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Abstract. We propose to analyse the discretization of the Stokes problem with nonconforming finite elements
in light of the T-coercivity. First we exhibit a family of operators to prove T-coercivity and we show that the
stability constant is equal to the classical one up to a constant which depends on the Babuška–Aziz constant.
Then we explicit the stability constants with respect to the shape regularity parameter for order 1 in 2 or
3 dimensions, and order 2 in 2 dimensions. In this last case, we improve the result of the original Fortin–
Soulie paper. Second, we illustrate the importance of using a divergence-free velocity reconstruction on some
numerical experiments.

Résumé. Nous proposons d’analyser la discrétisation du problème de Stokes avec des éléments finis non
conformes à la lumière de la T-coercivité. Tout d’abord, pour prouver la T-coercivité, nous exhibons une
famille d’opérateurs et nous montrons que la constante de stabilité est égale à la constante de stabilité
classique, à une constante près qui dépend de la constante de Babuška–Aziz. Par la suite, nous explicitons
les constantes de stabilité par rapport au paramètre de régularité de forme pour l’ordre 1 en dimension 2 ou
3, et l’ordre 2 en dimension 2. Dans ce dernier cas, nous améliorons le résultat de l’article original de Fortin–
Soulie. Ensuite nous illustrons l’importance d’utiliser une méthode de projection conforme dans H(div) pour
certaines expériences numériques.
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1. Introduction

The Stokes problem describes the steady state of incompressible Newtonian flows. It follows from
the Navier–Stokes equations [32]. With regard to numerical analysis, the study of Stokes problem
helps to build an appropriate approximation of the Navier–Stokes equations. We consider here
a discretization with nonconforming finite elements [22,29]. We propose to state the discrete
inf-sup condition in light of the T-coercivity (cf. [17] for Helmholtz-like problems, see [20,33,36]
for the neutron diffusion equation), which allows to estimate the discrete error constant. In
Section 2, we recall the T-coercivity theory [17], which is known to be an equivalent reformulation
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of the Banach–Nečas–Babuška Theorem and we apply it to the continuous Stokes problem. We
give details on the triangulation, and we apply the T-coercivity to the discretization of Stokes
problem with nonconforming mixed finite elements. For the Stokes problem, in the discrete case,
this amounts to finding a Fortin operator. In Section 3, we precise the proof of the well-posedness
in the case of order 1 and 2 nonconforming mixed finite elements. In Section 4, we illustrate the
importance of using a divergence-free velocity on some numerical experiments.

2. Exact and discrete T-coercivity for Stokes problem

2.1. T-coercivity and application to Stokes problem

We recall here the T-coercivity theory as written in [17]. Consider first the variational problem,
where V and W are two Hilbert spaces and f ∈V ′:

Find u ∈V such that ∀ v ∈W , a(u, v) = 〈 f , v〉V . (1)

Classically, we know that Problem (1) is well-posed if a( · , · ) satisfies the stability and the solv-
ability conditions of the so-called Banach–Nečas–Babuška (BNB) Theorem (see e.g. [27, Theo-
rem 25.9]). For some models, one can also prove the well-posedness using the T-coercivity the-
ory (cf. [17] for Helmholtz-like problems, see [20,33,36] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a( · , · ) be a continuous and bilinear form
over V ×W . It is T -coercive if

∃ T ∈L (V ,W ), bijective, ∃αT > 0 ∀ v ∈V ,
∣∣a(v,T v)

∣∣≥αT ∥v∥2
V . (2)

It is proved in [16,17] that the T-coercivity condition is equivalent to the stability and solvability
conditions of the BNB Theorem. Whereas the BNB Theorem relies on an abstract inf-sup
condition, T-coercivity uses explicit inf-sup operators, both at the continuous and discrete levels.
Notice that if the pair (T,αT ) satisfies (2), then for all λ > 0, the pair (Tλ,αTλ ) := (λT,λαT ) also
satisfies (2). Thus, there exists an infinity of pairs (T,αT ) and (Tλ,αTλ )λ>0 satisfying (2).

Theorem 2 (well-posedness). Let a( · , · ) be a continuous bilinear form. Suppose that the form
a( · , · ) is T -coercive. Then Problem (1) is well-posed.

Let Ω be a connected bounded domain of Rd , d = 2,3, with a polygonal (d = 2) or Lipschitz
polyhedral (d = 3) boundary ∂Ω. We consider Stokes problem:

Find (u, p) such that

{−ν∆u+grad p = f,

divu = 0,
(3)

with Dirichlet boundary conditions for the velocity u and a normalization condition for the
pressure p:

u = 0 on ∂Ω,
∫
Ω

p = 0.

The vector field u represents the velocity of the fluid and the scalar field p represents its pres-
sure divided by the fluid density which is supposed to be constant. The first equation of (3) corre-
sponds to the momentum balance equation and the second one corresponds to the conservation
of the mass. The constant parameter ν> 0 is the kinematic viscosity of the fluid. The vector field
f ∈ H−1(Ω) represents a body forces divided by the fluid density.

Before stating the variational formulation of Problem (3), we provide some definitions and
reminders. Let us set L2(Ω) = (

L2(Ω)
)d , H1

0(Ω) = (
H 1

0 (Ω)
)d , H−1(Ω) = (

H−1(Ω)
)d its dual space

and L2
zmv(Ω) = {

q ∈ L2(Ω)
∣∣ ∫
Ω q = 0

}
. We recall that H(div;Ω) = {

v ∈ L2(Ω)
∣∣ divv ∈ L2(Ω)

}
. Let hΩ

be the diameter ofΩ. We recall the Poincaré–Steklov inequality [26, Lemma 3.24]:

∃CPS > 0 such that ∀ v ∈ H 1
0 (Ω), ∥v∥L2(Ω) ≤CPShΩ∥grad v∥L2(Ω). (4)
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Thanks to this result, in H 1
0 (Ω), the semi-norm is equivalent to the natural norm, so that the

scalar product reads (v, w)H 1
0 (Ω) = (grad v,grad w)L2(Ω) and the norm is ∥v∥H 1

0 (Ω) = ∥grad v∥L2(Ω).

Let v,w ∈ H1
0(Ω). We denote by (vi )d

i=1 (resp. (wi )d
i=1) the components of v (resp. w), and we set

Grad v = (
∂ j vi

)d
i , j=1 ∈ L2(Ω), where L2(Ω) = (

L2(Ω)
)d×d . We have:

(
Grad v,Grad w

)
L2(Ω) = (v,w)H1

0(Ω) =
d∑

i=1
(vi , wi )H 1

0 (Ω)

and

∥v∥H1
0(Ω) =

(
d∑

j=1
∥v j ∥2

H 1
0 (Ω)

) 1
2

= ∥Grad v∥L2(Ω).

Let us set V = {
v ∈ H1

0(Ω)
∣∣ divv = 0

}
. The vector space V is a closed subset of H1

0(Ω). We denote by
V⊥ the orthogonal of V in H1

0(Ω). We recall the following result.

Proposition 3 ([32, Corollary I.2.4]). The operator div: H1
0(Ω) → L2(Ω) is an isomorphism of V⊥

onto L2
zmv(Ω). We call Cdiv the constant such that:

∀ p ∈ L2
zmv(Ω),∃! v ∈ V⊥ such that divv = p and ∥v∥H1

0(Ω) ≤Cdiv∥p∥L2(Ω). (5)

The constant Cdiv depends only on the domainΩ. Recall that we have

∥v∥2
H1

0(Ω)
= ∥curl v∥2

L2(Ω) +∥divv∥2
L2(Ω) ≥ ∥p∥2

L2(Ω),

hence Cdiv ≥ 1. Using Proposition 3, we can define a lifting in H1(Ω) of a function v ∈ L2(Ω):

Corollary 4. For all v ∈ L2(Ω), there exists s ∈ H1(Ω) such that:

divs = v and ∥s∥L2(Ω) +hΩ∥Grad s∥L2(Ω) ≤CΩhΩ∥v∥L2(Ω), (6)

where the dimensionless constant CΩ depends on Cdiv and CPS.

Proof. Let v = ∫
Ω v/|Ω|, and s0 ∈ H1

0(Ω) be such that divs0 = v − v and ∥Grad s0∥L2(Ω) ≤
Cdiv∥v∥L2(Ω) (cf. Proposition 3). Let d ′ ∈ {

1, . . . ,d
}
. We consider s := s0 + v(xd ′ − xd ′ )ed ′ ∈ H1(Ω),

where xd ′ =
∫
Ω xd ′/|Ω|. We have: divs = v and ∥Grad s∥L2(Ω) ≤ C̃div∥v∥L2(Ω), where C̃div =Cdiv +1.

Using inequality (4), one can prove that ∥s∥L2(Ω) ≤ hΩC̃Ω∥v∥L2(Ω), where C̃Ω =CPS Cdiv+1. Setting
CΩ = C̃Ω+ C̃div, we obtain (6). □

Actually, the constant Cdiv is such that Cdiv = 1/β(Ω) where β(Ω), known as the Babuška–Aziz
constant, is the inf-sup condition (or Ladyzhenskaya–Babuška–Brezzi condition):

β(Ω) = inf
q∈L2

zmv(Ω)\{0}
sup

v∈H1
0(Ω)\{0}

(q,divv)L2(Ω)

∥q∥L2(Ω)∥v∥H1
0(Ω)

. (7)

Generally, the value of β(Ω) is not known explicitly. In [6], Bernardi et al. established results on
the discrete approximation of β(Ω) using conforming finite elements. Recently, Gallistl proposed
in [30] a numerical scheme with adaptive meshes for computing approximations to β(Ω). In the
case of d = 2, Costabel and Dauge [21] established the following bound:

Theorem 5 ([21, Theorem 2.3]). Let Ω ⊂ R2 be a domain contained in a ball of radius R, star-
shaped with respect to a concentric ball of radius ρ. Then

β(Ω) ≥ ρp
2R

1+
√

1− ρ2

R2

− 1
2

≥ ρ

2R
. (8)
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Let us detail the bound for some remarkable domains. If Ω is a ball, β(Ω) ≥ 1
2 and if Ω is

a square, β(Ω) ≥ 1
2
p

2
. Suppose now that Ω is stretched in some direction by a factor k, then

β(Ω) ≥ 1
2k . Finally, if Ω is L-shaped (resp. cross-shaped) such that L = kl , where L is the largest

length and l is the smallest length of an edge, then β(Ω) ≥ 1
2
p

2k
(resp. β(Ω) ≥ 1

4k ).
The variational formulation of Problem (3) reads:

Find (u, p) ∈ H1
0(Ω)×L2

zmv(Ω) such that{
ν(u,v)H1

0(Ω) − (p,divv)L2(Ω) = 〈f,v〉H1
0(Ω) ∀ v ∈ H1

0(Ω),

(q,divu)L2(Ω) = 0 ∀ q ∈ L2
zmv(Ω).

(9)

Classically, one proves that Problem (9) is well-posed using Poincaré–Steklov inequality (4) and
Proposition 3. Check for instance the proof of [32, Theorem I.5.1].

Let us set X = H1
0(Ω)×L2

zmv(Ω), which is a Hilbert space which we endow with the following
norm: ∥∥(v, q)

∥∥
X =

(
∥v∥2

H1
0(Ω)

+ν−2∥q∥2
L2(Ω)

) 1
2

. (10)

We consider now the following bilinear symmetric and continuous form:

aS :

{
X ×X −→R

(u′, p ′)× (v, q) 7−→ ν(u′,v)H1
0(Ω) − (p ′,divv)L2(Ω) − (q,divu′)L2(Ω).

(11)

We can write Problem (3) in an equivalent way as follows:

Find (u, p) ∈X such that aS
(
(u, p), (v, q)

)= 〈f,v〉H1
0(Ω) ∀ (v, q) ∈X . (12)

Let us prove that Problem (12) is well-posed using the T-coercivity theory.

Proposition 6. The bilinear form aS ( · , · ) is T -coercive:

∃ T ∈L (X ), bijective, ∃αT > 0,∀ (u′, p ′) ∈X ,

aS

(
(u′, p ′),T

(
(u′, p ′)

))≥αT
∥∥(u′, p ′)

∥∥2
X .

(13)

Proof. We follow here the proof given in [5,9,19]. Let us consider (u′, p ′) ∈ X and let us build
(v⋆, q⋆) = T (u′, p ′) ∈X satisfying (2) (with V =X ). We need three main steps.

Step 1. According to Proposition 3, there exists ṽp ′ ∈ H1
0(Ω) such that: div ṽp ′ = p ′ in Ω and

∥ṽp ′∥H1
0(Ω) ≤Cdiv∥p ′∥L2(Ω). Let us set vp ′ = ν−1ṽp ′ so that divvp ′ = ν−1p ′ and

∥vp ′∥H1
0(Ω) ≤ ν−1Cdiv∥p ′∥L2(Ω). (14)

Let us set (v⋆, q⋆) := (
γu′−vp ′ ,−γp ′), with γ> 0. We obtain:

aS
(
(u′, p ′), (v⋆, q⋆)

)= νγ∥u′∥2
H1

0(Ω)
+ν−1∥p ′∥2

L2(Ω) −ν(u′,vp ′ )H1
0(Ω). (15)

Step 2. In order to bound the last term of (15), we use Young inequality and then inequality (14),
so that for all η> 0:

(u′,vp ′ )H1
0(Ω) ≤

η

2
∥u′∥2

H1
0(Ω)

+ η−1

2

(
Cdiv

ν

)2

∥p ′∥2
L2(Ω). (16)

Step 3. Using the bound (16) in (15) and choosing η= γ, we get:

aS
(
(u′, p ′), (v⋆, q⋆)

)≥ ν(
γ

2
∥u′∥2

H1
0(Ω)

+ν−2
(
1− γ−1

2
(Cdiv)2

)
∥p ′∥2

L2(Ω)

)
.

Consider now γ= (Cdiv)2. We obtain:

aS
(
(u′, p ′), (v⋆, q⋆)

)≥ 1

2
ν
(
(Cdiv)2∥u′∥2

H1
0(Ω)

+ν−2∥p ′∥2
L2(Ω)

)
.
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Reminding that Cdiv ≥ 1, it comes:

aS
(
(u′, p ′), (v⋆, q⋆)

)≥ ν

2

∥∥(u′, p ′)
∥∥2

X . (17)

We obtain (13) with αT = ν
2 .

The operator T such that T
(
(u′, p ′)

)= (v⋆, q⋆) is linear and continuous. We have indeed:∥∥T
(
(u′, p ′)

)∥∥2
X

:= ∥v⋆∥2
H1

0(Ω)
+ν−2∥q⋆∥2

L2(Ω)

≤ 2γ2∥u′∥2
H1

0(Ω)
+2∥vp ′∥2

H1
0(Ω)

+γ2ν−2∥p ′∥2
L2(Ω)

≤ 2γ2∥u′∥2
H1

0(Ω)
+ (2(Cdiv)2 +γ2)ν−2∥p ′∥2

L2(Ω).

We deduce that:∥∥T
(
(u′, p ′)

)∥∥
X ≤Cmax

∥∥(u′, p ′)
∥∥

X where Cmax =Cdiv

(
max

(
2+ (Cdiv)2,2(Cdiv)2)) 1

2
. (18)

Remark that, given (v⋆, q⋆) ∈X , choosing (u′, p ′) = (
γ−1v⋆−γ−2vq⋆ ,−γ−1q⋆

)
yields T

(
(u′, p ′)

)=
(v⋆, q⋆). Hence, the operator T ∈L (X ) is bijective. □

We can now prove the following result.

Theorem 7. Problem (12) is well-posed. It admits one and only one solution such that:

∀ f ∈ H−1(Ω),

{∥u∥H1
0(Ω) ≤ ν−1∥f∥H−1(Ω),

∥p∥L2(Ω) ≤Cdiv∥f∥H−1(Ω).
(19)

Proof. According to Proposition 6, the continuous bilinear form aS ( · , · ) is T -coercive. Hence,
according to Theorem 2, Problem (12) is well-posed. Let us prove (19). Consider (u, p) the unique
solution of Problem (12). Choosing v = 0, we obtain that ∀ q ∈ L2

zmv(Ω), (q,divu)L2(Ω) = 0, so
that u ∈ V. Now, choosing v = u and using Cauchy–Schwarz inequality, we have: ν∥u∥2

H1
0(Ω)

=
〈f,u〉H1

0(Ω) ≤ ∥f∥H−1(Ω)∥u∥H1
0(Ω), so that: ∥u∥H1

0(Ω) ≤ ν−1∥f∥H−1(Ω). Next, we choose in (12) v = ṽp ∈
V⊥, where div ṽp =−p (see Proposition 3). Since u ∈ V and ṽp ∈ V⊥, we have (u, ṽp )H1

0(Ω) = 0. This
gives:

−(p,div ṽp )L2(Ω) = ∥p∥2
L2(Ω) = 〈f, ṽp〉H1

0(Ω) ≤ ∥f∥H−1(Ω)∥ṽp∥H1
0(Ω) ≤Cdiv∥f∥H−1(Ω)∥p∥L2(Ω),

so that: ∥p∥L2(Ω) ≤Cdiv∥f∥H−1(Ω). □

2.2. Comments on the stability constant

Using (18) in (17), we have:

aS
(
(u′, p ′), (v⋆, q⋆)

)≥αT (Cmax)−1∥∥(u′, p ′)
∥∥

X

∥∥(v⋆, q⋆)
∥∥

X

Let us set |||T ||| := sup(u′,p ′)∈X \(0,0)
∥T ((u′,p ′))∥X∥(u′,p ′)∥X

. According to (18), we have the bound: |||T ||| ≤Cmax.

Hence, we have:

aS
(
(u′, p ′), (v⋆, q⋆)

)≥ αT

|||T |||
∥∥(u′, p ′)

∥∥
X

∥∥(v⋆, q⋆)
∥∥

X

We recover the first Banach–Nečas–Babuška condition [27, Theorem 25.9, (BNB1)].
Thus, the T-coercivity approach gives an overestimate of the stability constant α given below:

αT

|||T ||| ≥α := inf
(v,q)∈X \(0,0)

sup
(u′,p ′)∈X \(0,0)

aS
(
(u′, p ′), (v, q)

)∥∥(u′, p ′)
∥∥

X

∥∥(v, q)
∥∥

X

.
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It suggests that the stability constant α is proportional to the parameter ν and depends on the
constant Cdiv, therefore on the shape of the domain. More precisely, our estimate gives:

α≤ ν

2
×


(
Cdiv

√
2+ (Cdiv)2

)−1

if 1 ≤Cdiv ≤
p

2,(p
2(Cdiv)2

)−1
if Cdiv ≥

p
2.

In our computations, αT depends on the choice of the parameters η and γ, so that it could be

further optimized to minimize αT
|||T ||| . Studying the bilinear form aS

(
(u′, p ′),T

(
(v, q)

))
leads to an

alternative variational formulation of Stokes problem, as proposed in [19]. It does not depend on
the parameters η and γ because it is coercive. However, the new variational formulation requires
a specific treatment of the right-hand side.

2.3. Conforming discretization and discrete well-posedness

If we were using a conforming discretization to solve Problem (12) (e.g. Taylor–Hood finite ele-
ments [47]), we would use the bilinear form aS ( · , · ) to state the discrete variational formulation.
Let us call the discrete spaces Xc,h ⊂ H1

0(Ω) and Qc,h ⊂ L2
zmv(Ω). Then to prove the discrete T-

coercivity, we would need to state the discrete counterpart to Proposition 3. To do so, we can
build a linear operatorΠc : X → Xc,h , known as Fortin operator, such that (see e.g. [8, §8.4.1]):

∃Cc such that ∀ v ∈ H1(Ω), ∥GradΠcv∥L2(Ω) ≤Cc∥Grad v∥L2(Ω), (20)

∀ v ∈ H1(Ω), (divΠcv, qh)L2(Ω) = (divv, qh)L2(Ω), ∀ qh ∈Qc,h . (21)

Using a nonconforming discretization, we will not use the bilinear form aS ( · , · ) to exhibit the
discrete variational formulation, but we will need a similar operator to (20)-(21) to prove the
discrete T-coercivity, which is stated in Theorem 16.

2.4. Discretization notations

We call
(
O, (xd ′ )d

d ′=1

)
the Cartesian coordinates system, of orthonormal basis (ed ′ )d

d ′=1. Consider
(Th)h a simplicial triangulation sequence ofΩ, where h denotes the mesh size. The triangulations
are regular in the sense of Ciarlet. For a triangulation Th , we use the following index sets:

• IK denotes the index set of the elements, such that Th :=⋃
ℓ∈IK Kℓ is the set of elements.

• IF denotes the index set of the facets1, such that Fh :=⋃
f ∈IF F f is the set of facets.

Let IF =I i
F ∪I b

F , where ∀ f ∈I i
F , F f ⊂Ω and ∀ f ∈I b

F , F f ∈ ∂Ω.
• IS denotes the index set of the vertices, such that (S j ) j∈IS is the set of vertices.

Let IS =I i
S ∪I b

S , where ∀ j ∈I i
S , S j ∈Ω and ∀ j ∈I b

S , S j ∈ ∂Ω.

We also define the following index subsets:

• ∀ ℓ ∈IK , I (i ,b)
F,ℓ = {

f ∈I (i ,b)
F

∣∣F f ∈ Kℓ

}
, IS,ℓ =

{
j ∈IS

∣∣S j ∈ Kℓ

}
.

• ∀ j ∈IS , IK , j =
{
ℓ ∈IK

∣∣S j ∈ Kℓ

}
, N j := card(IK , j ).

For all ℓ ∈ IK , we call hℓ the diameter of Kℓ and ρℓ the diameter of the sphere inscribed in Kℓ,
and we let: σℓ = hℓ

ρℓ
, h = maxℓ∈IK hℓ. When (Th)h is a shape-regular triangulation sequence (see

e.g. [26, Definition 11.2]), there exists a constant σ > 1, called the shape regularity parameter,
such that for all h, for all ℓ ∈ IK , σℓ ≤ σ. For all f ∈ IF , M f denotes the barycenter of F f , and
by n f its unit normal (outward oriented if F f ∈ ∂Ω). For all j ∈ IS , for all ℓ ∈ IK , j , λ j ,ℓ denotes
the barycentric coordinate of S j in Kℓ, F j ,ℓ denotes the face opposite to vertex S j in element

1The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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Kℓ, and x j ,ℓ denotes its barycenter. We call S j ,ℓ the outward normal vector of F j ,ℓ and of norm
|S j ,ℓ| = |F j ,ℓ|.

Let us introduce spaces of piecewise regular elements.
We set Ph H 1 = {

v ∈ L2(Ω)
∣∣ ∀ ℓ ∈IK , v

∣∣
Kℓ

∈ H 1(Kℓ)
}
, endowed with the scalar product:

(v, w)h := ∑
ℓ∈IK

(grad v,grad w)L2(Kℓ), ∥v∥2
h = ∑

ℓ∈IK

∥grad v∥2
L2(Kℓ).

We set Ph H1 = (
Ph H 1

)d , endowed with the scalar product:

(v,w)h := ∑
ℓ∈IK

(Grad v,Grad w)L2(Kℓ), ∥v∥2
h = ∑

ℓ∈IK

∥Grad v∥2
L2(Kℓ).

Let f ∈I i
F such that F f = ∂KL∩∂KR and n f is outward KL oriented. The jump of v ∈Ph H 1 across

the facet F f is defined as follows: [v]F f
:= v

∣∣
KL

− v
∣∣
KR

. For f ∈I b
F , we set: [v]F f

:= v
∣∣
F f

.

We set PhH(div) = {
v ∈ L2(Ω)

∣∣ ∀ ℓ ∈ IK ,v
∣∣
Kℓ

∈ H(div;Kℓ)
}
, and we define the operator divh

such that for all v ∈Ph H(div), divh v ∈ L2(Ω) is such that:

∀ q ∈ L2(Ω),
(
divh v, q

)
L2(Ω) =

∑
ℓ∈IK

(
divv, q

)
L2(Kℓ).

We use the notation A <∼ B for A <∼ C B where A and B are scalar quantities and C is a generic
positive constant which is independent of the sequence (Th)h and the quantities of interest.

We recall classical finite elements estimates [26]. Let K̂ be the reference simplex. For ℓ ∈ IK ,
we denote by Tℓ : K̂ → Kℓ an affine invertible mapping such that Tℓ(K̂ ) = Kℓ, Tℓ(∂K̂ ) = ∂Kℓ. We
set Tℓ(x̂) =Bℓx̂+bℓ, where Bℓ ∈Rd×d and bℓ ∈Rd . Let Jℓ = det(Bℓ). There holds:

|Jℓ| = d !|Kℓ|, ∥Bℓ∥ =
hℓ
ρK̂

, ∥Bℓ−1∥ = hK̂

ρℓ
. (22)

Let f ∈IF,ℓ. According to [22, Equation (2.17)], we have:

|F f ||Kℓ|−1 <∼ (ρℓ)−1. (23)

For v ∈ L2(Kℓ), we set v̂ℓ = v ◦ Tℓ. Let v ∈ Ph H 1. By changing the variable, grad v
∣∣
Kℓ

=
(Bℓ

−1)T gradx̂ v̂ℓ, and it holds:

∥grad v∥2
L2(Kℓ)

<∼ ∥Bℓ−1∥2|Kℓ|∥gradx̂ v̂ℓ∥2
L2(K̂ )

, (24)

∥gradx̂ v̂ℓ∥2
L2(K̂ )

<∼ ∥Bℓ∥2 |Kℓ|−1 ∥grad v∥2
L2(Kℓ). (25)

We will use the following notations:

∀ ℓ ∈IK , ∀ v ∈ L2(Kℓ), vℓ =
∫

Kℓ

v/|Kℓ|, (26)

∀ f ∈IF , ∀ v ∈ L2(F f ), v f =
∫

F f

v/|F f |. (27)

We recall the Poincaré–Steklov inequality in cells:

Proposition 8 ([26, Lemma 12.11]). For all ℓ ∈IK (Kℓ is a convex set), for all v ∈ H 1(Kℓ):

∥v − vℓ∥L2(Kℓ) ≤π−1hℓ∥grad v∥L2(Kℓ). (28)

We will need the following Poincaré–Steklov inequality on faces:

Proposition 9 ([27, Lemma 36.8]). For all ℓ ∈IK , for all v ∈ H 1(Kℓ) and for all f ∈IF,ℓ, we have:

∥v − v f ∥L2(F f )
<∼

( |F f |
|Kℓ|

) 1
2

hℓ∥grad v∥L2(Kℓ)
<∼ (σℓ)

1
2 (hℓ)

1
2 ∥grad v∥L2(Kℓ). (29)
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Proof. We have: v − v f = (v − vℓ)− |F |−1
∫

F f
(v − vℓ). Hence: ∥v − v f ∥L2(F f ) ≤ 2∥v − vℓ∥L2(F f ).

Changing the variable, using the continuity of the trace operator, we have: ∥v − vℓ∥L2(F f )
<∼

|F f |
1
2 ∥v̂ℓ− v̂ℓ∥H 1(K̂ ). Using (28) in K̂ , we obtain ∥v − vℓ∥L2(F f )

<∼ |F f |
1
2 ∥gradx̂ v̂ℓ∥L2(K̂ ). Using (25)

and applying (23), we get (29). □

For all D ⊂Rd , and k ∈N, we call P k (D) the set of order k polynomials on D , Pk (D) = (
P k (D)

)d ,
and we consider the broken polynomial space:

P k
disc(Th) = {

q ∈ L2(Ω)
∣∣ ∀ ℓ ∈IK , q

∣∣
Kℓ

∈ P k (Kℓ)
}
, Pk

disc(Th) := (
P k

disc(Th)
)d .

2.5. Nonconforming discretization and discrete well-posedness

The nonconforming finite element method was introduced by Crouzeix and Raviart in [22] to
solve Stokes problem (3). We approximate the vector space H1(Ω) component by component by
piecewise polynomials of order k ∈N⋆. Let us consider Xh (resp. X0,h), the space of nonconform-
ing approximation of H 1(Ω) (resp. H 1

0 (Ω)) of order k:

Xh =
{

vh ∈ P k
disc(Th)

∣∣∣∣ ∀ f ∈I i
F , ∀ qh ∈ P k−1(F f ),

∫
F f

[vh]F f qh = 0

}
,

X0,h =
{

vh ∈ Xh

∣∣∣∣ ∀ f ∈I b
F , ∀ qh ∈ P k−1(F f ),

∫
F f

vh qh = 0

}
.

(30)

The condition on the jumps of vh on the inner facets is often called the patch-test condition.
It allows to prove a discrete Poincaré–Steklov inequality, using Corollary 4, and the proof of [40,
Theorem D.1]. The proof of [27, Lemma 36.6] is similar, but the vector s defined in Corollary 4
is constructed in [27, Lemma 36.6] as the gradient of a scalar function, so that it gives a lower
estimate whenΩ is nonconvex. Alternative proofs are given in [11,48].

Proposition 10. The following discrete Poincaré–Steklov inequality holds:

∀ vh ∈ X0,h , ∥vh∥L2(Ω)
<∼σCΩhΩ∥vh∥h . (31)

Proof. Let vh ∈ X0,h . According to Corollary 4, there exists s ∈ H1(Ω) such that:

divs = vh and ∥s∥L2(Ω) +hΩ∥Grad s∥L2(Ω) ≤CΩhΩ∥vh∥L2(Ω) (32)

We have, by integration by parts:

∥vh∥2
L2(Ω) =

(
vh ,divs

)
L2(Ω) =− ∑

ℓ∈IK

(
grad vh ,s

)
L2(Kℓ) +

∑
ℓ∈IK

∑
f ∈IF,ℓ

(
vh ,s ·n f ,ℓ

)
L2(F f ). (33)

The first term can be bounded as follows:(
grad vh ,s

)
L2(Kℓ) ≤ ∥grad vh∥L2(Kℓ)∥s∥L2(Kℓ). (34)

Due to the patch-test, the second term reads:∑
ℓ∈IK

∑
f ∈IF,ℓ

(
vh ,s ·n f ,ℓ

)
L2(F f ) =

∑
ℓ∈IK

∑
f ∈IF,ℓ

(
vh − vh, f , (s−s f ) ·n f ,ℓ

)
L2(F f )

≤ ∑
ℓ∈IK

∑
f ∈IF,ℓ

∥∥vh − vh, f

∥∥
L2(F f )

∥∥(s−s f ) ·n f ,ℓ
∥∥

L2(F f ).
(35)

Using inequality (29), we have:∥∥vh − vh, f

∥∥
L2(F f )

∥∥(s−s f ) ·n f ,ℓ
∥∥

L2(F f )
<∼σℓhℓ∥grad vh∥L2(Kℓ)∥Grad s∥L2(Kℓ). (36)
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Using (36) in (35), combining the result with (34), inequality (33) now reads:

∥vh∥2
L2(Ω)

<∼
∑
ℓ∈IK

∥grad vh∥L2(Kℓ)

(
∥s∥L2(Kℓ) +σℓhℓ∥Grad s∥L2(Kℓ)

)
<∼σ

∑
ℓ∈IK

∥grad vh∥L2(Kℓ)

(
∥s∥L2(Kℓ) +hΩ∥Grad s∥L2(Kℓ)

)
.

We obtain (31) using the discrete Cauchy–Schwarz inequality and (32). □

As a consequence of Proposition 10, we have the following result.

Proposition 11. The broken norm vh →∥vh∥h is a norm over X0,h .

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order k is Xh = (Xh)d

(resp. X0,h = (X0,h)d ). We set Xh := X0,h ×Qh where Qh = P k−1
disc (Th)∩L2

zmv(Ω). We deduce from
Proposition 11 the following result.

Proposition 12. The broken norm defined below is a norm on Xh :

∥∥( · , · )∥∥Xh
:


Xh −→R

(vh , qh) 7−→
(
∥vh∥2

h +ν−2∥qh∥2
L2(Ω)

) 1
2

Thus, the product space Xh endowed with the broken norm ∥( · , · )∥Xh is a Hilbert space. We
consider the discrete continuous bilinear form aS,h( · , · ) such that:

aS,h :

{
Xh ×Xh −→R

(u′
h , p ′

h)× (vh , qh) 7−→ ν(u′
h ,vh)h − (

divh vh , p ′
h

)
L2(Ω) −

(
divh u′

h , qh
)

L2(Ω)

Let us set Vh the discrete space of discrete divergence-free velocities :

Vh := {
vh ∈ X0,h

∣∣ ∀ qh ∈Qh ,
(
divh vh , qh

)
L2(Ω) = 0

}
. (37)

We recall that the velocities in Vh are piecewise divergence-free:

Proposition 13 ([13, Lemma 3.1]). For all vh ∈ Vh , for all ℓ ∈IK , divvh
∣∣
Kℓ

= 0.

Proof. Let vh ∈ Vh . Integrating by parts and using the patch-test, we have:

(divh vh ,1)L2(Ω) =
∑
ℓ∈IK

∫
Kℓ

divvh = ∑
f ∈IF

∫
F f

[vh]F f ·n f = 0.

Let qh ∈ P k−1
disc (Th) and q

h
= ∫

Ω qh/|Ω|. Then qh − q
h
∈ Qh so that: (divh vh , qh − q

h
)L2(Ω) = 0.

Hence, we have: (divh vh , qh)L2(Ω) = (divh vh , q
h

)L2(Ω) = 0. Let ℓ ∈ IK . Let qh ∈ P k−1
disc (Th) such

that qh
∣∣
Kℓ

= divvh
∣∣
Kℓ

and for all ℓ′ ∈ IK , ℓ′ ̸= ℓ, qh
∣∣
Kℓ′

= 0. We have: (divh vh , qh)L2(Ω) = 0 and

(divh vh , qh)L2(Ω) = (divvh , qh)L2(Kℓ) = ∥divvh∥2
L2(Kℓ)

. Hence ∥divvh∥2
L2(Kℓ)

= 0. □

Let Jh : X0,h → Y0,h , with Y0,h = {
vh ∈ H 1

0 (Ω)
∣∣ ∀ ℓ ∈ IK , vh

∣∣
Kℓ

∈ P k (Kℓ)
}

be the averaging
operator described in [26, §22.4.1]. There exists a constant C nc

Jh
≈ σ and independent of h such

that:

∀ vh ∈ X0,h , ∥Jh vh∥H 1
0 (Ω) ≤C nc

Jh
∥vh∥h . (38)

Let ℓf ∈L (Xh ,R) be such that for all (vh , qh) ∈Xh :

ℓf
(
(vh , qh)

)={
(f,vh)L2(Ω) if f ∈ L2(Ω),

〈f,Jh(vh)〉H1
0(Ω) if f ∈ H−1(Ω).

The nonconforming discretization of Problem (12) reads:

Find (uh , ph) ∈Xh such that aS,h
(
(uh , ph), (vh , qh)

)= ℓf
(
(vh , qh)

) ∀ (vh , qh) ∈Xh . (39)
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To prove that Problem (39) is well-posed, we will also use the T-coercivity theory. We do not need
the well-posedness of the continuous problem, i.e. Proposition 6, but we will follow its proof,
using a Fortin operator. This operator will be explained later, using the discrete basis functions.
We will see that the discrete stability constant depends on this operator (hence polynomial
order k).

Proposition 14. Suppose that there exists a Fortin operatorΠnc : H1(Ω) → Xh such that

∃Cnc such that ∀ v ∈ H1(Ω), ∥Πncv∥h ≤Cnc∥Grad v∥L2(Ω), (40)

∀ v ∈ H1(Ω), (divhΠncv, qh)L2(Ω) = (divv, qh)L2(Ω), ∀ q ∈Qh , (41)

where the constant Cnc does not depend on h. Then, the bilinear form aS,h( · , · ) is T -coercive:

∃ Th ∈L (Xh), bijective, ∃αTh > 0,∀ (u′
h , p ′

h) ∈Xh ,

aS,h

(
(u′

h , p ′
h),Th

(
(u′

h , p ′
h)

))≥αTh

∥∥(u′
h , p ′

h)
∥∥2

Xh
.

(42)

We will exhibit Cnc for k = 1, d = 2,3 in Section 3.1, obtaining Cnc = 1; and then for k = 2, d = 2
in Section 3.3, obtaining Cnc =σ2 +1. Let us prove Proposition 14.

Proof. We follow the proof of Proposition 6. Let us consider (u′
h , p ′

h) ∈ Xh and let us build
(v⋆h , q⋆h ) ∈Xh satisfying (2) (with V =Xh). We need three main steps.

Step 1. According to Proposition 3, there exists ṽp ′
h
∈ V⊥ such that div ṽp ′

h
= p ′

h in Ω and

∥ṽp ′
h
∥H1

0(Ω) ≤ Cdiv∥p ′
h∥L2(Ω). Let us set vp ′

h
= ν−1ṽp ′

h
. Consider vh,p ′

h
= Πncvp ′

h
, for all qh ∈ Qh

we have: (
divh vh,p ′

h
, qh

)
L2(Ω) = ν−1(p ′

h , qh)L2(Ω) and ∥vh,p ′
h
∥h ≤ ν−1C nc

div∥p ′
h∥L2(Ω) (43)

where C nc
div =CncCdiv. Let us set (v⋆h , q⋆h ) := (

γncu′
h −vh,p ′

h
,−γncp ′

h

)
, with γnc > 0. We obtain:

aS,h
(
(u′

h , p ′
h), (v⋆h , q⋆h )

)= νγnc∥u′
h∥2

h +ν−1∥p ′
h∥2

L2(Ω) −ν(u′
h ,vh,p ′

h
)h . (44)

Step 2. In order to bound the last term of (44), we use Young inequality and then inequality (43)
so that for all ηnc > 0: (

u′
h ,vh,p ′

h

)
h ≤ ηnc

2
∥u′

h∥2
h + η−1

nc

2

(C nc
div

ν

)2

∥p ′
h∥2

L2(Ω). (45)

Step 3. Using the bound (45) in (44) and choosing ηnc = γnc, we get:

aS,h
(
(u′

h , p ′
h), (v⋆h , q⋆h )

)≥ ν(
γnc

2
∥u′

h∥2
h +ν−2

(
1− (γnc)−1

2
(C nc

div)2
)
∥p ′

h∥2
L2(Ω)

)
.

Consider now γnc = (C nc
div)2. We obtain:

aS,h
(
(u′

h , p ′
h), (v⋆h , q⋆h )

)≥αT C nc
min

∥∥(u′
h , p ′

h)
∥∥2

Xh
, where C nc

min = min
(
(C nc

div)2,1
)
.

We obtain (42) with αTh =αT C nc
min. Suppose that Cnc ≥ 1. Then αTh =αT = ν

2 .

The operator Th such that Th(u′
h , p ′

h) = (v⋆h , p⋆h ) is linear and continuous. We have indeed:∥∥Th(u′
h , p ′

h)
∥∥2

Xh
= ∥v⋆h∥2

h +ν−2∥q⋆h ∥2
L2(Ω) ≤ (C nc

max)2∥∥(u′
h , p ′

h)
∥∥2

Xh

where C nc
max =C nc

div

(
max

(
2+ (C nc

div)2,2(C nc
div)2

)) 1
2 .

Remark that, given (v⋆h , q⋆h ) ∈ Xh , choosing (u′
h , p ′

h) = (
γ−1

nc v⋆h − γ−2
nc vh,q⋆h

,−γ−1
nc q⋆h

)
yields

Th
(
(u′

h , p ′
h)

)= (v⋆h , q⋆h ). Hence, the operator Th ∈L (Xh) is bijective. □

Remark 15. We recover the first Banach–Nečas–Babuška condition [27, Theorem 25.9, (BNB1)]:

aS,h
(
(u′

h , p ′
h), (v⋆h , q⋆h )

)≥αTh (C nc
max)−1∥∥(u′

h , p ′
h)

∥∥
Xh

∥∥(v⋆h , q⋆h )
∥∥

Xh
.
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We can now prove the discrete counterpart of Theorem 7.

Theorem 16. Suppose that there exists a Fortin operator Πnc : H1(Ω) → Xh satifying (40)-(41).
Then Problem (39) is well-posed. It admits one and only one solution (uh , ph) such that:

if f ∈ L2(Ω) : ∥uh∥h <∼ ν−1C nc
0 ∥f∥L2(Ω), ∥ph∥L2(Ω)

<∼ 2C nc
0 C nc

div∥f∥L2(Ω),

if f ∈ H−1(Ω) : ∥uh∥h <∼ ν−1C nc
Jh

∥f∥H−1(Ω), ∥ph∥L2(Ω)
<∼ 2C nc

Jh
C nc

div∥f∥H−1(Ω),
(46)

where C nc
0 =σCΩhΩ.

Proof. Consider (uh , ph) the unique solution of Problem (39). Choosing vh = 0, we obtain that
divh uh = 0. Let f ∈ L2(Ω). Now, choosing vh = uh in (39), using Cauchy–Schwarz inequality, we get
that: ∥uh∥h ≤ ν−1σCΩhΩ∥f∥L2(Ω) using inequality (31). Consider (vh , qh) = (vh,ph

,0) in (39), where
vh,ph

=Πncvph is built as vh,p ′
h

in Step 1 of the proof of Proposition 14, setting p ′
h = ph . Suppose

that f ∈ L2(Ω). Notice that ν−1∥ph∥2
L2(Ω)

= ν(uh ,vh,ph
)h − (f,vh,ph

)L2(Ω). Using Cauchy–Schwarz

inequality, we have: ν−1∥ph∥2
L2(Ω)

≤ ν∥uh∥h∥vh,ph
∥h + ∥f∥L2(Ω)∥vh,ph

∥L2(Ω). Using Poincaré–
Steklov inequality (31), hypothesis (40), and the previous estimate on ∥uh∥h , we have:

∥ph∥2
L2(Ω)

<∼ 2σCΩhΩ∥f∥L2(Ω)∥vh,ph
∥h <∼ 2σCΩhΩC nc

div∥f∥L2(Ω)∥ph∥L2(Ω).

Let f ∈ H−1(Ω). We apply the same reasoning, using inequality (38). □

As a corollary of Theorem 16, the following a priori error estimates follow:

Corollary 17 ([22, Theorems 3, 4, 6], [29, Equation (47)]). Under the assumption of Theorem 16,
suppose that (u, p) ∈ (

H1+k (Ω)∩H1
0(Ω)

)× (
H k (Ω)∩L2

zmv(Ω)
)
, we have the estimates:

∥u−uh∥h <∼σl hk(|u|Hk+1(Ω) +ν−1|p|H k (Ω)

)
, (47)

ν−1∥p −ph∥L2(Ω)
<∼σl hk(|u|Hk+1(Ω) +ν−1|p|H k (Ω)

)
. (48)

Suppose moreover that the domainΩ is convex. Then we have:

∥u−uh∥L2(Ω)
<∼σ2l hk+1(|u|Hk+1(Ω) +ν−1|p|H k (Ω)

)
. (49)

The hidden constants depend on k but they don’t depend on the mesh. The parameterσ is the shape
regularity parameter and the exponent l ∈ N⋆ depends on k. When k = 1, d = 2,3, we have l = 1,
and when k = 2, d = 2, we have l = 2.

When Ω is not convex, the exponent on h in Equation (49) is equal to k + s where s ∈]0,1[
depends onΩ (cf. [27, Theorem 31.33]).

The main issue with nonconforming mixed finite elements is the construction of the basis
functions. In a recent paper, Sauter explains such a construction in two dimensions [41, Theo-
rem 1.3], and gives a bound to the discrete counterpart βT (Ω) of β(Ω) defined in (7):

βT (Ω) = inf
qh∈Qh \{0}

sup
vh∈X0,h \{0}

(divh vh , qh)L2(Ω)

∥qh∥L2(Ω)∥vh∥h
≥ cT

(
log(k +1)

)−α, (50)

where the parameter α is explicit and depends on k and on the mesh topology; and the constant
cT depends only on the shape-regularity of the mesh.
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3. Examples of nonconforming discretization for Stokes problem

3.1. Nonconforming Crouzeix–Raviart mixed finite elements for k = 1

We study the lowest order nonconforming Crouzeix–Raviart mixed finite elements [22]. Let us
consider XCR (resp. X0,CR), the space of nonconforming approximation of H 1(Ω) (resp. H 1

0 (Ω)) of
order 1:

XCR =
{

vh ∈ P 1
disc(Th)

∣∣∣∣ ∀ f ∈I i
F ,

∫
F f

[vh]F f = 0

}
,

X0,CR =
{

vh ∈ XCR

∣∣∣∣ ∀ f ∈I b
F ,

∫
F f

vh = 0

}
.

(51)

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order 1 is XCR = (XCR)d

(resp. X0,CR = (X0,CR)d ). We set XCR := X0,CR ×QCR where QCR = P 0
disc(Th)∩L2

zmv(Ω).
We can endow XCR with the basis (ψ f ) f ∈IF such that:

∀ ℓ ∈IK , ψ f
∣∣
Kℓ

=
{

1−dλi ,ℓ if f ∈IF,ℓ,

0 otherwise,

where i ∈ IS is such that Si is the vertex opposite to F f in Kℓ. We then have ψ f
∣∣
F f

= 1, so that

[ψ f ]F f = 0 if f ∈I i
F , and for all f , f ′ ∈IF , f ′ ̸= f ,

∫
F f ′

ψ f = 0.

We have: XCR = vect
(
(ψ f ) f ∈IF

)
and X0,CR = vect

(
(ψ f ) f ∈I i

F

)
.

The Crouzeix–Raviart interpolation operator πCR for scalar functions is defined by:

πCR :


H 1(Ω) −→ XCR

v 7−→ ∑
f ∈IF

π f vψ f
where π f v = 1

|F f |
∫

F f

v.

Notice that ∀ f ∈ IF ,
∫

F f
πCRv = ∫

F f
v . Moreover, the Crouzeix–Raviart interpolation operator

preserves the constants, so that πCRvΩ = vΩ where vΩ = ∫
Ω v/|Ω|. We recall that for k = 1, the

coefficient Cnc in (40) is equal to 1:

Lemma 18 ([3, Lemma 2]). The Crouzeix–Raviart interpolation operator πCR is such that:

∀ v ∈ H 1(Ω), ∥πCRv∥h ≤ ∥grad v∥L2(Ω). (52)

Proof. We have, integrating by parts twice and using Cauchy–Schwarz inequality:

gradπCRv
∣∣
Kℓ

= |Kℓ|−1
∫

Kℓ

gradπCRv

= |Kℓ|−1
∑

f ∈IF,ℓ

∫
F f

πCRvn f

= |Kℓ|−1
∑

f ∈IF,ℓ

∫
F f

vn f

= |Kℓ|−1
∫

Kℓ

grad v,∣∣gradπCRv
∣∣
Kℓ

∣∣≤ |Kℓ|−
1
2
∥∥grad v

∥∥
L2(Kℓ)

⇒ ∥∥gradπCRv
∥∥2

L2(Kℓ) ≤
∥∥grad v

∥∥2
L2(Kℓ).

Summing these local estimates over ℓ ∈IK , we obtain (52). □

For a vector v ∈ H1(Ω) of components (vd ′ )d
d ′=1, the Crouzeix–Raviart interpolation operator is

such that: ΠCRv = (
πCRvd ′

)d
d ′=1. Let us setΠ f v = (

π f vd ′
)d

d ′=1.
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Lemma 19. The Crouzeix–Raviart interpolation operator ΠCR can play the role of the Fortin
operator:

∀ v ∈ H1(Ω), ∥ΠCRv∥h ≤ ∥Grad v∥L2(Ω), (53)

∀ v ∈ H1(Ω),
(
divhΠCRv, qh

)
L2(Ω) =

(
divv, qh

)
L2(Ω), ∀ q ∈Qh . (54)

Moreover, for all v ∈ P1(Ω),ΠCRv = v.

Proof. We obtain (53) applying Lemma 18 component by component. By integrating by parts,
we have ∀ v ∈ H1(Ω), ∀ ℓ ∈IK :∫

Kℓ

divΠCRv = ∑
f ∈IF,ℓ

∫
F f

ΠCRv ·n f =
∑

f ∈IF,ℓ

∫
F f

Π f v ·n f =
∑

f ∈IF,ℓ

∫
F f

v ·n f =
∫

Kℓ

divv,

so that (54) is satisfied. □

We can apply the T-coercivity theory to show the following result:

Theorem 20. Let Xh = XCR. Then the continuous bilinear form aS,h( · , · ) is Th-coercive and
Problem (39) is well-posed.

Proof. Using estimates (53) and (31), we apply the proof of Theorem 16. □

Since the constant of the interpolation operator ΠCR is equal to 1, we have C nc
min =

min
(
(Cdiv)2,1

) = 1 and C nc
max = Cmax: the stability constant of the nonconforming Crouzeix–

Raviart mixed finite elements is independent of the mesh. This is not the case for higher order
(see [14, Theorem 2.2]).

3.2. Comments on higher-order methods

For higher order, we cannot build the interpolation operator component by component, since
higher-order divergence moments must be preserved. Thus, for k > 1, we must build Πnc so that
for all v ∈ H1(Ω), for all ℓ ∈IK , for all q ∈ P k−1(Kℓ):∫

Kℓ

q divΠncv =
∫

Kℓ

q divv.

We recall that by integration by parts, we have:∫
Kℓ

q divΠncv+
∫

Kℓ

grad q ·Πncv =
∫
∂Kℓ

qΠncv ·n
∣∣
∂Kℓ

. (55)

Hence, to obtain a local estimate of
∥∥GradΠncv

∥∥
L2(Kℓ), we will need the following Lemma:

Lemma 21. Let v ∈ H1(Kℓ) and q ∈ P k−1(Kℓ)∩L2
zmv(Kℓ). We have:∣∣∣∣∫

∂Kℓ

q(v−vℓ) ·n
∣∣
∂Kℓ

∣∣∣∣≤ (p
d +1

)
π−1hℓ

∥∥grad q
∥∥

L2(Kℓ)

∥∥Grad v
∥∥
L2(Kℓ) (56)

Proof. We have by integration by parts, and then using Cauchy–Schwarz inequality:∣∣∣∣∫
∂Kℓ

q(v−vℓ) ·n
∣∣
∂Kℓ

∣∣∣∣≤ ∣∣∣∣∫
Kℓ

q div(v−vℓ)

∣∣∣∣+ ∣∣∣∣∫
Kℓ

grad q · (v−vℓ)

∣∣∣∣
≤
p

d∥q∥L2(Kℓ)

∥∥Grad(v−vℓ)
∥∥
L2(Kℓ) +

∥∥grad q
∥∥

L2(Kℓ)

∥∥(v−vℓ)
∥∥

L2(Kℓ)

≤ (p
d +1

)
π−1hℓ

∥∥grad q
∥∥

L2(Kℓ)

∥∥Grad v
∥∥
L2(Kℓ), using (28) twice. □
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In the next section, we will see that for k = 2, d = 2, we will need Lemma 21. For k ≥ 3, it could
be necessary to bound the tangential components of v−vℓ. To do so, we would need to preserve
curl integrals on Kℓ. Indeed, by integration by parts, we have:

For d = 2, v ∈ H1(Ω), q ∈ P k−1(Kℓ) :
∫

Kℓ

q
(
curl q ·v−curlvq

)= ∫
∂Kℓ

qv×n
∣∣
∂Kℓ

.

For d = 3,v ∈ H1(Ω),w ∈ Pk−1(Kℓ) :
∫

Kℓ

(
w ·curl v−curl w ·v

)=∫
∂Kℓ

(
n
∣∣
∂Kℓ

×v×n
∣∣
∂Kℓ

) · (w×n
∣∣
∂Kℓ

)
.

3.3. Fortin–Soulie mixed finite elements

We consider here the case k = 2, d = 2 and we study the so-called Fortin–Soulie mixed finite
elements [29]. We consider a shape-regular triangulation sequence (Th)h .

Let us consider XFS (resp. X0,FS), the space of nonconforming approximation of H 1(Ω) (resp.
H 1

0 (Ω)) of order 2:

XFS =
{

vh ∈ P 2
disc(Th)

∣∣∣∣ ∀ f ∈I i
F , ∀ qh ∈ P 1(F f ),

∫
F f

[vh]F f qh = 0

}
,

X0,FS =
{

vh ∈ XFS

∣∣∣∣ ∀ f ∈I b
F , ∀ qh ∈ P 1(F f ),

∫
F f

vh qh = 0

}
.

(57)

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order 2 is XFS = (XFS)2

(resp. X0,FS = (X0,FS)2). We set XFS = X0,FS ×QFS where QFS := P 1
disc(Th)∩L2

zmv(Ω).
The building of a basis for X0,FS is more involved than for X0,CR since we cannot use two points

per facet as degrees of freedom. Indeed, for all ℓ ∈ IK , there exists a polynomial of order 2
vanishing on the Gauss–Legendre points of the facets of the boundary ∂Kℓ. Let f ∈ IF . The
barycentric coordinates of the two Gauss–Legendre points (p+, f , p−, f ) on F f are such that:

p+, f = (c+,c−), p−, f = (c−,c+), where c± = (
1±1/

p
3
)
/2.

These points can be used to integrate exactly order three polynomials:

∀ g ∈ P 3(F f ),
∫

F f

g = |F f |
2

(
g (p+, f )+ g (p−, f )

)
.

For all ℓ ∈ IK , we define the quadratic function φKℓ
that vanishes on the six Gauss–Legendre

points of the facets of Kℓ (see Figure 1):

φKℓ
:= 2−3

∑
i∈IS,ℓ

λ2
i ,ℓ such that ∀ f ∈IF,ℓ,∀ q ∈ P 1(F f ),

∫
F f

φKℓ
q = 0. (58)

p1 p2

p3

p4

p5

p6

Figure 1. The six Gauss–Legendre points of an element Kℓ and the elliptic function φKℓ
.
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We consider the set of the elliptic functions φKℓ
:

Φh := {
φh ∈ L2(Ω)

∣∣ ∀ ℓ ∈IK , φh
∣∣
Kℓ

= vKℓ
φKℓ

, vKℓ
∈R}

. (59)

We also define the spaces of P 2-Lagrange functions:

XLG := {
vh ∈ H 1(Ω)

∣∣ ∀ ℓ ∈IK , vh
∣∣
Kℓ

∈ P 2(Kℓ)
}
, X0,LG := {

vh ∈ XLG
∣∣vh

∣∣
∂Ω = 0

}
.

The proposition below allows to build a basis for X0,FS:

Proposition 22 ([29, Proposition 1]). We have the following decomposition: XFS = XLG+Φh with
dim(XLG ∩Φh) = 1. Any function of XFS can be written as the sum of a function of XLG and a
function ofΦh . This representation can be made unique by specifying one degree of freedom.

Notice thatΦh ∩XLG = vect(vΦ), where for all ℓ ∈IK , vΦ
∣∣
Kℓ

=φKℓ
. Then, counting the degrees

of freedom, one can show that dim(XFS) = dim(XLG) + dim(Φh) + 1. For problems involving
Dirichlet boundary conditions we can thus prove that for X0,FS the representation is unique and
X0,FS = X0,LG ⊕Φh . We have XLG = vect

(
(φSi )i∈IS , (φF f ) f ∈IF

)
where the basis functions are such

that:

∀ i , j ∈IS ,∀ f , f ′ ∈IF : φSi (S j ) = δi , j ,φSi (M f ) = 0, φM f (M f ′ ) = δ f , f ′ ,φM f (Si ) = 0.

For all ℓ ∈IK , we will denote by
(
φℓ, j

)6
j=1 the local nodal basis such that:(

φℓ, j
)3

j=1 =
(
φSi

∣∣
Kℓ

)
i∈IS,ℓ

and
(
φℓ, j

)6
j=4 =

(
φF f

∣∣
Kℓ

)
f ∈IF,ℓ

.

The spaces XFS and X0,FS are such that:

XFS = vect
(
(φSi )i∈IS , (φF f ) f ∈IF , (φKℓ

)ℓ∈IK

)
,

X0,FS = vect
(
(φSi )i∈I i

S
, (φF f ) f ∈I i

F
, (φKℓ

)ℓ∈IK

)
.

(60)

We propose here an alternative definition of the Fortin interpolation operator proposed in [29].
Let us first recall the Scott–Zhang interpolation operator [18,44]. For all i ∈ IS , we choose some
ℓi ∈IK ,i , and we build the L2(Kℓi )-dual basis

(
φ̃ℓi , j

)6
j=1 of the local nodal basis such that:

∀ j , j ′ ∈ {
1, . . . ,6

}
,
∫

Kℓi

φ̃ℓi , jφℓi , j ′ = δ j , j ′ .

Let us define the Fortin–Soulie interpolation operator for scalar functions by:

πFS :


H 1(Ω) −→ XFS

v 7−→ π̃v + ∑
ℓ∈IK

vKℓ
φKℓ

with π̃v = ∑
i∈IS

vSiφSi +
∑

f ∈IF

vF f φF f . (61)

• The coefficients (vSi )i∈IS are fixed so that: ∀ i ∈ IS , vSi = ∫
Kℓ,i

vφ̃ℓi , ji , where ji is the

index such that
∫

Kℓi
φ̃ℓi , jiφSi

∣∣
Kℓi

= 1.

• The coefficients (vF f ) f ∈IF are fixed so that: ∀ f ∈IF ,
∫

F f
π̃v = ∫

F f
v .

• The coefficients vKℓ
are fixed so that:

∫
Kℓ
πFSv = ∫

Kℓ
v .

The definition (61) is more general than the one given in [29], which holds for v ∈ H 2(Ω).
We set vSi := (

π̃v1(Si ), π̃v2(Si )
)T and vF f

:= (
π̃v1(F f ), π̃v2(F f )

)T .
We can define two different Fortin–Soulie interpolation operators for vector functions. First,

let

Π̃FS :


H1(Ω) −→ XFS

v 7−→ ∑
i∈IS

vSiφSi +
∑

f ∈IF

vF f φF f +
∑
ℓ∈IK

ṽKℓ
φKℓ

,

where the coefficients (ṽKℓ
)ℓ∈IK are such that:

∀ ℓ ∈IK ,
∫

Kℓ

Π̃FSv =
∫

Kℓ

v. (62)
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The interpolation operator Π̃FS preserves the local averages, but it doesn’t preserve the diver-
gence. We then define a second interpolation operator which preserves the divergence in a weak
sense:

ΠFS :


H1(Ω) −→ XFS

v 7−→ ∑
i∈IS

vSiφSi +
∑

f ∈IF

vF f φF f +
∑
ℓ∈IK

vKℓ
φKℓ

.

For all ℓ ∈ IK , the vector coefficient vKℓ
∈ R2 is now fixed so that condition (41) is satisfied. We

can impose for example that the projectionΠFSv satisfies:∫
Kℓ

T −1
ℓ (x)divΠFSv =

∫
Kℓ

T −1
ℓ (x)divv. (63)

Notice that due to (58), the patch-test condition is still satisfied.

Proposition 23. The Fortin–Soulie interpolation operator ΠFS is such for all 0 ≤ s ≤ 1, for all
v ∈ H1+s (Ω), we have:

∀ ℓ ∈IK ,
∥∥Grad

(
ΠFSv−v

)∥∥
L2(Kℓ)

<∼ (σℓ)2(hℓ)s |v|H1+s (Kℓ), (64)∣∣ΠFSv−v
∣∣
h

<∼σ2hs |v|H1+s (Ω). (65)

Remark 24. Albeit we are inspired by the proof of [22, Lemma 4], we changed the transition from
Equation (4.27) to (4.29) there by using only the properties related to the normal component of
the velocity, cf. (56). In the original proof, one needs a stronger assumption on the regularity of
v (namely, v ∈ ⋂

0<s<sΩ H1+s (Ω) with sΩ > 1
2 ). Finally, because we do not split the integral over

the boundaries of elements into the sum of d +1 integrals over the facets, we obtain purely local
estimates, which appear to be new for the Fortin–Soulie element in the case of low-regularity
fields v.

Proof of Proposition 23. Let v ∈ H1(Ω). We have:∥∥Grad
(
ΠFSv−v

)∥∥
L2(Kℓ) ≤

∥∥Grad
(
ΠFSv− Π̃FSv

)∥∥
L2(Kℓ) +

∥∥Grad
(
Π̃FSv−v

)∥∥
L2(Kℓ). (66)

Notice that for all ℓ ∈IK ,
(
ΠFSv− Π̃FSv

)∣∣
Kℓ

= (vKℓ
− ṽKℓ

)φKℓ
. Using (24), we obtain that:∥∥Grad

(
ΠFSv− Π̃FSv

)∥∥
L2(Kℓ)

<∼ |vKℓ
− ṽKℓ

|∥∥gradφKℓ

∥∥
L2(Kℓ)

<∼ ∥Bℓ−1∥|Kℓ|
1
2 |vKℓ

− ṽKℓ
|. (67)

Let us estimate |vKℓ
− ṽKℓ

|. On the one hand, we have2:∫
Kℓ

(
ΠFSv− Π̃FSv

)= ∫
Kℓ

(
ΠFSv−v

)
from (62),

=
∫
∂Kℓ

x
(
ΠFSv−v

) ·n
∣∣
∂Kℓ

by IBP and using (63),

=
∫
∂Kℓ

(x−x)
(
ΠFSv−v

) ·n
∣∣
∂Kℓ

since
∫
∂Kℓ

(
ΠFSv−v

) ·n
∣∣
∂Kℓ

= 0,

=
∫
∂Kℓ

(x−x)
(
Π̃FSv−v

) ·n
∣∣
∂Kℓ

from (58).

On the other hand, it holds:
∫

Kℓ

(
ΠFSv− Π̃FSv

)= (vKℓ
− ṽKℓ

)
∫

Kℓ
φKℓ

= |Kℓ|
4 (vKℓ

− ṽKℓ
).

Hence we have:

|vKℓ
− ṽKℓ

| ≤ 4|Kℓ|−1
∣∣∣∣∫
∂Kℓ

(x−x)
(
Π̃FSv−v

) ·n
∣∣
∂Kℓ

∣∣∣∣. (68)

2Let w = ΠFSv− v = (w1, w2)T and x := (x1, x2)T . By integration by parts, we have for d ′ = 1,2:
∫
∂Kℓ

xd ′w ·n|∂Kℓ
=∫

Kℓ
xd ′ divw+∫

Kℓ
w ·ed ′ . Due to (63),

∫
Kℓ

xd ′ divw = 0, so that for d ′ = 1,2:
∫

Kℓ
wd ′ = ∫

∂Kℓ
xd ′w ·n|∂Kℓ

.
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In order to bound the right-hand side of (68) component by component, we can use Lemma 21,
with q = xd ′ −∫

Kℓ
xd ′/|Kℓ| (d ′ = 1,2), so that ∥grad q∥L2(Kℓ) = |Kℓ|

1
2 . We obtain:

|vKℓ
− ṽKℓ

| ≤ 4d × (p
d +1

)|Kℓ|−
1
2π−1hℓ

∥∥Grad
(
Π̃FSv−v

)∥∥
L2(Kℓ). (69)

Combining (67) and (69), we have:∥∥Grad
(
ΠFSv− Π̃FSv

)∥∥
L2(Kℓ)

<∼ ∥Bℓ−1∥hℓ
∥∥Grad

(
Π̃FSv−v

)∥∥
L2(Kℓ)

<∼σℓ
∥∥Grad

(
Π̃FSv−v

)∥∥
L2(Kℓ).

For all v ∈ P2(Kℓ) we have Π̃FS(v) = v and ̂̃ΠFSv̂ℓ = v̂ℓ = v̂ℓ. Hence, using Bramble–Hilbert/Deny–
Lions Lemma [26, Lemma 11.9], we have for m = 0,1, for all v ∈ H1+m(Ω):

∀ ℓ ∈IK ,
∥∥Grad

(
Π̃FSv−v

)∥∥
L2(Kℓ)

<∼σℓ(hℓ)m |v|H1+m (Kℓ).

We deduce that for m = 0,1, for all v ∈ H1+m(Ω):

∀ ℓ ∈IK ,
∥∥Grad

(
ΠFSv−v

)∥∥
L2(Kℓ)

<∼ (σℓ)2(hℓ)m |v|H1+m (Kℓ),∥∥Grad
(
ΠFSv−v

)∥∥
L2(Ω)

<∼σ2hm |v|H1+m (Ω) by summation.
(70)

Using interpolation property [46, Lemma 22.2], we obtain (64) and (65). □

Hence, using the triangular inequality, we have:∥∥GradΠFSv
∥∥
L2(Kℓ) ≤

∥∥Grad
(
ΠFSv−v

)∥∥
L2(Kℓ) +

∥∥Grad v
∥∥
L2(Kℓ)

<∼
(
(σℓ)2 +1

)∥v∥H1(Kℓ).

By summation over ℓ, we deduce that the coefficient Cnc in (40) is here equal to σ2 +1. We recall
that the discrete Poincaré–Steklov inequality (31) holds.

Theorem 25. Let Xh = XFS. Then the continuous bilinear form aS,h( · , · ) is Th-coercive and
Problem (39) is well-posed.

Proof. According to Proposition 23, the Fortin–Soulie interpolation operator ΠFS satisfies (40)-
(41), so that we can apply the proof of Theorem 16. □

Notice that in the recent paper [42], the inf-sup condition of the mixed Fortin–Soulie finite
element is proved directly on a triangle and then using the macro-element technique [45], but it
seems difficult to use this technique to build a Fortin operator, which is needed to compute error
estimates.

The study can be extended to higher orders for d = 2 using the following papers: [4] for k ≥ 4,
k even, [15] for k = 3 and [14] for k ≥ 5, k odd. In [24], the authors propose a local Fortin operator
for the lowest order Taylor–Hood finite element [47] for d = 3.

4. Numerical results improving consistency

4.1. H(div)-conforming velocity reconstruction

Consider Problem (3) with data f =−gradφ, where φ ∈ H 1(Ω)∩L2
zmv(Ω). The unique solution is

then (u, p) := (0,φ). By integrating by parts, the source term in (9) reads:

∀ v ∈ H1
0(Ω),

∫
Ω

f ·v =
∫
Ω
φdivv. (71)

Recall that the nonconforming space Xh defined in (30) is a subset of Ph H1: using a noncon-
forming finite element method, the integration by parts must be done on each element of the
triangulation, and we have:

∀ v ∈Ph H1,
∫
Ω

f ·v = (
divh v,φ

)
L2(Ω) +

∑
f ∈IF

∫
F f

[v]F f ·n f φ. (72)
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Using Lemma 21, we have:
∑

f ∈IF

∫
F f

[v]F f · n f φ <∼ h∥vh∥h∥gradφ∥L2(Ω). Applying (72) to the
right-hand side of (39) and choosing vh = uh , it holds: ν∥uh∥h <∼ h∥gradφ∥L2(Ω) (as expected
by (47)). Hence, the term with the jumps acts as a numerical source for the discrete velocity,
whose numerical influence is proportional to h/ν. Thus, we cannot obtain exactly uh = 0. Linke
proposed in [38] to project the test function vh ∈ Xh on a discrete subspace of H(div;Ω), like
Raviart–Thomas or Brezzi–Douglas–Marini finite elements (see [12,39], or the monograph [8]).
LetΠdiv : X0,h → Pk

disc(Th)∩H0(div;Ω) be some interpolation operator built so that for all vh ∈ X0,h ,
for all ℓ ∈IK ,

(
divΠdivvh

)∣∣
Kℓ

= divvh
∣∣
Kℓ

. Integrating by parts, we have for all vh ∈ X0,h :∫
Ω

f ·Πdivvh =
∫
Ω
φdivΠdivvh = ∑

ℓ∈Kℓ

∫
Kℓ

φdivΠdivvh = ∑
ℓ∈Kℓ

∫
Kℓ

φdivvh = (
divh vh ,φ

)
L2(Ω).

The projectionΠdiv allows to eliminate the terms of the integrals of the jumps in (72).
Let us write Problem (39) as:

Find (uh , ph) ∈Xh such that aS,h
(
(uh , ph), (vh , qh)

)= ℓf
(
(Πdivvh , qh)

) ∀ (vh , qh) ∈Xh . (73)

In the case of Xh =XCR and a projection on Brezzi–Douglas–Marini finite elements, the following
error estimate holds if (u, p) ∈ H2(Ω)×H 1(Ω):

∥u−uh∥L2(Ω) ≤ C̃ h2|u|H2(Ω), (74)

where the constant C̃ is independent of h. The proof is detailed in [10] for shape-regular
meshes and [2] for anisotropic meshes. We remark that the error doesn’t depend on the norm
of the pressure nor on the ν parameter. We will provide some numerical results to illustrate the
effectiveness of this formulation, even with a projection on the Raviart–Thomas finite elements,
which, for a fixed polynomial order, are less precise than the Brezzi–Douglas–Marini finite
elements.

For k ∈N⋆, the space of Raviart–Thomas finite elements can be defined as:

XRTk
:=

{
v ∈ H(div;Ω)

∣∣∣ ∀ ℓ ∈Ik , v
∣∣
Kℓ

= aℓ+bℓx, (aℓ,bℓ) ∈ P k (Kℓ)d ×P k (Kℓ)
}

.

Let k ≤ 1. The Raviart–Thomas interpolation operatorΠRTk : H1(Ω)∪Xh → XRTk is defined by:

∀ v ∈ H1(Ω)∪Xh ,


∀ f ∈IF ,

∫
F f

ΠRTk v ·n f q =
∫

F f

v ·n f q, ∀ q ∈ P k (F f ),

for k = 1, ∀ ℓ ∈IK ,
∫

Kℓ

ΠRT1 v =
∫

Kℓ

v.
(75)

Note that the Raviart–Thomas interpolation operator preserves the constants. Let vh ∈ Xh .
In order to compute the left-hand side of (72), we must evaluate (ΠRTk vh)

∣∣
Kℓ

for all ℓ ∈ IK .
Calculations are performed using the proposition below:

Proposition 26 ([31, Lemma 3.11]). Let k ≤ 1. Let Π̂RTk : H1(K̂ ) → Pk (K̂ ) be the Raviart–Thomas
interpolation operator restricted to the reference element, so that:

∀ v̂ ∈ H1(K̂ ),


∀ F̂ ∈ ∂K̂ ,

∫
F̂
Π̂RTk v̂ ·nF̂ q̂ =

∫
F̂

v̂ ·nF̂ q̂ , ∀ q̂ ∈ P k (F̂ ),

for k = 1,
∫

K̂
Π̂RTk v̂ =

∫
K̂

v̂.
(76)

We then have: ∀ ℓ ∈IK ,(
ΠRTk v

)∣∣
Kℓ

(x) =Bℓ
(
Π̂RTkBℓ

−1v̂ℓ
)◦Tℓ

−1(x) where v̂ℓ = v◦Tℓ(x̂). (77)

The proof is based on the equality of the F̂ and K̂ -moments of
(
ΠRTk v

)∣∣
Kℓ

◦ Tℓ(x̂) and

Bℓ
(
Π̂RTkBℓ

−1v̂ℓ
)
(x̂). For k = 0, setting for d ′ ∈ {

1, . . . ,d
}
:ψ f ,d ′ :=ψ f ed ′ , we obtain that:

∀ ℓ ∈IK ,∀ f ∈IF,ℓ,
(
ΠRT0ψ f ,d ′

)∣∣∣
Kℓ

= (
d |Kℓ|

)−1(x−O⃗S f ,ℓ
)
S f ,ℓ ·ed ′ , (78)
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where S f ,ℓ is the vertex opposite to F f in Kℓ.
For k = 1, the vector

(
ΠRT1 vh

)∣∣
Kℓ

is described by eight unknowns:(
ΠRT1 vh

)∣∣
Kℓ

=Aℓx+ (bℓ ·x)x+dℓ, where Aℓ ∈R2×2,bℓ ∈R2,dℓ ∈R2.

We compute only once the inverse of the matrix of the linear system (76), in R8×8.

4.2. Application with manufactured solutions

In the Tables 1, 2 and 3, we call εν0 (u) = ∥u−uh∥L2(Ω)/∥(u, p)∥X the velocity error in L2(Ω)-norm,
where uh is the solution to Problem (39) (columns XCR and XFS) or (73) (columns XCR +ΠRT0 and
XFS +ΠRT1 ) and h is the mesh size.

We first consider Stokes problem (3) in Ω = (0,1)2 with u = 0, p = (x1)3 + (x2)3 − 0.5, f =
grad p = 3

(
(x1)2, (x2)2

)T . We report in Table 1 the velocity error εν0 (u) := ν∥uh∥L2(Ω)/∥p∥L2(Ω), for
h = 5.00×10−2 and for different values of ν.

Table 1. Values of εν0 (u) for h = 5.00×10−2.

ν XCR XCR +ΠRT0 XFS XFS +ΠRT1

1.00×10−4 7.96×10−4 4.59×10−17 8.81×10−7 1.54×10−16

1.00×10−5 7.96×10−4 4.59×10−17 8.81×10−7 1.54×10−16

1.00×10−6 7.96×10−4 4.59×10−17 8.81×10−7 1.54×10−16

The L2(Ω)-norm of the discrete velocity ∥uh∥L2(Ω) is proportional to ν−1. Using the projection,
we obtain εν0 (u) = 0 close to machine precision.

We now consider Stokes problem (3) inΩ= (0,1)2 with:

u =
((

1−cos(2πx1)
)

sin(2πx2)(
cos(2πx2)−1

)
sin(2πx1)

)
, p = sin(2πx1) and f =−ν∆u+grad p.

We report in Table 2 (resp. 3) the values of εν0 (u) in the case ν= 1.00×10−3 (resp. ν= 1.00×10−4)
for mesh sizes. We observe that when there is no projection, εν0 (u) is independent of ν, whereas
using the projection, εν0 (u) is proportional to ν.

Table 2. Values of εν0 (u) for ν= 1.00×10−3.

h XCR XCR +ΠRT0 XFS XFS +ΠRT1

5.00×10−2 1.32×10−3 2.74×10−5 4.73×10−6 5.05×10−7

2.50×10−2 3.30×10−4 6.93×10−6 5.06×10−7 6.42×10−8

1.25×10−2 8.25×10−5 1.74×10−6 6.31×10−8 8.10×10−9

6.25×10−3 2.04×10−5 4.35×10−7 7.44×10−9 1.03×10−9

Rate h2.00 h1.99 h3.08 h2.97

Let us consider Stokes problem (3) with a low-regular velocity. Let Ω = (0,1)2, S0 = (0.5,0.5),
and (r,θ) be the polar coordinates centered on S0. We set:

u = rαeθ, p = r −|Ω|−1
∫
Ω

r so that f :=−ν∆u+grad p = ν(1−α2)rα−2eθ+er .

We report in Table 4 the values of εν0 (u) for ν= 1.00×10−4, and for different mesh sizes, withα= 1
and α= 0.45. For α= 1, u = (−y, x)T ∈ H2(Ω). For α= 0.45, u ∈⋂

0<s<αH1+s (Ω), hence u ∉ H2(Ω).
It seems that the Raviart–Thomas projection is less efficient in that last case.
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Table 3. Values of εν0 (u) for ν= 1.00×10−4.

h XCR XCR +ΠRT0 XFS XFS +ΠRT1

5.00×10−2 1.32×10−3 2.74×10−6 4.70×10−6 5.05×10−8

2.50×10−2 3.30×10−4 6.93×10−7 5.10×10−7 6.43×10−9

1.25×10−2 8.25×10−5 1.74×10−7 6.37×10−8 8.11×10−10

6.25×10−3 2.04×10−5 4.36×10−8 7.51×10−9 9.77×10−11

Rate h2.00 h1.99 h3.08 h2.99

Table 4. Values of εν0 (u), regular and low-regular velocity, ν= 1.00×10−4.

α= 1 α= 0.45
h XFS XFS +ΠRT1 XFS XFS +ΠRT1

1.00×10−1 3.03×10−5 2.81×10−6 3.05×10−5 3.94×10−6

5.00×10−2 4.34×10−6 1.54×10−6 4.57×10−6 2.15×10−6

2.50×10−2 4.72×10−7 2.41×10−8 9.70×10−7 8.52×10−7

Rate h3.00 h3.43 h2.48 h1.11

In order to enhance the numerical results, one could also use a posteriori error estimators to
adapt the mesh near point S0 (see [23,25] for k = 1 and [1] for k = 2).

Alternatively, using the nonconforming Crouzeix–Raviart mixed finite element method, one
can build a divergence-free basis, as described in [34] for k = 1. When k = 1, following the initial
work of [7], one can also add P 1-Lagrange basis functions to the space of the discrete pressures
as explained in [37]. The consistency of the discrete velocity is then improved. Notice that
using conforming finite elements, the Scott–Vogelius finite elements [28,43,49] produce velocity
approximations that are exactly divergence free.

The code used to get the numerical results can be downloaded on GitHub [35].

5. Conclusion

We analysed the discretization of Stokes problem with nonconforming finite elements in light
of the T-coercivity theory. Furthermore, we obtained local stability estimates for order 1 in 2
or 3 dimensions without mesh regularity assumption; and for order 2 in 2 dimensions in the
case of a shape-regular triangulation sequence. This local approach, splitting the normal and
the tangential components could help to generalize our results to order k ≥ 3 (using maybe also
other internal moment conservation). This is ongoing work. We then provided numerical results
to illustrate the importance of using H(div)-conforming projection. Further, we intend to extend
the study to other mixed finite element methods.
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