A and B are scalar quantities and C is a generic
positive constant which is independent of the sequence (97), and the quantities of interest.
We recall classical finite elements estimates [26]. Let K be the reference simplex. For ¢ € %,
we denote by Ty: K — K, an affine invertible mapping such that T,(K) = Ky, Ty (0K) = 0K,. We
set Ty(X) = B,X+ by, where B, € R and b, € R%. Let J, = det(B,). There holds:

h _ hyp
[Jel = d!|Kel, II[B/H:—[, 1B, 1||=—K- (22)
K pe
Let f € #g¢. According to [22, Equation (2.17)], we have:
IFpllK )™ < (o) 23)

For v € L*(K), we set Dy = voTy. Let v e P,H'. By changing the variable, gradv|, =
®,) Tgradi Uy, and it holds:

lgrad vilf, ) < B~ 171K elligrady Dol ¢ (24)
Igrady DlIf, ¢ < I1Bel® IKel ™" ligrad vilfy . (25)
We will use the following notations:
Y 0e Pk, vUeLZ(K[),g,sz vl Kyl (26)
4
Vijp,VUELZ(Ff),Ef:j};f v/|Fpl. 27)

We recall the Poincaré-Steklov inequality in cells:
Proposition 8 ([26, Lemma 12.11]). Forall ¢ € 9k (K, is a convex set), forall v € HY(Ky):
lv=v,ll 2, <7 ' hellgrad vl - 28)
We will need the following Poincaré-Steklov inequality on faces:
Proposition 9 ([27, Lemma 36.8]). Forall ¢ € 9k, forall ve H'(K,) and for all f € %5, we have:

|Ff| 2 1 1
) hf”grad U”LZ(K[) 5 (0‘[)2 (h[)z ||g1‘ad U”LZ(K[)‘ (29)

lv=vll2E 5(—
=TEED =K, |
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Proof. We have: V-V = (v-v,) - IFl‘lfFf(v—yl). Hence: ||U—Ef||L2(Ff) < 2||U—y[||L2(Ff).

Changing the variable, using the continuity of the trace operator, we have: |v - v, 2y =
Lo . . . 1 ~ .

[Fel2 0 = Dell g (& Using (28) in K, we obtain ||v —Eg”LZ(Ff) < |Frl? llgradg WIILz(m. Using (25)

and applying (23), we get (29). U

For all D c R%, and k € N, we call P¥(D) the set of order k polynomials on D, P¥(D) = [Pk(D))d,
and we consider the broken polynomial space:

Pk (T ={qe X Q)| ¥ Ce Ik, qly, € P*Kp}, PR (Th) = (P (Tm) .

disc disc

2.5. Nonconforming discretization and discrete well-posedness

The nonconforming finite element method was introduced by Crouzeix and Raviart in [22] to
solve Stokes problem (3). We approximate the vector space H! (2) component by component by
piecewise polynomials of order k € N*. Let us consider X}, (resp. Xp, ), the space of nonconform-
ing approximation of H L (resp. H& (Q)) of order k:

X,,:{v,,epgiscm) erj",thepk‘l(Ff),L [vthfqh:O},
! (30)
Xo,hZ{thXh VfEﬂb,thEPk_l(Ff)»f Uthzo}-
Fy

The condition on the jumps of v, on the inner facets is often called the patch-test condition.
It allows to prove a discrete Poincaré-Steklov inequality, using Corollary 4, and the proof of [40,
Theorem D.1]. The proof of [27, Lemma 36.6] is similar, but the vector s defined in Corollary 4
is constructed in [27, Lemma 36.6] as the gradient of a scalar function, so that it gives a lower
estimate when € is nonconvex. Alternative proofs are given in [11,48].

Proposition 10. The following discrete Poincaré-Steklov inequality holds:
Y v € Xon lvplli2i) S 0Cahallvplp. (€29)
Proof. Let vy, € Xpj,. According to Corollary 4, there exists s € H! (Q) such that:
divs = vy, and Isllg2(q) + hallGrads|l 2y < Caohallvpli2g) (32)

We have, by integration by parts:

I Vh”iz(Q) = (Uh,diVS)Lz(Q) == Z (grath,S)Lg(K[)-f' Z Z (Vh,s'nf,[)LZ(Ff)- (33)
le gy teIx feFre

The first term can be bounded as follows:

(grad Uh’S)LZ(K[) <|lgrad vy, ”LZ(K/) ”S"LZ(IQ)' (34)

Due to the patch-test, the second term reads:

Y 2 (mwsmpd)pgy= 3 2 (vn=vp6=s) 502,
eIk feIry eIk feIgy

< vp—v (s—sp)-ny, .
gél(feé‘.w“ h _h,f||L2(Ff)|| 3f ff”LZ(Ff)

(35)

Using inequality (29), we have:

lvn - L) “LZ(Ff) s Sp)myry ||L2(Ff) S ocheligrad vy iz k) llGradslyz k). (36)
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Using (36) in (35), combining the result with (34), inequality (33) now reads:

lvnl?s ) % Igrad vy lgzx, I8z k) + ¢ he I Gradsliz i, )
K

<0 Y lIgrad vpligz i (ISl + ol Gradslyzq, )
ZEJK

We obtain (31) using the discrete Cauchy-Schwarz inequality and (32). U
As a consequence of Proposition 10, we have the following result.
Proposition 11. The broken norm vy, — |lvylly, is a norm over Xy j,.

The space of nonconforming approximation of H!' (Q) (resp. HI(Q)) of order k is Xj, = (X3,)4
(resp. X, = (Xo,n)?). We set 2, := Xo j, x Q where Q = PX-1(97,) n 12 (Q). We deduce from
Proposition 11 the following result.

Proposition 12. The broken norm defined below is a norm on Xp,:

X, — R
II(w)II%:{ - }

@) — (Ival +v 2 lanl % o)
Thus, the product space &}, endowed with the broken norm ||(-,-) |, is a Hilbert space. We

consider the discrete continuous bilinear form ag 5, (-, -) such that:

Xy x%,—R

S,h - ro / . / . ’
(uh, ph) x (v, qp) — v(uh,vh)h - (leth, ph)Lz(Q) — (leh u,, qh)Lg(Q)

Let us set Vy, the discrete space of discrete divergence-free velocities :

h—= {Vh EXO,I’Z | v qn € Qh’ (dth Vi, Qh)Lz(Q) = 0} (37)
We recall that the velocities in V}, are piecewise divergence-free:

Proposition 13 ([13, Lemma 3.1]). For allvy € Vy, for all ¢ € 9k, divvh|K( =0.

Proof. Let vy € V},. Integrating by parts and using the patch-test, we have:

(divy, vy, Dz = Z divvy, = Z f [Vh]Ff ‘ng=0.
tegxJKe fespdEr
Let g, € Pgigcl (93) and 4q, = Jo an!1Q]. Then qp, — q,€ Qp, so that: (divy, vy, g — qh)Lz(Q) =0.
Hence, we have: (divy, vy, qn)i2q) = (leth,q )Lz(Q) =0. Let / € Fx. Let qp € PdlSC (97,) such
that 67h|1< = d1vvh|K and for all ¢’ € %k, 0’ # [ qh|K = 0. We have: (divj, vy, qp);2(q) = 0 and

(divy vp, gp) 12y = (divvy, aw ik, = ||d1vvh||L2(K) Hence ||d1VVh|| =0. Il

L%(Ky)

Let #,: Xon — Yo, with Yo, = {vj € HY(Q)| V £ € S, Vh\K € PF(Ky)} be the averaging
operator described in [26, §22.4.1]. There exists a constant C;C = ¢ and independent of h such
that:

V v € Xon 120Vl 1y = C'y Ivnlin. (38)
Let /s € £(% ), R) be such that for all (v, g5) € X
E vz if fe L2(Q),
(Vi qn)) = . _1
<f)jh(vh)>H(l)(Q) if feH ().

The nonconforming discretization of Problem (12) reads:

Find (up, pp) € X, such that ag (g, pp), Vi, gn)) = Ce((Vh, gn)) ¥ Vi, gr) € Xy (39)
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To prove that Problem (39) is well-posed, we will also use the T-coercivity theory. We do not need
the well-posedness of the continuous problem, i.e. Proposition 6, but we will follow its proof,
using a Fortin operator. This operator will be explained later, using the discrete basis functions.
We will see that the discrete stability constant depends on this operator (hence polynomial
order k).

Proposition 14. Suppose that there exists a Fortin operator Iy : H (Q) — X, such that
3Cnc such that ¥ ve H'(Q), [Tnevlly < CocllGrad vl 2 (), (40)
v ve H'(Q), (divy neV, G1) 120 = (divy, qp) 12y, ¥ G € Qn, (41)
where the constant Cy¢ does not depend on h. Then, the bilinear form ag (-,-) is T -coercive:

ATy € LX), bijective, ag, >0,V (u),p)) € X,
(42)
I (CAEARA ) ELZATCHEAT

We will exhibit Cy,¢ for k=1, d = 2,3 in Section 3.1, obtaining C,,c = 1; and thenfor k=2, d =2
in Section 3.3, obtaining C,,c = 0% + 1. Let us prove Proposition 14.

Proof. We follow the proof of Proposition 6. Let us consider (u’h, p;l) € X, and let us build
vy, q;) € Xy, satistying (2) (with V = %},). We need three main steps.

Step 1. According to Proposition 3, there exists i‘/p;7 € V* such that divvp;L = p;l in Q and
~ _ _1~ . _

||vp;1 ||H(1)(Q) < Cdivllp;llle(Q). Let us set Vp =V V. Consider Vi,p, = Myev X for all g5, € Qp,
we have:

. -1 -1
(dlvh Vh,p;lv (fIh)Lz(Q) =V (p'h, qh)LZ(Q) and ||Vh,p’h lp=v Cgls,” PIhIILz(Q) (43)
where C3S = CncCiv- Let us set (v}, 477) = (Ynct), = v, p»~Tne p,), with ypc > 0. We obtain:
2 .- 2
as,n (W), pl), (5, G50) = Vnellw, I, + v P12 ) V(W) Vi i (44)

Step 2. In order to bound the last term of (44), we use Young inequality and then inequality (43)
so that for all ¢ > 0:

n e ( Caiv )
nc
vy = T v o (S g s)
Step 3. Using the bound (45) in (44) and choosing nn¢ = Yne, We get'
(Yno) ™!
as (i) 6 ) 2 (2 w2 1 T i .

Consider now ypc = (C le)2 We obtain:

s (), p}), V7, 4)) = ar Cps ), pi [, where G, = min((Cgi)?, 1),

We obtain (42) with a7, = arC’¢ .

- Suppose that Cpc = 1. Then a, = ar =3

The operator T}, such that Ty, (] o, p’h) = (VZ» pZ) is linear and continuous. We have indeed:
2 _
175 ), pj) ||%h = Iy I5,+v 2”"2"%(9) (Cha”l (“h»Ph)ng,

1
where C2¢,, —Cgﬁf(max(2+(cg§,)2,2((33§, 2))2.

Remark that, given (v},q}) € %, choosing (u),p}) = (Ynav Z—yr’lgvh,q;,—yr’lg q;) yields
Ty, (W), p})) = (v}, g7;). Hence, the operator Tj, € £(%3,) is bijective. O

Remark 15. We recover the first Banach-Nec¢as—Babuska condition [27, Theorem 25.9, (BNB1)]:

as,n (W), 1), Wi, a3) = @, (Coad ™ @)y, P o 167, @) o, -



Erell Jamelot 125

We can now prove the discrete counterpart of Theorem 7.

Theorem 16. Suppose that there exists a Fortin operator I,.: H (Q) — X}, satifying (40)-(41).
Then Problem (39) is well-posed. It admits one and only one solution (uy, py) such that:

iffe LZ(Q) luplly = VﬁlCnC”f"LZ(Q); IPnllrz) <2Cnccglc‘,||f||L2(Q),

. _ (46)
iffeH” (Q) Haplly sv ICnC 1€l - Q) "Ph”LZ(Q) <2C}°hC3§,IIfIIH—1(Q),

where Cy° = 0Cqhq.

Proof. Consider (uy, pj) the unique solution of Problem (39). Choosing v;, = 0, we obtain that
divyuy, =0. Letfe L2(Q). Now, choosing vy, = uy, in (39), using Cauchy-Schwarz inequality, we get
that: |luylly, < V_IUCQh_Q”f”LZ(Q) using inequality (31). Consider (vy, gj) = (vj, ph,O) in (39), where
Vi,p;, = lncVp, is built as vj, P, in Step 1 of the proof of Proposition 14, setting ph phr. Suppose
that f € L2(Q). Notice that v 1|| Ph“Lz(Q)
inequality, we have: v 1||ph||2 < viapllplva,p, In + I8l2@) 1Vh,p, li2()-  Using Poincaré—

12(Q)
Steklov inequality (31), hypothesis (40), and the previous estimate on |uy |, we have:

v(up, Vyp,)n — 6 Ve p,)12(q)- Using Cauchy-Schwarz

1pnl1% ) = 20Cahalflyzq) I¥n,p, In S 20 CahaCS Ifl 20 | Pl 2 -

Let fe H1(Q). We apply the same reasoning, using inequality (38). U

As a corollary of Theorem 16, the following a priori error estimates follow:

Corollary 17 ([22, Theorems 3, 4, 6], [29, Equation (47)]). Under the assumption of Theorem 16,
suppose that (u, p) € (H'*(Q) n H}(Q)) x (H*(Q) n L2,,(Q)), we have the estimates:

lu—uylly s o' h¥(Julgeo ) + v Pl k@) 47)

V_l IIP —Ph ||L2(Q) s Ulhk(|u|Hk+1(Q) + V_l |p|Hk(Q))' (48)
Suppose moreover that the domain Q is convex. Then we have:
la—wplpe) < 0 B (Il o) + v 1Pl oy)- (49)

The hidden constants depend on k but they don’t depend on the mesh. The parameter o is the shape
regularity parameter and the exponent | € N* depends on k. When k=1, d = 2,3, we havel =1,
and when k=2, d =2, we havel =2

When Q is not convex, the exponent on h in Equation (49) is equal to k + s where s €]0,1]
depends on Q (cf. [27, Theorem 31.33]).

The main issue with nonconforming mixed finite elements is the construction of the basis
functions. In a recent paper, Sauter explains such a construction in two dimensions [41, Theo-
rem 1.3], and gives a bound to the discrete counterpart 4 (Q2) of 5(Q2) defined in (7):

(divy, v ) _
fr@= inf  sup —IRINEQ) o041y, (50)
thQh\{O}vhexoh\{O} lgnll 2 ylviln

where the parameter « is explicit and depends on k and on the mesh topology; and the constant
cg depends only on the shape-regularity of the mesh.



126 Erell Jamelot

3. Examples of nonconforming discretization for Stokes problem
3.1. Nonconforming Crouzeix—Raviart mixed finite elements for k = 1

We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements [22]. Let us
consider Xcp (resp. Xo cr), the space of nonconforming approximation of H'(Q) (resp. H(} (Q)) of
order 1:

Xcr = { Vp € P (Th)

Vf(—:ﬂ;,fF [Vh]FfZO}r
f
(61)

Xo,cr = { vp € Xcr

er,];’,f vhzo}.
Fy

The space of nonconforming approximation of H!(Q) (resp. H[I)(Q)) of order 1 is Xcr = (Xcr)?
(resp. Xo,cr = (Xo,cr)?). We set Zcr :=Xo,cr x Qcr where Qcg = P (T7) N LE,,(Q).
We can endow Xcg with the basis (y ) fesr such that:
1-dA;, if fe gy,
VY€ F, = ’ ’
oYy iK" {0 otherwise,
where i € s is such that S; is the vertex opposite to Fy in K,. We then have v f| F = 1, so that

[wlp, =0if f € #f, and forall f, f' € I, f' # f, fFf, v =0.
We have: Xcr = vect((¥ f) ez ) and Xo,cr = Vect((wf)feyé).
The Crouzeix—Raviart interpolation operator ncg for scalar functions is defined by:

H'(Q) — Xcr

1
: h =— .
TICR V— Z ”fVWf whnere T[fl) |Ff| Ffv
fegr

Notice that V f € ., [, Fy TCRY = /) Fp V- Moreover, the Crouzeix-Raviart interpolation operator

preserves the constants, so that 7crv, = v, where v, = fQ v/|Q|. We recall that for k = 1, the
coefficient Cy in (40) is equal to 1:

Lemma 18 ([3, Lemma 2]). The Crouzeix—Raviart interpolation operator ncg is such that:
VveH'(Q), lIncrvly < ligrad vz ). (52)

Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:

-1
gradnCRv|K[:|Kg| ngradn(;Rv
l

=IK™" Y. | mcevmys
Fy

fEJE[

=K/ Y vny
fegre?Ir

= |Kg|_1f gradv,
Ky

|gradcrv| | < Kl ™2 lgrad v 2,
= ngadﬂc}zl/”iz(K,) = ||grad y”iZ(K/)'
Summing these local estimates over ¢ € #x, we obtain (52). -

For a vector v € H' (Q) of components (vdr)g,:l, the Crouzeix—Raviart interpolation operator is

such that: Icrv = (7cr Vd’)j/zl- LetussetIl;v= (s vd')Z/:1~
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Lemma 19. The Crouzeix-Raviart interpolation operator Ilcr can play the role of the Fortin
operator:

VveH'(Q), [Mcrvlly < [Grad vl 2 g, (53)
VveH'(Q), (divyTIcrY, gn) 2 = (divV, G1) 12y ¥ 9 € Qn. (54)

Moreover, for allv e P (Q), TIcrv = v.

Proof. We obtain (53) applying Lemma 18 component by component. By integrating by parts,
we have Vve H (Q), V ¢ € Fk:

divlicgv= ) f Mcpveonp= ) f Mpvonp= ) fv-nf: divv,
K, fedpe Y Fr feFreEr fegre 'ty ke

so that (54) is satisfied. O

We can apply the T-coercivity theory to show the following result:

Theorem 20. Let &}, = Xcr. Then the continuous bilinear form asy(-,-) is Ty,-coercive and
Problem (39) is well-posed.

Proof. Using estimates (53) and (31), we apply the proof of Theorem 16. 0

Since the constant of the interpolation operator Ilcr is equal to 1, we have Ci¢ =
min((Cdiv)Z,l) =1 and C, = Cmax: the stability constant of the nonconforming Crouzeix—
Raviart mixed finite elements is independent of the mesh. This is not the case for higher order

(see [14, Theorem 2.2]).

3.2. Comments on higher-order methods

For higher order, we cannot build the interpolation operator component by component, since
higher-order divergence moments must be preserved. Thus, for k > 1, we must build IT},; so that
for all ve H' (Q), for all £ € F, for all g € P¥"1(Ky):

gdivIlcv = gdivv.
Ky Ky
We recall that by integration by parts, we have:
qdivl‘[ncv+f gradq-l'[ncv:f anCv-n|aK[. (55)
Ky K, 0Ky

Hence, to obtain a local estimate of ||Grad anv“[Lz( k,)» We will need the following Lemma:

Lemma2l. LetveH'(K;) and g€ P*"1(K,) 12, (K;). We have:

zmv

fa A=) nlag, < (VA + ) e [grad gl o i, [ Gradv] (56)
0

Proof. We have by integration by parts, and then using Cauchy-Schwarz inequality:

f qdivv-v,) f gradqg-(v-v,)
Ky Ky

= \/E”q”LZ(Kg) HGrad(v—‘_Ié) ||E2(K[) + ”gradq”LZ(K[) ” v-v,) ”LZ(K,)

< +

‘faKg qv-v,) 'niaKz

<(Vd+1)n "y lgrad g2, |Gradv] 2 ), using (28) twice. O
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In the next section, we will see that for k = 2, d = 2, we will need Lemma 21. For k = 3, it could
be necessary to bound the tangential components of v—v,. To do so, we would need to preserve
curl integrals on K. Indeed, by integration by parts, we have:

For d=2,ve H'(Q), g P (K,) :f g(curlg-v-curlvg) :f qvxn|aK .
Ky 0K, ‘

Ford =3,ve H'(Q),we PF"1 (X)) : (w-curlv—curlw-v):f (n|aK[ XV X n|aK£) - (wx n|61<[)'
K, 0K,

3.3. Fortin-Soulie mixed finite elements

We consider here the case k = 2, d = 2 and we study the so-called Fortin-Soulie mixed finite
elements [29]. We consider a shape-regular triangulation sequence (97,);,.

Let us consider Xgg (resp. Xors), the space of nonconforming approximation of H L (resp.
H} () of order 2:

Xps = {Vh € Pcziisc(%)

V fe gLV qye PL(EFy), fF (VnlF,qn = 0})
f (57)
Xo,Fs = {Vh € Xps

V fe gL,V que PL(Fy), fF Unqn = 0}.
f
The space of nonconforming approximation of H'(Q) (resp. Hj(Q)) of order 2 is Xps = (Xgs)?
(resp. Xo,rs = (Xo,rs)?). We set Zis = Xo,rs x Qrs where Qps := Pclﬁsc (TR N L2, (Q).
The building of a basis for X s is more involved than for Xy cr since we cannot use two points
per facet as degrees of freedom. Indeed, for all ¢ € %k, there exists a polynomial of order 2
vanishing on the Gauss-Legendre points of the facets of the boundary 0K,. Let f € #r. The

barycentric coordinates of the two Gauss-Legendre points (py r, p— r) on Fy are such that:
p+,f=(cy,c2), p_ 5= (c-,cy), where cs = (lJ_r 1/\/§)/2.

These points can be used to integrate exactly order three polynomials:

|Frl

|

Vv ge P3(Fp), fF g= 8(p+.p)+8(p-p).
f

For all ¢ € #, we define the quadratic function ¢, that vanishes on the six Gauss-Legendre
points of the facets of K, (see Figure 1):

¢x,=2-3 Z )L%[ such that VfEJEg,VqEPl(Ff),f ¢k, q=0. (58)
, Fy

iEJsj

Figure 1. The six Gauss-Legendre points of an element K, and the elliptic function ¢, .
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We consider the set of the elliptic functions ¢k, :
@y = {pp e LA(Q)| V 0 € F, bk, = v, K, Vi, ER}. (59)
We also define the spaces of P?-Lagrange functions:
Xig={vne H( Q| V(e %, Uh|g, € P*(Kp)},  Xoig:={vn € Xig|vn|yq =0}
The proposition below allows to build a basis for Xy s:
Proposition 22 ([29, Proposition 1]). We have the following decomposition: Xgs = X1 + @y, with

dim(Xig N ®y) = 1. Any function of Xgs can be written as the sum of a function of X1 and a
function of . This representation can be made unique by specifying one degree of freedom.

Notice that ®;, N X;g = vect (ve), where for all £ € %, vo | K = ¢k,- Then, counting the degrees
of freedom, one can show that dim(Xps) = dim(X;g) + dim(®y) + 1. For problems involving
Dirichlet boundary conditions we can thus prove that for Xy s the representation is unique and
Xo,rs = Xo,1G ® Pj,. We have X1 = vect((¢s,) ez, (PF,) fe #r) where the basis functions are such
that:

Vi, je IV f,f €Ir: ¢s5,(S))=0ij s, (Mp) =0, du,(Mpr) =8y p1,dnr,(Si) =0.
For all ¢ € #x, we will denote by ((pg,j)?zl the local nodal basis such that:
(‘P&j)jﬂ = (s, |Kg)ieﬂw and (‘PM)?:4 = (‘PFf \Kg)feym-
The spaces Xps and Xy s are such that:
Xps = vect((¢s,)ie. (PFp) fegps (DK, eegy)s
Xops = VECt(((Psi),-EJSi, DF) pegis (@K, cesi)-

We propose here an alternative definition of the Fortin interpolation operator proposed in [29].
Let us first recall the Scott-Zhang interpolation operator [18,44]. For all i € .5, we choose some
¢; € Fk;, and we build the L?(K,,)-dual basis (gbgi,j)?zl of the local nodal basis such that:

(60)

Vj'jle{l,...,ﬁ},f (,bgi,j([)[i,jr:(s]',jr.
Ky,
Let us define the Fortin—Soulie interpolation operator for scalar functions by:

H'(Q) — Xps
TTES V— U+ Z vk, K, with 7v= Z vs; Ps; + Z Upf(ppf. (61)
e TR ieds fegr
¢ The coeflicients (vs,);c.¢, are fixed so that: V i € s, vg, = fK“ v@i,ji, where j; is the
index such that foi be, i Ps; ini =1.
o The coefficients (Upf)fgyF are fixed so that: V f € .#f, fFf Tv= fFf v.
* The coefficients vk, are fixed so that: [y, psv = [i, v.
The definition (61) is more general than the one given in [29], which holds for v € H2(Q).
~ ~ T ~ ~ T
We setvg, := (7v1(S;), Av2(S;)) and Vg, = (Avi(Fp), v (Fp)) .
We can define two different Fortin—Soulie interpolation operators for vector functions. First,

let )
H" (Q) — Xgs
Mes: v Y V5,5, + Y VEPE+ ) VK, Pk,
i€ds fGJF leFk
where the coefficients (Vg,) e ¢, are such that:
Y ¢ e F, f Tpgv = f v. (62)
K, K,
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The interpolation operator IIgs preserves the local averages, but it doesn’t preserve the diver-
gence. We then define a second interpolation operator which preserves the divergence in a weak
sense:

H'(Q) — Xgs
Igs: V— Z Vs, s, + Z VFf(PFf+ Z Vi, Pk, -
i€ds feFr ledk

For all £ € %, the vector coefficient vg, € R? is now fixed so that condition (41) is satisfied. We
can impose for example that the projection Ilggv satisfies:

f T, (%) divIIpgv = f T, x)divv. (63)
Ky Ky

Notice that due to (58), the patch-test condition is still satisfied.

Proposition 23. The Fortin—-Soulie interpolation operator llgg is such for all 0 < s < 1, for all
ve H'*S(Q), we have:

Ve Ik, |Grad(lesv—v)|l 2, S (@0 R Wiy, (64)
|Tpsv—v|, 5 0® R IVlggss - (65)

Remark 24. Albeit we are inspired by the proof of [22, Lemma 4], we changed the transition from
Equation (4.27) to (4.29) there by using only the properties related to the normal component of
the velocity, cf. (56). In the original proof, one needs a stronger assumption on the regularity of
v (namely, v € MNo<s<sq H!™S(Q) with sq > %). Finally, because we do not split the integral over
the boundaries of elements into the sum of d + 1 integrals over the facets, we obtain purely local
estimates, which appear to be new for the Fortin—Soulie element in the case of low-regularity
fields v.

Proof of Proposition 23. Letve H!(Q). We have:
| Grad (ITpsv—v)||; - & < || Grad(Igsv — Tggv) | 2 &yt | Grad(TTgsv—v)|| - &) (66)
Notice that for all £ € F, (ITgsv —gsv)| &, = WK, =V, )¢k, Using (24), we obtain that:
| Grad(TTpsv — Tgv) ||, » &) = VK, = Vi, | |grad o, || &) = 1B~ 11K 12 IV, — VK, |. (67)

Let us estimate |vg, — Vg, |. On the one hand, we have?:
f (Mpsv —Tggv) :f (Mpsv—v) from (62),
K, Ky

= faK x(Mpsv—v)- n|61<[ by IBP and using (63),
l

= - - . i - . :0’
faK[(x )_()(Ilpsv v) n|aK[ since faKg(”FSV v) n|aKl
= xX—X) psv—v)-n from (58).

faK[ RS ( FS ) |6K[

On the other hand, it holds: [, (Tpsv — Tgsv) = (vk, — V) Ji, bx, = ufl—“ VK, —VK,).
Hence we have:

Vi, = Vi, | < 41K, : (68)

N
faKi(X x)(Mgsv—v) n|aK[

2Letw= Mpgv—-v = (w;, wz)T and x = (xl,xg)T. By integration by parts, we have for d’ = 1,2: faK[ xd/w~nlaK[ =
Jx, %qr divw+ [x, w-eg. Due to (63), [g, x4 divw =0, so that for d =12 Jx, war = Jax, Xarw-nlag,-
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In order to bound the right-hand side of (68) component by con}ponent, we can use Lemma 21,
with g = xg —fK[ xq'/|Kel (d' =1,2), so that lgrad qli2(x,) = 1K¢|2. We obtain:
- 1 ~
IVk, —Vk,| < 4d x (Vd+1)IK, | 2n " by |Grad(TIpsv—v) |||1_2(Kf)' (69)
Combining (67) and (69), we have:

| Grad(ITpsv — Igsv) HH_Z(K,) < 1Byt e || Grad(TTgsv —v) ||[L2(K£) < 0| Grad(Tlgsv—-v) ”D_Z(K/)'

For all v € P?(K,) we have Tlgs(v) = v and ﬁpg% =V, =Vy. Hence, using Bramble-Hilbert/Deny-
Lions Lemma [26, Lemma 11.9], we have for m =0, 1, for all ve H'*™(Q):
Ve, ||Grad(Tlesv—v)| 2, <00 (he) " Vlgrom g, )-
We deduce that for m =0, 1, for all ve H! T (Q):
Vle Ik, |Grad(Tesv—v)|| 2k, < (@07 (he) " Wik, 70
|Grad(TTgsv—v) |2, S 0 R IVlgem(qy by summation.

Using interpolation property [46, Lemma 22.2], we obtain (64) and (65). U

Hence, using the triangular inequality, we have:
|Grad Tesv], -, < [|Grad(TTesv—v) || 2 i, + [ Gradv]| 24, < (@) +1)IVlgi k-

By summation over ¢, we deduce that the coefficient C,¢ in (40) is here equal to o2+ 1. We recall
that the discrete Poincaré-Steklov inequality (31) holds.

Theorem 25. Let &) = Xys. Then the continuous bilinear form agy(-,-) is Ty-coercive and
Problem (39) is well-posed.

Proof. According to Proposition 23, the Fortin—Soulie interpolation operator Ilpg satisfies (40)-
(41), so that we can apply the proof of Theorem 16. 0

Notice that in the recent paper [42], the inf-sup condition of the mixed Fortin-Soulie finite
element is proved directly on a triangle and then using the macro-element technique [45], but it
seems difficult to use this technique to build a Fortin operator, which is needed to compute error
estimates.

The study can be extended to higher orders for d = 2 using the following papers: [4] for k = 4,
k even, [15] for k = 3 and [14] for k = 5, k odd. In [24], the authors propose a local Fortin operator
for the lowest order Taylor-Hood finite element [47] for d = 3.

4. Numerical results improving consistency
4.1. H(div) -conforming velocity reconstruction

Consider Problem (3) with data f = —grad ¢, where ¢ € H Lan L%mV(Q). The unique solution is
then (u, p) := (0, ¢). By integrating by parts, the source term in (9) reads:

vVeH})(Q),ff.v=f¢>divv. 71)
Q Q

Recall that the nonconforming space Xj, defined in (30) is a subset of 22,H': using a noncon-
forming finite element method, the integration by parts must be done on each element of the
triangulation, and we have:

vVe%Hl,ff-v:(divhv,¢)L2(Q)+ > | Mg -ngg. (72)
Q fesp 'y



132 Erell Jamelot

Using Lemma 21, we have: ZnyF fFf [V]Ff ‘ngp < hlvylipligradlliz ). Applying (72) to the
right-hand side of (39) and choosing v;, = uy, it holds: viugll, < kligrad¢lizq) (as expected
by (47)). Hence, the term with the jumps acts as a numerical source for the discrete velocity,
whose numerical influence is proportional to 4/v. Thus, we cannot obtain exactly u;, = 0. Linke
proposed in [38] to project the test function vy, € X, on a discrete subspace of H(div; Q), like
Raviart-Thomas or Brezzi-Douglas—Marini finite elements (see [12,39], or the monograph [8]).
Letgiyv: X0, — Pgisc (91)NHy (div; Q) be some interpolation operator built so that for all v, € Xy ,
for all ¢ € i, (divIlgiyvy)| x, = divvy | x,- Integrating by parts, we have for all vj, € X ;:

f f- 4y 2[ ¢ divIlgyvy = Z ¢ divIlgyvy = Z ¢divvy = (dth Vh»(P)Lz(Q)-
Q Q leKy Ky leKy Ky

The projection I1g;, allows to eliminate the terms of the integrals of the jumps in (72).
Let us write Problem (39) as:

Find (up, pp) € &y, such that ag (g, pr), Vi, qn)) = Co(aiwVi, gn)) ¥ Vn, gn) € X (73)

In the case of &, = Zcr and a projection on Brezzi-Douglas—Marini finite elements, the following
error estimate holds if (u, p) € H2(Q) x HY(Q):

"u—UhHLZ(Q) < 6h2|u|H2(Q), (74)

where the constant C is independent of 4. The proof is detailed in [10] for shape-regular
meshes and [2] for anisotropic meshes. We remark that the error doesn't depend on the norm
of the pressure nor on the v parameter. We will provide some numerical results to illustrate the
effectiveness of this formulation, even with a projection on the Raviart-Thomas finite elements,
which, for a fixed polynomial order, are less precise than the Brezzi-Douglas-Marini finite
elements.

For k € N*, the space of Raviart-Thomas finite elements can be defined as:

Xgr, = {ve H(div; Q) ‘ V€I, V], =g+ bex, (ag, by) € PF(Kp)? x Pk(K[)}.
Let k < 1. The Raviart-Thomas interpolation operator Ilgr, : H (Q)uX;, — Xgr, is defined by:

erjF,f HRTkv-nfqu v-nsq, ¥ qe PX(Fp),
Fr Fr

vve H'(Q) UX), (75)

for k:l,V(eﬂK,f HRTl":f V.
Ky K,

Note that the Raviart-Thomas interpolation operator preserves the constants. Let v;, € Xj,.
In order to compute the left-hand side of (72), we must evaluate (HRTth)| K, for all ¢ € #x.
Calculations are performed using the proposition below:

Proposition 26 ([31, Lemma 3.11]). Letk < 1. Let Tigr, : H'(K) — P¥(K) be the Raviart-Thomas
interpolation operator restricted to the reference element, so that:

vﬁeal?,fﬁmkv-nﬁa:fv-nﬁa,vaep’“(ﬁ),
F F

vve HY(K), (76)
for k= 1, \[A HRT/CG:\[AG'
K K
We then have: ¥V ¢ € .k,
(Mrr, )|, 00 = By (Crr, B, '¥,) 0 T, (%) where ¥, =vo T,;(®. 77

The proof is based on the equality of the F and K-moments of (IIgr,v)| k, © Te®) and
B¢ (Mgr, B, ~'V¢) ®). For k =0, setting for d’ € {1,..., d}: W ; 5 := ¥ peqr, we obtain that:

Ve IKY feTne, (nRTowfyd,))K[ = (1K) (x= OS1.0) S0 -ear, 78)
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where Sy ¢ is the vertex opposite to Fr in K.
For k =1, the vector (HRTlvh) | K is described by eight unknowns:

(Mrr, Vi) |, = Arx+ (b -0x+d,, where A, € R?*2 b, € R?,dy € R?.

We compute only once the inverse of the matrix of the linear system (76), in R8*8,

4.2. Application with manufactured solutions

In the Tables 1, 2 and 3, we call eg(u) = [u-upll2q)/ll(u, p)llo the velocity error in L2(Q)-norm,
where uy, is the solution to Problem (39) (columns Xcr and Xgs) or (73) (columns Xcg + Igr, and
Xgs + Igr,) and h is the mesh size.

We first consider Stokes problem (3) in Q = (0,1)2 withu =0, p = (x1)3 + (x2)3 - 0.5, f =
gradp = 3((x1)2, (XZ)Z)T. We report in Table 1 the velocity error eg () = viluplzq)/Ipl2q), for
h =5.00 x 102 and for different values of v.

Table 1. Values of &5 (u) for h = 5.00 x 1072,

v Xcr Xcr + IRy, Xgs Xgs + Igr,
1.00x10™* 7.96x10% 459x10717 8.81x1077 1.54x10716
1.00x107° 7.96x107% 459x10717 8.81x1077 1.54x10716
1.00x107% 7.96x107* 4.59x10717 8.81x1077 1.54x10716

The L?(Q)-norm of the discrete velocity [lupllp2(q) is proportional to vl Using the projection,
we obtain £ (u) = 0 close to machine precision.
We now consider Stokes problem (3) in Q = (0, 1) with:

_((1=cos(2mx1))sin(27 x2)

= |(cos@mx2) ~ 1) sin@x1) , p=sin(2m x;) and f=-vAu+gradp.

We report in Table 2 (resp. 3) the values of 5 (u) in the case v = 1.00 x 1073 (resp. v = 1.00 x 107%)
for mesh sizes. We observe that when there is no projection, g (u) is independent of v, whereas

using the projection, £J (u) is proportional to v.

Table 2. Values of Eg(ll) for v=1.00x 1073,

h Xcr Xcr + IR, Xgs Xgs + Igr,
500x107%2 1.32x107% 274x107° 4.73x107® 5.05x1077
250%x1072 3.30x107% 6.93x107® 5.06x1077 6.42x 1078
1.25x1072 825x107° 1.74x10% 6.31x10°8 8.10x107°
6.25x107% 2.04x107° 435x1077 7.44x107° 1.03x107°

Rate h2'00 h1.99 h3.08 h2.97

Let us consider Stokes problem (3) with a low-regular velocity. Let Q = (0, 1)?, Sp = (0.5,0.5),
and (r,0) be the polar coordinates centered on Sy. We set:

u=r%y, p=r- IQlflf r sothat f:= —vAu+gradp =v(l - a®)r® %eg +e,.
Q

We report in Table 4 the values of EX.T(u) for v = 1.00x 1074, and for different mesh sizes, with a = 1
and @ =0.45. Fora=1,u=(-y,x)! € H*(Q). For @ = 0.45, u € Ny<s<q H'"*(Q), hence u ¢ H>(Q).
It seems that the Raviart-Thomas projection is less efficient in that last case.
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Table 3. Values of £ (u) for v=1.00x 107%,

h Xcr Xcr + IR, Xks Xgs + Igr,
5.00x1072 1.32x1073 2.74x10°® 4.70x10°® 5.05x10°8
250x1072 3.30x107* 6.93x1077 5.10x1077 6.43x107°
1.25x1072 8.25x107° 1.74x1077 6.37x107% 8.11x10710
6.25x1073 2.04x107° 436x1078 751x107% 9.77x1071!

Rate h2.00 h1.99 h3.08 h2.99

Table 4. Values of £;(u), regular and low-regular velocity, v = 1.00 x 1074,

a=1 a=0.45
h Xgs Xgs + Igr, Xgs Xgs + IIgr,
1.00x1071 3.03x105 281x10°% 3.05x10° 3.94x10°°
500x107%2 4.34x107% 154x10% 457x10® 2.15x107®
250x1072 4.72x1077 2.41x1078 9.70x1077 852x1077
Rate hS.OO h3.43 h2.48 hl.ll

In order to enhance the numerical results, one could also use a posteriori error estimators to
adapt the mesh near point Sy (see [23,25] for k =1 and [1] for k = 2).

Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method, one
can build a divergence-free basis, as described in [34] for k = 1. When k = 1, following the initial
work of [7], one can also add P!-Lagrange basis functions to the space of the discrete pressures
as explained in [37]. The consistency of the discrete velocity is then improved. Notice that
using conforming finite elements, the Scott-Vogelius finite elements [28,43,49] produce velocity
approximations that are exactly divergence free.

The code used to get the numerical results can be downloaded on GitHub [35].

5. Conclusion

We analysed the discretization of Stokes problem with nonconforming finite elements in light
of the T-coercivity theory. Furthermore, we obtained local stability estimates for order 1 in 2
or 3 dimensions without mesh regularity assumption; and for order 2 in 2 dimensions in the
case of a shape-regular triangulation sequence. This local approach, splitting the normal and
the tangential components could help to generalize our results to order k = 3 (using maybe also
other internal moment conservation). This is ongoing work. We then provided numerical results
to illustrate the importance of using H(div)-conforming projection. Further, we intend to extend
the study to other mixed finite element methods.
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