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Abstract. We provide a simple construction of the Anderson operator in dimensions two and three. This is
done through its quadratic form. We rely on an exponential transform instead of the regularity structures
or paracontrolled calculus which are usually used for the construction of the operator. The knowledge
of the form is robust enough to deduce important properties such as positivity and irreducibility of the
corresponding semigroup. The latter property gives existence of a spectral gap.

Résumé. Nous fournissons une construction simple de l’opérateur d’Anderson en dimensions deux et trois.
Cela est réalisé à travers sa forme quadratique. Nous nous appuyons sur une transformation exponentielle au
lieu des structures de régularité ou du calcul paracontrôlé, qui sont généralement utilisés pour la construc-
tion de l’opérateur. La connaissance de la forme est suffisamment robuste pour déduire des propriétés im-
portantes telles que la positivité et l’irréductibilité du semi-groupe correspondant. Cette dernière propriété
permet de démontrer l’existence d’un trou spectral.

Keywords. Anderson form, singular stochastic operator, Schrödinger operator, renormalization, positivity,
spectral gap.
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Introduction

Over the last decade, the study of singular stochastic PDEs has grown to an important field with
the introduction of regularity structures by Hairer [16] and paracontrolled calculus by Gubinelli,
Imkeller and Perkowski [13]. The theory first aimed at the resolution of parabolic equations such
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as the Parabolic Anderson Model (PAM) equation or the Kardar–Parisi–Zhang (KPZ) equation, it
then led to the construction of the Anderson Hamiltonian

H =−∆+ξ
with ξ the spatial white noise, see [1,9,15,19,23] in dimension 2 and 3, on a finite box with periodic
or Dirichlet boundary conditions or even compact Riemannian manifolds.

In this note we provide a simple construction of this operator via its quadratic form without
using regularity structures or paracontrolled calculus. We rely on an exponential transform first
used by Hairer and Labbé [17] for the continuum parabolic Anderson model on R2 and then used
in different context, see for example [3,8,10,18,28]. In particular, this was already used by Matsuda
and van Zuijlen [20] to construct the rough form in the full subcritical regime using also regularity
structures. Our work can be seen as an unsophisticated approach since no regularity structures
or paracontrolled calculus appear here. See also [21,22] for other singular stochastic operators.

The Anderson Hamiltonian is the Schrödinger operator H = −∆+ ξ with ξ the space white
noise which is a random distribution of negative Hölder regularity −d

2 −κ for any κ > 0. In one
dimension, it is the derivative of the Brownian motion and the associated form

a(u, v) =
∫ 1

0
∇u(x) ·∇v(x)dx +

∫ 1

0
u(x)v(x)ξ(dx)

was constructed by Fukushima and Nakao [12] with domain the usual Sobolev space H 1. The
idea is that one can multiply two distributions if the sum of their regularity is positive, hence uvξ
is well-defined as a distribution for u, v ∈ H 1 since ξ ∈ C − 1

2 −κ. In two dimensions, ξ ∈ C −1−κ

and this construction is not possible anymore. Following recent progress on singular stochastic
PDEs, the operator can be constructed with a random domain D2

ξ
depending on the noise ξ such

that H : D2
ξ
⊂ L2 → L2 is an unbounded closed operator. Taking u ∈ L2 and assuming that Hu is

an element of L2, one obtains the relation

∆u = uξ−Hu

which induces an expansion of u with respect to the noise using regularity structures or para-
controlled calculus. In particular, [15] and [23] also identify a form domain, that is a random
subspace D1

ξ
⊂ L2 such that

∀ u ∈D1
ξ ,

∣∣〈Hu,u〉∣∣<∞.

We emphasize in the notation that the domains are random and consist of random functions
depending on the noise. In each case, the operator is a singular stochastic operator and a
renormalization procedure is involved in its construction. For a regularization ξε of the noise,
the operator is constructed as a limit in the resolvent sense, that is

H = lim
ε→0

(−∆+ξε− cε
)

with a constant cε which explodes when ε→ 0. It is related to the definition of the product∆−1ξ·ξ
and the divergence of the Green function of the Laplacian. In two dimensions, one has cε ∼ log(ε)
while cε ∼ ε−1 in three dimensions. In one dimension, this product is well-defined and one can
take cε = 0 which is coherent with [12] and D1

ξ
=H 1 does not depend on the noise. However the

domain of the operator is random and this method was recently used by Dumaz and Labbé to
provide a precise study of the operator, see [11] and references therein. The Anderson form also
appears as the energy for dispersive PDEs such as the nonlinear Schrödinger equation

i∂t u =∆u +uξ+|u|2u

and was used to obtain solutions, see for example [8,10,15,23,24,28] and references therein. In
particular, uniform bounds in energy is the crucial property of such singular stochastic PDEs
where one does not have the regularizing properties of the parabolic equation. In this context,
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one has to work with random initial data depending on the noise and the conservation of energy
makes the form domain of the Anderson operator a natural space to get a global solution.

In this work, we consider a new variable u = e X v for a suitable random field X . In this case, we
have

∆u = e X∆v +2e X ∇X ·∇v +e X (|∇X |2 +∆X
)
v

and if X is a solution to ∆X = ξ, the Anderson operator is formaly given by

Hu =−e X∆v −2e X ∇X ·∇v −e X |∇X |2v.

In two dimensions, we have
ξ ∈C −1−κ =⇒ ∇X ∈C −κ,

hence the square |∇X |2 is singular and has to be defined with a renormalization procedure as
a Wick product |∇X |2⋄ ∈ C −2κ. In this case, v ∈ H 1 is regular enough for the associated form
to make sense and one can construct the Anderson form with domain D(a) = e X H 1. In three
dimensions, we have

ξ ∈C − 3
2 −κ =⇒ ∇X ∈C − 1

2 −κ

and the Wick product |∇X |2⋄ ∈ C −1−2κ is too rough to be multiplied by v ∈ H 1. One can apply
the same method and construct the Anderson form with domain e X+Y H 1 with a suitable second
random field Y .

This exponential transform allows us to construct a symmetric form a whose associated
operator H is the Anderson Hamiltonian. Once a is defined, the associated operator is given by

D(H) = {
u ∈ L2(Td ) ; ∃ v ∈ L2(Td ),∀ϕ ∈D(a),a(u,ϕ) = 〈v,ϕ〉}, Hu = v.

This operator is well defined with dense domain D(H) in L2(Td ). This weak formulation does not
however give a precise description of D(H). Also, the approach using the exponential transform
does not allow to construct the explicit domain of the operator. For this a more involved theory
such as regularity structures or paracontrolled calculus seems to be necessary. See Section 4
for some additional details. Nevertheless, the knowledge of H through its form is enough to
deduce that H is self-adjoint, it has a discrete spectrum and an L2 orthonormal basis given
by eigenfunctions. In addition, relying on a criterion from [25], we prove that the associated
semigroup is irreducible. In particular, this implies the existence of a spectral gap λ1 < λ2 with a
positive ground state Ψ ∈D(H). This result was already proved in [4] by relying on a quantitative
estimate for the linear Parabolic Anderson Model equation. Our work provides a pedestrian
approach to this result even in three dimensions which usually relies on involved computations
with expansion of order 5 using regularity structures or paracontrolled calculus.

In order to keep the ideas and tools simple we restrict ourselves to the case of the torus Td

for d ∈ {2,3} (endowed with the Lebesgue measure dx). Our construction works on any compact
manifold without boundary even though we rely on Fourier series here. On a manifold, one can
use Calderón–Zygmund formula as in [23, Section 2.1] with tools based on the heat semigroup
of the Laplace–Beltrami operator on the manifold. Similar renormalization problems were also
considered in [4] with microlocal and harmonic analysis on local charts.

In the work [20], Matsuda and van Zuijlen use the exponential transform to construct the
Dirichlet form associated to a Schrödinger operator for a general class of random potentials
in the full subcritical regime in the sense of singular SPDEs using regularity structures, that is
dimension d ∈ {2,3} as far as the Anderson hamiltonian is concerned. To do so, they use higher
order iteration of the argument we use in this note and for which an arbitrary large number of
singular stochastic terms need to be renormalized. They rely on the renormalization algorithm
from the very involved works [6,7] which form two important part of the full theory of regularity
structures with [5,16]. In particular, they show that the exponential transform can be used in the
full subcritical regime. The present work aims at making accessible such interesting ideas without
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the knowledge of regularity structures, we only rely on a direct renormalization and Fourier series
while still covering the case of the Anderson Hamiltonian in two and three dimensions.

In Section 1, we provide several bounds on stochastic functions and distributions that we need
to construct the form. In particular, this is where the renormalization of the singular products
is done. In Sections 2 and 3, we respectively construct the Anderson form in two and three
dimensions using the first and second order exponential transform. In Section 4, we prove
irreducibility and existence of a spectral gap.

1. Stochastic bounds and renormalization

On the torus Td , the white noise is given by

ξ(x) = ∑
k∈Zd

ξk e i k·x

with (ξk )k∈Zd a family of independent and identically distributed random variables of centered
standard complex Gaussian with ξ−k = ξk . This gives a centered real Gaussian field with covari-
ance function

E
[
ξ(x)ξ(y)

]= δ0(x − y),

that is a random distribution (〈ξ,ϕ〉)ϕ∈L2(Td ) such that

E
[〈ξ,ϕ〉〈ξ,ψ〉]= 〈ϕ,ψ〉L2(Td )

which indeed gives the Fourier coefficient (ξk )k∈Zd . Because of the lack of decay at infinity of
the Fourier coefficients, this sum has to be interpreted in a weak sense. Its first construction is
due to Paley and Zygmund [26,27] and is actually the first random distribution ever considered.
A natural and convenient setting is given by the Besov space Bα

p,q which can be defined using
the Littlewood–Paley decomposition, see for example [2]. This decomposition can be stated as
follows

u = ∑
n≥0

∆nu

with∆nu = (
F−11| · |≃2n F

)
u, that is the projection of u in frequencies on an annulus of size 2n . It

is defined by (
∆nu

)
(x) := 2d(n−1)

∫
Rd
χ
(
2n−1(x − y)

)
u(y)dy

with χ ∈S (Rd ) and supp χ̂⊂ { 1
2 ≤ |z| ≤ 2

}
for n ≥ 1 and(

∆0u
)
(x) :=

∫
Rd
χ0(x − y)u(y)dy

with χ0 ∈S (Rd ) and supp χ̂0 ⊂
{|z| ≤ 1

}
. We also denote K = χ̂ such that ∆nu = (

F−1K (2n · )F )
u.

Then the Besov space Bα
p,q are distributions such that

∥u∥Bα
p,q

:=
( ∑

n≥0
2αpn∥∆nu∥p

Lq (Td )

) 1
p

<∞.

The particular case p = q = 2 corresponds to the Sobolev space Bα
2,2 = H α and for p = q = ∞

with α ∈R+\N, one gets the usual Hölder spaces Bα∞,∞ =C α. One also has the continuous Besov
embedding

Bα
p1,q1

,−→B
α−d

(
1

p1
− 1

p2

)
p2,q2

for p1 ≤ p2, q1 ≤ q2 and α ∈ R. While one can a priori only multiply a distribution by a smooth
function, one has the following product rule in the case of Besov spaces which corresponds to
Young condition.
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Proposition 1. For α,β ∈R such that α+β> 0 and p, q,r ∈ [1,∞] such that 1
r = 1

p + 1
q , there exists

a constant C > 0 such that

∥uv∥
B
α∧β
r,r

≤C∥u∥Bα
p,p

∥v∥
B
β
q,q

.

The following proposition gives a similar result at the level of the duality bracket.

Proposition 2. Forα ∈R and p, p ′, q, q ′ ∈ [1,∞] such that 1 = 1
p + 1

p ′ = 1
q + 1

q ′ , there exists a constant
C > 0 such that ∣∣〈u, v〉∣∣≤C∥u∥Bα

p,q
∥v∥B−α

p′ ,q′
.

For later use, we introduce a new random field X defined by

X (x) = ∑
k∈Zd \{0}

1

|k|2 ξk e i k·x .

It satisfies the equation

∆X = ξ−ξ0.

The following proposition gives Hölder regularity of ξ and X . This result is well-known but
we give a proof for self-completeness and also to give a flavor of the arguments for the stochastic
renormalization.

Proposition 3. For any κ> 0, one has almost surely

ξ ∈C − d
2 −κ(Td ) and X ∈C 2− d

2 −κ(Td ).

Proof. Since the noise is Gaussian, we have

E
[〈ξ,ϕ〉p]≤ (p −1)

p
2 E

[〈ξ,ϕ〉2] p
2

for any test function ϕ. This is usually referred to as Gaussian hypercontractivity. In order to use
this, we estimate the Besov norm B

γ
p,p for p large and use the embedding

B
γ
p,p (Td ),−→B

γ− d
p

∞,∞(Td ).

We have

E
[
∥∆nξ∥p

Lp (Td )

]
=

∫
Td
E
[〈
ξ,χn(x − · )〉p]

dx

≤ (p −1)
p
2

∫
Td
E
[〈
ξ,χn(x − · )〉2] p

2 dx

≤ (p −1)
p
2 ∥χn∥p

L2(Td )
|Td |

with χn( · ) = 2dnχ(2n · ) and using that ξ is an isometry from L2(Td ) to L2(Ω). We have

∥χn∥2
L2(Td )

= 22dn∥χ(2n · )∥2
L2(Td )

= 2dn∥χ∥2
L2(Td )

hence

E
[
∥∆nξ∥p

Lp (Td )

]
≤ (p −1)

p
2 2pn d

2 ∥χ∥p

L2(Td )
|Td |.

This gives

E
[
∥ξ∥

B
− d

2
p,p

]
<∞,

and hence ξ ∈ C
− d

2 − d
p (Td ) for any p ≥ 1 which completes the proof for the regularity of ξ while

the regularity of X follows from a standard regularity estimate. □
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In two dimensions, one has X ∈C 1−κ hence∇X ∈C −κ and the square |∇X |2 is ill-defined since
−2κ < 0. Consider a regularization of the noise ξε = ξ∗ρε with ρε a mollifier, radial to simplify
the computations. Then ξε converges to ξ as ε goes to 0 in C −1−κ and one can consider Xε the
solution with null mean to

∆Xε = ξε−〈ξε,1〉
which converges to X in C 1−κ as ε goes to 0. Since the square |∇X |2 is ill-defined, the quantity
|∇Xε|2 diverges and this is described by the Wick square as proved in the following proposition.

Proposition 4. There exists a distribution |∇X |2⋄ ∈C −2κ(T2) such that

|∇X |2⋄ = lim
ε→0

(
|∇Xε|2 −E

[|∇Xε|2
])

in C −2κ(T2) in probability. Moreover, one has

E
[|∇Xε|2

] ∼
ε→0

− 1

(2π)2 log(ε).

Proof. Since ξε = ξ∗ρε, we have

Xε(x) = ∑
k∈Z2\{0}

ρ̂ε(k)

|k|2 ξk e i kx

thus ∣∣∇Xε(x)
∣∣2 = ∑

k,k ′∈Z2\{0}

θ
(
ε|k|)θ(

ε|k ′|) k ·k ′

|k|2|k ′|2 ξkξk ′e i (k−k ′)·x

with θ
(
ε|k|) := ρ̂ε(k) since ρ is radial. Using E

[
ξkξk ′

]= δ0(k −k ′), we have

E
[∣∣∇Xε(x)

∣∣2
]
= ∑

k∈Z2\{0}

θ
(
ε|k|)2

|k|2 ∼
ε→0

1

(2π)2 log(ε)

which gives the second part of the statement. For n ≥ 1, we have

∆n

(
|∇Xε|2 −E

[|∇Xε|2
])

(x) = ∑
k ̸=k ′

Kn(k −k ′)θ
(
ε|k|)θ(

ε|k ′|) k ·k ′

|k|2|k ′|2 ξkξk ′e i (k−k ′)·x

with Kn( · ) = K (2−n · ) since ∆nE
[|∇Xε|2

]= 0 for n ≥ 1, the expectation of |∇Xε|2 being a constant

function. Then the expectation of
∣∣∣∆n

(
|∇Xε|2 −E

[|∇Xε|2
])∣∣∣2

(x) is given by

∑
k1 ̸=k ′

1
k2 ̸=k ′

2

Kn(k1 −k ′
1)Kn(k2 −k ′

2)θ
(
ε|k1|

)
θ
(
ε|k ′

1|
)
θ
(
ε|k2|

)
θ
(
ε|k ′

2|
) k1 ·k ′

1

|k1|2|k ′
1|2

k2 ·k ′
2

|k2|2|k ′
2|2
E
[
ξk1ξk ′

1
ξk2ξk ′

2

]

×e i (k1−k ′
1)·x e−i (k2−k ′

2)·x

and we have

E
[
ξk1ξk ′

1
ξk2ξk ′

2

]= E[ξk1ξk ′
1

]
E
[
ξk2ξk ′

2

]+E[ξk1ξk2

]
E
[
ξk ′

1
ξk ′

2

]+E[ξk1ξk ′
2

]
E
[
ξk ′

1
ξk2

]
= δ0(k1 −k ′

1)δ0(k2 −k ′
2)+δ0(k1 +k2)δ0(k ′

1 +k ′
2)+δ0(k1 −k ′

2)δ0(k ′
1 −k2)
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for any k1,k ′
1,k2,k ′

2 ∈Z2. It follows that

E
∣∣∣∆n

(
|∇Xε|2 −E

[|∇Xε|2
])∣∣∣2 = 2

∑
k1,k2

∣∣Kn(k1 −k2)
∣∣2 θ

(
ε|k1|

)2
θ
(
ε|k2|

)2

|k1|2|k2|2

= 2
∑

k1,k2

∣∣K (
2−n(k1 −k2)

)∣∣2 θ
(
ε|k1|

)2
θ
(
ε|k2|

)2

|k1|2|k2|2

= 2
∑
k

∣∣K (2−nk)
∣∣2 ∑

k1−k2=k

θ
(
ε|k1|

)2
θ
(
ε|k2|

)2

|k1|2|k2|2

= 2
∑
k

∣∣K (2−nk)
∣∣2 ∑

k2

θ(ε|k +k2|)2θ
(
ε|k2|

)2

|k +k2|2|k2|2

≤C 22n2−(2−2κ)n
∑
k2

θ
(
ε|k2|

)2

|k2|2+2κ

for any κ> 0 and a constant C > 0 using the support of K . The Gaussian hypercontractivity yields

E
∣∣∣∆n

(
|∇Xε|2 −E

[|∇Xε|2
])∣∣∣p ≤ (p −1)p

(
E
∣∣∣∆n

(∣∣∇Xε(x)
∣∣2 −E

[∣∣∇Xε(x)
∣∣2

])∣∣∣2
) p

2

≤C 2κnp .

Thus, |∇Xε|2 − E
[|∇Xε|2

]
is bounded in B−κ

p,p for any κ > 0 and p ≥ 1. Using the embedding

B−κ
p,p ,→ C

−κ− d
p and a similar bound, one proves that

(|∇Xε|2 −E
[|∇Xε|2

])
ε>0 is a Cauchy family

in C −κ for any κ> 0 which completes the proof. □

We define the two dimensional enhanced noise

Ξ= (
ξ, |∇X |2⋄)

which belongs to

X κ(T2) =C −1−κ(T2)×C −2κ(T2)

for any κ> 0. We also have that

Ξε =
(
ξε, |∇Xε|2 − (2π)−2 log(ε)

)
converges toΞ in X κ(T2) for any κ> 0. In three dimensions, one has X ∈C

1
2 −κ hence this term is

even more singular with −1−2κ< 0. The analog of the previous renormalization is the following
proposition with a larger divergence. Its proof follows the same path as the previous one.

Proposition 5. There exists a distribution |∇X |2⋄ ∈C −1−2κ(T3) such that

|∇X |2⋄ = lim
ε→0

(
|∇Xε|2 −E

[|∇Xε|2
])

in C −1−2κ(T3) in probability. Moreover, one has

E
[|∇Xε|2

] ∼
ε→0

− 1

(2π)2

1

ε
.

Since the noise is more irregular, |∇X |2⋄ is too rough to make sense of its bracket with H 1

hence we will also need Y the solution to

∆Y = |∇X |2⋄−〈|∇X |2⋄,1
〉

which belongs to C 1−2κ(T3). The square of its gradient is also singular and can be defined
as a Wick product, as well as the product ∇X · ∇Y . Note that for this product, there is no
renormalization constant due to an algebraic cancellation.
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Proposition 6. There exists a distribution |∇Y |2⋄ ∈C −4κ(T3) such that

|∇Y |2⋄ = lim
ε→0

(
|∇Yε|2 −E

[|∇Yε|2
])

in C −4κ(T3) in probability. Moreover, one has

E
[|∇Yε|2

] ∼
ε→0

−C log(ε)

with C > 0 a constant. There also exists a distribution ∇X ⋄∇Y ∈C − 1
2 −3κ(T3) such that

∇X ⋄∇Y = lim
ε→0

(∇Xε ·∇Yε
)
.

Proof. We have

Yε(x) = ∑
k,k ′ ̸=0
k ̸=k ′

θ
(
ε|k|)θ(

ε|k ′|) k ·k ′

|k|2|k ′|2 ξkξk ′
e i (k−k ′)·x

|k −k ′|2

hence∣∣∇Yε(x)
∣∣2 = ∑

k1 ̸=k ′
1

k2 ̸=k ′
2

k1,k ′
1,k2,k ′

2 ̸=0

θ
(
ε|k1|

)
θ
(
ε|k ′

1|
)
θ
(
ε|k2|

)
θ
(
ε|k ′

2|
) k1 ·k ′

1

|k1|2|k ′
1|2

k2 ·k ′
2

|k2|2|k ′
2|2

ξk1ξk ′
1
ξk ′

2
ξk2

(k1 −k ′
1) · (k2 −k ′

2)

|k1 −k ′
1|2|k2 −k ′

2|2
e i (k1−k ′

1)·x e i (k ′
2−k2)·x

= ∑
n∈Z3

e i n·xà|∇Yε|2(n)

with à|∇Yε|2(n) given by

∑
k1−k ′

1+k ′
2−k2=n

k1 ̸=k ′
1,k2 ̸=k ′

2
k1,k ′

1,k2,k ′
2 ̸=0

θ
(
ε|k1|

)
θ
(
ε|k ′

1|
)
θ
(
ε|k2|

)
θ
(
ε|k ′

2|
)
ξk1ξk ′

1
ξk ′

2
ξk2

k1 ·k ′
1

|k1|2|k ′
1|2

k2 ·k ′
2

|k2|2|k ′
2|2

(k1 −k ′
1) · (k ′

2 −k2)

|k1 −k ′
1|2|k2 −k ′

2|2
.

Using again

E
[
ξk1ξk ′

1
ξk2ξk ′

2

]= δ0(k1 −k ′
1)δ0(k2 −k ′

2)+δ0(k1 +k2)δ0(k ′
1 +k ′

2)+δ0(k1 −k ′
2)δ0(k ′

1 −k2),

we get

E
[∣∣∇Yε(x)

∣∣2]= ∑
k ̸=k ′

k,k ′ ̸=0

θ
(
ε|k|)2

θ
(
ε|k ′|)2 (k ·k ′)2

|k|4|k ′|4|k−k ′|2 + ∑
k1 ̸=k2

k1,k2 ̸=0

θ
(
ε|k1|

)2
θ
(
ε|k2|

)2 (k1 ·k2)2

|k1|4|k2|4|k1−k2|2

= 2
∑

k ̸=k ′
k,k ′ ̸=0

θ
(
ε|k|)2

θ
(
ε|k ′|)2 (k ·k ′)2

|k|4|k ′|4|k −k ′|2

which diverges logarithmically in ε. As the process is invariant in law by translation again, the
expectation is a constant function hence

∆n

(
|∇Yε|2 −E

[|∇Yε|2
])

(x) = ∑
m≥1

Kn(m)à|∇Yε|2(m)e i m·x
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for n ≥ 1. We obtain that
∣∣∣∆n

(
|∇Yε|2 −E

[|∇Yε|2
])∣∣∣2

(x) is of order

23n∣∣à|∇Yε|2(2n)
∣∣2

= 23n
∑

k1−k ′
1+k2−k ′

2=2n

|ki |,|k ′
i |≤ε−1

∑
ℓ1−ℓ′1+ℓ2−ℓ′2=2n

|ℓi |,|ℓ′i |≤ε−1

k1 ·k ′
1

|k1|2|k ′
1|2

k2 ·k ′
2

|k2|2|k ′
2|2

(k1 −k ′
1) · (k ′

2 −k2)

|k1 −k ′
1|2|k2 −k ′

2|2
ξk1ξk ′

1
ξk ′

2
ξk2

ℓ1 ·ℓ′1
|ℓ1|2|ℓ′1|2

ℓ2 ·ℓ′2
|ℓ2|2|ℓ′2|2

(ℓ1 −ℓ′1) · (ℓ′2 −ℓ2)

|ℓ1 −ℓ′1|2|ℓ2 −ℓ′2|2
ξℓ1ξℓ′1ξℓ

′
2
ξℓ2

using that Kn is supported in an annulus of Z3 of radius 2n . Taking the expectation gives a factor

E
[
ξk1ξk ′

1
ξk ′

2
ξk2ξℓ1ξℓ′1ξℓ

′
2
ξℓ2

]
which is the sum of a product of delta correlation functions over all possible pairings, that is 28
elements. A number of terms vanish due to the spectral localization as in the previous proof
on T2, for example the paring δ0(k1 −k ′

1)δ0(k2 −k ′
2)δ0(ℓ1 −ℓ′1)δ0(ℓ2 −ℓ′2). An example of non-

vanishing paring is

δ0(k1 −k2)δ0(k ′
1 −k ′

2)δ0(ℓ1 −ℓ2)δ0(ℓ′1 −ℓ′2)

which gives the sum∑
2k−2k ′=2n

|k|,|k ′|≤ε−1

∑
2ℓ−2ℓ′=2n

|ℓ|,|ℓ′|≤ε−1

(k ·k ′)2

|k|4|k ′|4
1

|k−k ′|2
(ℓ ·ℓ′)2

|ℓ|4|ℓ′|4
1

|ℓ−ℓ′|2

= 2−2(n−1)
∑

2k−2k ′=2n

|k|,|k ′|≤ε−1

∑
2ℓ−2ℓ′=2n

|ℓ|,|ℓ′|≤ε−1

(k ·k ′)2

|k|4|k ′|4
(ℓ ·ℓ′)2

|ℓ|4|ℓ′|4

= 2−2(n−1)

 ∑
2k−2k ′=2n

|k|,|k ′|≤ε−1

(k ·k ′)2

|k|4|k ′|4


2

≤ 2−2(n−1)

 ∑
2k−2k ′=2n

|k|,|k ′|≤ε−1

1

|k|2|k ′|2


2

≤ 2−2(n−1)

( ∑
|k|≤ε−1

1

|k|2|k −2n−1|2
)2

≤C 2−2(n−1)2−(n−1)(1−κ)

( ∑
|k|≤ε−1

1

|k|3+κ
)2

where the sum over k ∈Z3\{0} is convergent. Since there are 23n terms in the sum because of the
support of Kn , this will indeed gives a bound of the order

E
∣∣∣∆n

(
|∇Yε|2 −E

[|∇Yε|2
])∣∣∣2 ≤C 2κn .

The large number of terms appearing here is one of the problems of singular SPDEs and it is the
main motivation for the introduction of general algebraic structures based on Hopf algebra of
trees and diagrams in regularity structures, see Hairer’s seminal work [16]. A control of each term
yields the bound

E
∣∣∣∆n

(
|∇Yε|2 −E

[|∇Yε|2
])∣∣∣p ≤Cp 2κnp

using Gaussian hypercontractivity again and so the sequence is bounded in

B−κ
p,p (T3),−→C

−κ− 3
p (T3).

Similar computations give that the sequence is Cauchy and completes the proof. For ∇X ⋄∇Y ,
the computations are similar but simpler since this is only a trilinear functional of the noise while
|∇Y |2⋄ is a 4-linear functional of the noise. In this case, the renormalization constant is zero
because of algebraic cancellations, see for example [14, Section 9] for similar computations. □
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We define the three dimensional enhanced noise

Ξ= (
ξ, |∇X |2⋄, |∇Y |2⋄,∇X ⋄∇Y

)
which belongs to

X κ(T3) =C − 3
2 −κ(T3)×C −1−2κ(T3)×C −4κ(T3)×C − 1

2 −3κ

for any κ> 0. We also have that

Ξε =
(
ξε, |∇Xε|2 − (2π)−2ε−1, |∇Yε|2 − (2π)−2 log(ε),∇Xε ·∇Yε

)
converges to Ξ in X κ(T3) for any κ> 0.

2. Construction in two dimensions

It is tempting to define the form of the Anderson operator by

a(u1,u2) =
∫
T2

∇u1(x) ·∇u2(x)dx +
∫
T2

u1(x)u2(x)ξ(dx)

for any u1,u2 ∈ C∞(T2). However, this is not a natural object since this form is not closable as
shown by the recent progress on singular stochastic operators, which can be guessed from the fact
that for u ∈H 1 the form domain of∆, the product uξ is ill-defined. For ξε = ξ∗ρε a regularization
of the noise, consider the regularized form

aε(u1,u2) =
∫
T2

∇u1(x) ·∇u2(x)dx +
∫
T2

u1(x)u2(x)
(
ξε(x)− cε

)
dx

with cε the logarithmic diverging constant defined in the previous section. For any fixed ε> 0, aε
is a closed symmetric form with domain H 1 and we construct a form a such that aε converges
to a as ε goes to 0. With X the random field constructed in the previous section, we consider the
new variable u = e X v and define

Hu :=−e X∆v −2e X ∇X ·∇v −e X |∇X |2⋄v +ξ0e X v

for v ∈ C ∞. Since X ∈ C 1−κ and |∇X |2⋄ ∈ C −2κ, Hu is well-defined as a distribution. The
associated form is given by

a(u1,u2) = 〈Hu1,u2〉
= 〈

He X v1,e X v2
〉

=−〈
∆v1, v2e2X 〉−2

〈∇X ·∇v1, v2e2X 〉−〈|∇X |2⋄v1, v2e2X 〉+ξ0
〈

v1, v2e2X 〉
=

∫
T2

∇v1(x) ·∇v2(x)e2X (x)dx −〈|∇X |2⋄v1, v2e2X 〉+ξ0

∫
T2

v1(x)v2(x)e2X (x)dx

which is well-defined for v1, v2 ∈H 1 since∣∣∣〈|∇X |2⋄e2X , v1v2
〉∣∣∣≤ ∥∥|∇X |2⋄e2X ∥∥

C −κ∥v1v2∥Bκ
1,1

≤ ∥∥|∇X |2⋄∥∥C −κ∥e2X ∥C 2κ∥v1∥H 2κ∥v2∥H 2κ

≤ ∥∥|∇X |2⋄∥∥C −κ∥e2X ∥C 1−κ∥v1∥H 1∥v2∥H 1

for κ> 0 small enough using Propositions 2 and 1.

Definition 7. The Anderson form is defined by

a(u1,u2) := 〈∇v1,∇v2〉L2(T2,e2X dx) −
〈|∇X |2⋄, v1v2e2X 〉+ξ0〈v1, v2〉L2(T2,e2X dx)

where vi = e−X ui with domain D(a) := e X H 1 equipped with the norm

∥u∥2
a := ∥u∥2

L2 +∥e−X u∥2
H 1 .
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Since e X ∈ C 1−κ for any κ > 0, the domain D(a) is dense in H 1−κ thus in L2. The following
proposition states that this densely defined form is continuous and bounded from below.

Proposition 8. There exists a random constant C > 0 such that∣∣a(u1,u2)
∣∣≤C∥u1∥a∥u2∥a

for u1,u2 ∈D(a). The form a is quasi-coercive, i.e., there exist random constants δ,C ′ > 0 such that

a(u,u)+C ′∥u∥2
L2 ≥ δ∥u∥2

a

for all u = e X v ∈D(a).

Proof. The continuity follows directly from∣∣∣〈|∇X |2⋄e2X , v1v2
〉∣∣∣≤ ∥∥|∇X |2⋄∥∥C −κ∥e2X ∥C 1−κ∥v1∥H 1∥v2∥H 1 .

Now we prove the second statement. Set u = e X v with v ∈H 1. We have for any κ> 0

a(u,u)−ξ0

∫
T2

∣∣v(x)
∣∣2e2X (x)dx =

∫
T2

∣∣∇v(x)
∣∣2(x)e2X (x)dx −〈|∇X |2⋄v, ve2X 〉

≥ e−∥X ∥L∞
∫
T2

∣∣∇v(x)
∣∣2(x)dx −∥∥|∇X |2⋄∥∥C −κ∥e2X ∥C 2κ∥v∥2

H 2κ .

For small κ> 0 we use the standard interpolation inequality, which is valid for every ε> 0,

∥v∥H 2κ ≤ ε∥v∥H 1 + cε∥v∥L2

for some cε > 0. We choose ε small enough and insert this inequality in the previous estimates to
obtain the statement. □

A consequence of the previous proposition is that the norms ∥·∥D(a) and ∥e−X ·∥H 1 are
equivalent.

We now prove that the form is closed.

Proposition 9. The form a is closed, that is
(
D(a),∥·∥a

)
is a complete space.

Proof. Let (un)n≥0 ⊂D(a) be a Cauchy sequence. Then (e−X un)n≥0 is a Cauchy sequence in H 1

thus converges to a limit v ∈ H 1 while (un)n≥0 is a Cauchy sequence in L2 thus converges to
u ∈ L2. We have

∥u −e X v∥L2 ≤ ∥u −un∥L2 +∥un −e X v∥L2

≤ ∥u −un∥L2 +∥e X ∥L∞∥e−X un − v∥L2

Letting n →∞ yields u = e X v ∈D(a) and this completes the proof. □

Finally, we prove that a is the limit in some sense of the renormalized forms aε.

Proposition 10. For any κ> 0, there exists a constant C > 0 such that∣∣a(u1,u2)−aε(uε
1,uε

2)
∣∣≤C∥Ξ−Ξε∥X κ(T2)∥v1∥H 1∥v2∥H 1

with uε
i = e Xεvi for ε≥ 0.

Proof. Let v1, v2 ∈H 1 and consider uε
i = e Xεvi for ε≥ 0, i.e., uε

i ∈H 1 the form domain of aε for
any ε> 0 while ui ∈ e X H 1 for ε= 0. We have

aε(uε
1,uε

2) = 〈∇v1,∇v2〉L2(T2,e2X dx) −
〈|∇Xε|2 − cε, v1v2e2Xε

〉+〈ξε,1〉〈v1, v2〉L2(T2,e2Xεdx)

and hence∣∣a(u1,u2)−aε(uε
1,uε

2)
∣∣≤ ∣∣∣〈|∇Xε|2 − cε−|∇X |2⋄, v1v2

〉∣∣∣+ ∣∣∣〈〈ξε,1〉e Xε −ξ0e X , v1v2
〉∣∣∣

≤C∥Ξ−Ξε∥X κ∥v1∥H 1∥v2∥H 1

for any κ> 0 and the proof is complete. □
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3. Construction in three dimensions

In three dimensions, the expression

〈∇v1,∇v2〉L2(T3,e2X dx) −
〈|∇X |2⋄, v1v2e2X 〉+ξ0

〈
v1, v2e2X 〉

does not make sense anymore for v1, v2 ∈H 1 since |∇X |2⋄ belongs to C −1−κ for any κ> 0. In this
case, one makes the change of variable u = e X+Y v with Y the solution to

∆Y = |∇X |2⋄−〈|∇X |2⋄,1
〉

which belongs to C 1−κ. We have

Hu =−e X+Y ∆v −2e X+Y (∇X +∇Y ) ·∇v −
(
|∇Y |2⋄+2∇X ⋄∇Y −〈|∇X |2⋄,1

〉−ξ0

)
e X+Y v

hence

a(u1,u2) = 〈Hu1,u2〉
= 〈

He X+Y v1,e X+Y v2
〉

=−〈
∆v1, v2e2X+2Y 〉−2

〈∇(X +Y ) ·∇v1, v2e2X+2Y 〉−〈|∇Y |2⋄, v1v2e2X+2Y 〉
−2

〈∇X ⋄∇Y , v1v2e2X+2Y 〉+〈|∇X |2⋄,1
〉+〈

ξ0, v1v2e2X+2Y 〉
=

∫
T3

∇v1(x) ·∇v2(x)e2X (x)+2Y (x)dx −〈|∇Y |2⋄+2∇X ⋄∇Y , v1v2e2X+2Y 〉
+ (〈|∇X |2⋄,1

〉+ξ0
)∫
T3

v1(x)v2(x)e2X (x)+2Y (x)dx

which is well-defined for v1, v2 ∈H 1 since |∇Y |2⋄ ∈C −κ and ∇X ⋄∇Y ∈C − 1
2 −κ for any κ> 0.

Definition 11. The Anderson form is defined by

a(u1,u2) := 〈∇v1,∇v2〉L2(T3,e2X+2Y dx) −
〈|∇Y |2⋄+2∇X ⋄∇Y , v1v2e2X+2Y 〉

+ (〈|∇X |2⋄,1
〉+ξ0

)〈v1, v2〉L2(T3,e2X+2Y dx)

where vi = e−X ui with domain D(a) := e X+Y H 1 equipped with the norm

∥u∥2
a := ∥u∥2

L2 +∥e−(X+Y )u∥2
H 1 .

Since e X+Y ∈ C
1
2 −κ for any κ > 0, the domain D(a) is dense H

1
2 −κ thus in L2. The following

proposition states that this densely defined form is continuous and bounded from below. The
proofs are obtained following the same path as in two dimensions.

Proposition 12. There exists a random constant C > 0 such that∣∣a(u1,u2)
∣∣≤C∥u1∥a∥u2∥a

for u1,u2 ∈D(a). There exists random constants δ,C ′ > 0 such that

a(u,u)+C ′∥u∥2
L2 ≥ δ∥u∥2

a

for all u = e X+Y v ∈D(a).
Moreover, the form a is closed, that is

(
D(a),∥·∥a

)
is a complete space, and we have the following

convergence. For any κ> 0, there exists a constant C > 0 such that∣∣a(u1,u2)−aε(uε
1,uε

2)
∣∣≤C∥Ξ−Ξε∥X κ(T3)∥v1∥H 1∥v2∥H 1

with uε
i = e Xε+Yεvi for ε≥ 0.
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4. Positivity and spectral gap

The construction of the form a is the same in two and three dimensions. It is densely defined,
symmetric bounded from below, continuous and closed. Its associated operator H has domain

D(H) =
{

u ∈ L2(Td ) ; ∃ v ∈ L2(Td ), ∀ϕ ∈D(a), a(u,ϕ) = 〈v,ϕ〉
}

.

This is well-known in the study of spectral theory, see for example [25, Section 1.2.3]. The idea is
that for u ∈D(H), the bilinear form

ϕ ∈D(a) 7−→ a(u,ϕ)

can be represented as a unique element v ∈ L2(Td ) and has to be interpreted as

ϕ 7−→ 〈v,ϕ〉 = 〈Hu,ϕ〉
with H the operator associated to the form a. The density of the form domain is crucial and one
can transfer most property of the form to the operator, the domain of the operator being dense
in the form domain. In particular, the operator H is self-adjoint, densely defined and bounded
from below. Since D(a) is embedded into a Sobolev space of positive regularity, it is compactly
embedded in L2(Td ). Therefore, H has discrete spectrum

λ1 ≤λ2 ≤ . . .

and there exists an orthonormal basis of L2(Td ) which is given by eigenfunctions of H . An
important information is the existence of a spectral gap with a positive ground state. This is
already known (see for example [4]) and it is a key to prove two-sided Gaussian bounds for the
corresponding heat kernel of H . By the classical Krein–Rutman theorem, the general idea to get
a spectral gap with a positive ground state is to prove that the semigroup e−t H is positive and
irreducible. This means that for any non-negative (and nontrivial) f ∈ L2(Td ), we have at any
time t > 0, e−t H f > 0 a.e. onTd . The irreducibility is sometimes called strict positivity or positivity
improving. Unlike [4] which relies on quantitative study of the linear Parabolic Anderson Model
equation and an approximation argument, we can obtain positivity and irreducibility readily
from the form. These two properties are indeed characterized in terms of the form. See
Theorems 2.6 and 2.10 in [25]. Thus, we provide a pedestrian approach to the existence of
a spectral gap even in three dimensions which usually relies on involved computations with
expansion of order 5 using regularity structures or paracontrolled calculus.

Theorem 13. The semigroup e−t H is irreducible. In particular, the first eigenvalue is simple, that
is λ1 <λ2 and there exists a positive ground state Ψ ∈D(H).

Proof. Both positivity and irreducibility are not changed under multiplication by e X or e X+Y and
so we use the form a constructed in the previous sections.

Let u ∈ D(a) and v ∈ H 1 such that u = e X v if d = 2 and u = e X+Y v if d = 3. Then clearly,
u+ = e X v+ (or e X+Y v+) and u− = e X v− (or e X+Y v−). Since v+, v− ∈H 1, we have u+,u− ∈ D(a). In
addition, it is obviously seen from the definition of the Anderson form that a(u+,u−) = 0. By [25,
Theorem 2.6] we conclude that (e−t H )t≥0 is a positive semigroup.

Now we prove irreducibility. We apply [25, Theorem 2.10]. Since H is a local operator, it is
enough to prove that if F ⊂Td is such that

∀ u ∈ D(a), 1F u ∈ D(a),

then either |F | = 0 or |Td \F | = 0. Clearly, 1F u = e X1F v if d = 2 and 1F u = e X+Y 1F v if d = 3. This
implies

∀ v ∈H 1, 1F v ∈H 1.
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Theorem 2.10 from [25] applied to the Laplacian, whose form domain is H 1, gives that |F | = 0 or
|Td \F | = 0. This proves irreducibility.

The rest of the theorem is classical and it is a direct consequence of the Krein–Rutman
theorem. □

Remark 14. To have a more precise characterization of the domain, one would need to under-
stand the condition Hu ∈ L2(Td ) for u ∈ L2(Td ). For example in the case d = 2, smooth functions
are not in the domain of the operator since

e−X He X v =−∆v −2∇X ·∇v −|∇X |2⋄v

is not an element of L2(T2) for smooth v since ∇X , |∇X |2⋄ ∈C −κ(T2) for any κ> 0. The main idea
of the construction of such singular stochastic operator is to consider rough functions depending
on the noise such that

−∆u +uξ ∈ L2(T2)

hence ∆u needs to have the same regularity of the noise, that is u ∈ C 1−κ(T2). Using regularity
structures or paracontrolled calculus gives a local description of such function to ensure not only
to define the operator with a renormalization procedure but also to give explicit functions in the
domain with a prescribed local behavior depending on the noise. In the framework of [23], the
form domain is described with a first order paracontrolled expansion

D(a) =
{

u ∈ L2(T2) ; u −Pu X ∈H 1(T2)
}

where P is a paraproduct, which is equivalent to our formulation. However, the operator domain
is obtained with a second order paracontrolled expansion

D(H) =
{

u ∈ L2(T2) ; u −Pu X −Pu X2 ∈H 2(T2)
}

with X2 another suitable function depending on ξ and X which does not involve any renormal-
ization procedure.
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