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Abstract. In this note, the rate of growth of digits in the Lüroth expansion of an irrational number is
studied relative to the rate of approximation of the number by its convergents. The Hausdorff dimension
of exceptional sets of points with a given relative growth rate is established.
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1. Introduction

Let us consider the Lüroth expansion of a real number x from the interval (0,1] given by

x = 1

d1
+ 1

d1(d1 −1)d2
+·· ·+ 1

d1(d1 −1)d2 . . .dn−1(dn−1 −1)dn
+ ·· · (1)

for some di ≥ 2(i ∈ N), which was introduced in 1883 by Lüroth [8]. Each irrational number has
a unique Lüroth expansion and each rational number has either a finite expansion or a periodic
one. We denote the Lüroth expansion of x ∈ (0,1] by x = [d1(x),d2(x), · · · ] for short.

The Lüroth expansion can be given by the map T : (0,1] → (0,1], which is defined by

T (x) := d1(x)(d1(x)−1)

(
x − 1

d1(x)

)
, where d1(x) =

[
1

x

]
+1,

and
dn(x) = d1

(
T n−1(x)

)
, n ≥ 1,
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where T n denotes the nth iterate of T (T 0 = I d(0,1]). The Lebesgue measure is T -invariant and the
map T is ergodic (see [4]). For more details about the Lüroth expansion, one is referred to [4].

The properties of digits in the Lüroth expansion have been intensely studied in recent years.
The behavior of the digits in Lüroth expansion were investigated in [1] and [6]. More recently,
Liao and Rams [7] studied the increasing rate of the Birkhoff sums in the infinite iterated function
systems, which include Lüroth expansion and continued fraction expansion as special cases.

For any x ∈ (0,1], write Ln(x) = max{d1(x),d2(x), . . . ,dn(x)} to be the maximal digit among the
first n terms in the Lüroth expansion of x. The growth rates of Ln(x) were studied by Shen et
al. [10] and Song et al. [11] from the viewpoint of multifractal analysis.

Let the nth convergent Pn(x)/Qn(x) of x in the Lüroth expansion be defined as the partial sum
of the first n terms of the series (1), i.e.

Pn(x)

Qn(x)
=

n∑
j=1

1

d1(x)(d1(x)−1) . . .d j−1(x)(d j−1(x)−1)d j (x)
.

From the ergodicity of T and Birkhoff’s individual ergodic Theorem, we can obtain the follow-
ing result:

lim
n→∞− 1

n
log

∣∣∣∣x − Pn(x)

Qn(x)

∣∣∣∣= d , a.e. where d ≈ 2.03. (2)

Here and in the following a.e. will be with respect to Lebesgue measure.
In [14], they investigated the growth rate of the maximal digit relative to that of approximation

of the number by its convergents. More precisely, they proved

Theorem 1 (cf. [14]). The setx ∈ (0,1] : lim
n→∞

Ln(x) log logn

− log
∣∣∣x − Pn (x)

Qn (x)

∣∣∣ =α


is of Hausdorff dimension 1, for any α≥ 0.

We use dimH to denote the Hausdorff dimension. For more information about Hausdorff
dimension, see the book [3].

In this note, we are interested in finding what happens when the relative growth rate of the
digits relative to that of approximation of the number by its convergents is a given number. For
any z ≥ 0, let

F (z) =
x ∈ (0,1] : lim

n→∞
logdn+1(x)

− log
∣∣∣x − Pn (x)

Qn (x)

∣∣∣ = z

 ,

we obtain the following result.

Theorem 2. For any 0 < z ≤ 1, dimH F (z) = 1−z
2 . F (0) is of Lebesgue measure 1. If z is not in [0,1],

F (z) is empty.

It is worth pointing out that the kinds of relative growth rate of partial quotients for regular
continued fraction expansion have been attacked by Hass [5], Sun and Wu [12] and Tan and
Zhou [13] in recent years.

2. Preliminaries

In this section, we briefly recall some basic properties and results of Lüroth expansion.
By [4], any sequence of integers {dn}n≥1 with dn ≥ 2 for n ≥ 1, is admissible, i.e., there exists

some x ∈ (0,1] whose Lüroth expansion satisfying dn(x) = dn for n ≥ 1.
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For any d1,d2, . . . ,dn ∈N\{0,1}, let In(d1,d2, . . . ,dn) be the set of numbers in (0,1] whose Lüroth
expansion begins by d1,d2, . . . ,dn and called a rank−n basic interval. It is clear that its length is
given by the following formula.

Lemma 3 (cf. [4]). |In(d1,d2, . . . ,dn)| =
(∏n

j=1 d j (d j −1)
)−1

.

Lemma 4 (cf. [7]). Let {sn}n≥1 be a sequence of positive integers tending to infinity, then for any
positive number N ≥ 2, let

Λ= {
x ∈ (0,1] : sn ≤ dn(x) < N sn for n ≥ 1

}
,

then

dimH Λ = liminf
n→∞

log(s1s2 . . . sn)

2log(s1s2 . . . sn)+ log sn+1
.

Lemma 5 (cf. [9]). For any a > 1 and b > 1,

dimH

{
x ∈ (0,1] : dn(x) ≥ abn

, for n ≥ 1
}
= 1

b +1
.

Lemma 6 (cf. [2]). For any ν≥ 2,

dimH
{

x ∈ (0,1] : |x −Pn(x)/Qn(x)| <Qn(x)−ν for infinitely many n
}= 1

ν
.

To end this section, we borrow a result from [9]. It tells us that the Hausdorff dimension will
be same if we change the restrictions on the first finite digits. Namely, let {An}∞n=1 and {Bn}∞n=1 be
two sequences of nonempty subsets ofN\ {0,1} with An = Bn when n is large. Set

A = {x ∈ (0,1] : dn(x) ∈ An for n ≥ 1} ,

B = {x ∈ (0,1] : dn(x) ∈ Bn for n ≥ 1} .

Then we have

Lemma 7 (cf. [9]). dimH A = dimH B.

3. The proof of Theorem 2

Our proof starts with the dimension result. For this purpose, we will transform the target set F (z)
to another set. For any β≥ 1, let

G(β) =
x ∈ (0,1] : lim

n→∞
− log

∣∣∣x − Pn (x)
Qn (x)

∣∣∣
logdn+1

=β
 .

It follows immediately that

Lemma 8. For any 0 < z ≤ 1, F (z) =G(1/z).

Consequently, we are expected to determine Hausdorff dimension of the set G(β). To do this,
we will determine the lower bound and upper bound of its dimension separately.

Proposition 9. For any β> 1, dimH G(β) ≥ β−1
2β .

Proof. Let λ= 2
β−1 +1 and

K (λ) =
{

x ∈ (0,1] :
[

2λ
n
]
≤ dn(x) ≤ 2

[
2λ

n
]

for all n ≥ 1
}

.

Since ∣∣∣∣x − Pn(x)

Qn(x)

∣∣∣∣= T n(x)

d1(x)(d1(x)−1) . . .dn(x)(dn(x)−1)

C. R. Mathématique, 2020, 358, n 5, 557-562
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and
1

dn+1(x)
< T n x ≤ 1

dn+1(x)−1
,

we deduce that(
n∏

j=1
d j (x)(d j (x)−1)dn+1(x)

)−1

≤
∣∣∣∣x − Pn(x)

Qn(x)

∣∣∣∣≤
(

n∏
j=1

d j (x)(d j (x)−1)(dn+1(x)−1)

)−1

. (3)

Then for any x ∈ K (λ), we get

2−3n−2 22λ1
22λ2

. . .22λn
2λ

n+1 ≤
∣∣∣∣x − Pn(x)

Qn(x)

∣∣∣∣−1

≤ 22n+1 22λ1
22λ2

. . .22λn
2λ

n+1
.

Hence, it may be concluded that

lim
n→∞

− log
∣∣∣x − Pn (x)

Qn (x)

∣∣∣
logdn+1

= 2

λ−1
+1 =β,

which implies K (λ) ⊂G(β).
By Lemma 4, we see that

dimH G(β) ≥ dimH K (λ) = liminf
n→∞

log
∏n

j=1

[
2λ

j
]

2log
∏n

j=1

[
2λ j ]+ log

[
2λn+1]

= 1

λ+1
= β−1

2β
,

which is the assertion of the Proposition 9. �

We are now in a position to establish the upper bound of the Hausdorff dimension of
G(β). To do this, we will again transform it to another set. Let Q̃n(x) = Qn(x)(dn(x) − 1) =∏n

j=1 d j (x)(d j (x)−1) and for any τ≥ 0,

C (τ) =
{

x ∈ (0,1] : lim
n→∞

logQ̃n(x)

logdn+1
= τ

}
.

By definition of Q̃n(x) and inequality (3), it is evident that

Lemma 10. For any β≥ 1, G(β) =C (β−1).

If τ = 0, it is obvious that dimH C (τ) = 0 by Lemma 6. This implies that dimH F (1) =
dimH G(1) = 0. By virtue of the above Lemma 8, we are reduced to proving the following result.

Proposition 11. For any τ> 0, dimH C (τ) ≤ τ
2τ+2 .

Proof. Assume τ> 0. For any 0 < ε< 1
τ , choose δ> 0 small enough that(

1

τ
− ε

2

)
(τ+δ) < 1,

and n0 ∈N such that for any n ≥ n0,[
1−

(
1

τ
− ε

2

)
(τ+δ)

](
1

τ
+1−ε

)n

>
(

1

τ
− ε

2

)
(n +1)+1.

By definition of Q̃n(x), it follows that

Q̃n(x)
dn+1(x)2

2
≤ Q̃n+1(x) ≤ Q̃n(x)dn+1(x)2.

From this, for any x ∈C (τ),

lim
n→∞

logQ̃n+1(x)

logdn+1
= τ+2.
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Therefore

C (τ) =
{

x ∈ (0,1] : lim
n→∞

logQ̃n+1(x)

logdn+1
= τ+2

}
.

Writing

W (τ,δ,m) =
{

x ∈ (0,1] : dn+1(x) ≥ Q̃n+1(x)
1

τ+2+δ for all n ≥ m
}

,

we can assert that

C (τ) ⊂
∞⋃

m=1
W (τ,δ,m).

Let

C =
{

x ∈ (0,1] : dn(x) =
[

2
( 2
τ+1−ε)n ]

+1 for 1 ≤ n ≤ n0, and dn+1(x) ≥ Q̃n+1(x)
1

τ+2+δ for all n ≥ n0

}
.

Due to Lemma 7, it gives that

dimH C (τ) ≤ sup
m≥1

dimH W (τ,δ,m) = dimH C .

Our next claim is that for any x ∈C and for any n ≥ 1,

dn(x) ≥ 2
( 2
τ+1−ε)n

. (4)

We proceed by induction. For any 1 ≤ n ≤ n0, the inequality (4) holds by the definition of C .
When n > n0, from the construction of C ,

dn(x) ≥ Q̃n(x)
1

τ+2+δ ≥ (
2−1Q̃n−1(x)dn(x)2) 1

τ+2+δ .

Using induction on n, we obtain

dn(x)1− 2
τ+2+δ ≥ (

2−nd1(x)2d2(x)2 . . .dn−1(x)2) 1
τ+2+δ .

Thus

dn(x) ≥ (
2−nd1(x)2d2(x)2 . . .dn−1(x)2) 1

τ+δ ≥ 2
( 2
τ +1−ε)n−1

( 1
τ − ε

2 )(τ+δ)
− n+1
τ+δ

.

By the choice of n0, we deduce that

dn(x) ≥ 2
( 2
τ+1−ε)n

.

On account of Lemma 5, it follows that

dimH C ≤ 1

2+ 2
τ −ε

.

Since ε is arbitrary, it is easily seen that

dimH C (τ) ≤ dimH C ≤ τ

2τ+2
. �

By Lemma 8, Lemma 10, Proposition 9 and Proposition 11, we can check at once that for
0 < z < 1,

dimH F (z) = dimH G(1/z) = dimH C (1/z −1) = 1− z

2
.

Finally, what is left is to prove the last two statements. By [4, Corollary 6.6], it is obvious that

lim
n→∞

logdn(x)

n
= 0, a.e. .

Combining this with the limit (2), the set F (0) is of Lebesgue measure 1. According to the
inequality (3), F (z) is empty when z is not in [0,1].

This finishes the proof of Theorem 2.
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