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Abstract. For a localization of a smooth proper category along a subcategory preserved by the Serre functor,
we show that morphisms in Efimov’s algebraizable categorical formal punctured neighborhood of infinity can
be computed using the natural cone between right and left adjoints of the localization functor. In particular,
this recovers the following result of Ganatra–Gao–Venkatesh: morphisms in categorical formal punctured
neighborhoods of wrapped Fukaya categories are computed by Rabinowitz wrapping.

Résumé. Pour la localisation d’une catégorie propre et lisse le long d’une sous-catégorie préservée par le
foncteur de Serre, nous montrons que les morphismes dans le voisinage à l’infini algébrisable catégorique
formel perforé d’Efimov peuvent être calculés en utilisant le cône naturel entre les adjoints à droite et à
gauche du foncteur de localisation. En particulier, cela redémontre le résultat suivant de Ganatra–Gao–
Venkatesh : les morphismes dans les voisinages catégoriques formels perforés des catégories de Fukaya
enroulées sont calculés par l’enroulement de Rabinowitz.
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To any dg category S over a fieldK, Efimov has associated an “algebraizable categorical formal
punctured neighborhood of infinity” [2]:

S −→ Ŝ∞.

We are interested here in the case when S admits a localization sequence

0 −→K
j−→C

i L

−→S −→ 0 (1)

where C is smooth (perfect diagonal bimodule) and locally proper (finite dimensional Hom
spaces).

In this case, Efimov showed that Ŝ∞ can be computed as follows. To any category T we may
associate its “pseudo-perfect modules” T pp = Hom

(
T ,Perf(K)

)
. Since K is locally proper, the

Yoneda embedding gives K ,→K pp. Form the quotient:

Perftop(Ŝ∞) :=K pp/K . (2)
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The composition of the Yoneda functor with passage to the quotient gives a map

C −→ Hom
(
K ,Perf(K)

)
/K .

This map evidently factors through S , and Ŝ∞ is the full subcategory of Perftop(Ŝ∞) generated
by the image of S , or equivalently C .

As always with quotient categories, it is not easy to compute morphism spaces directly from
the definition. Our purpose here is to give a more explicit formula for morphisms in Ŝ∞, under
the additional assumption that the Serre functor of C preserves K . Our result is inspired by, and
implies, a result of Gao–Ganatra–Venkatesh in the situation where S is the Fukaya category of a
Weinstein manifold [3].

Theorem 1. Assume given a sequence as in (1), such that C is smooth and locally proper, and
the Serre functor of C preserves K . Let i : Mod S → Mod C be the pullback functor on module
categories. Then for c,d ∈C , there is a natural isomorphism

HomŜ∞ (c,d) = Cone
(
HomMod C

(
i i L(c),d

)→ HomMod C

(
c, i i L(d)

))
,

where the map is induced by the unit maps c → i i L(c) and d → i i L(d).

Remark 2. The map i also has a right adjoint i R ; we can also express the formula as
HomŜ∞ (c,d) = HomMod C

(
c,Cone

(
i i R (d) → i i L(d)

))
.

Remark 3. It may be nontrivial to express compositions in Ŝ∞ in terms of the formula above. We
give an expression at the level of cohomology in Appendix A.

We will give the proof of this theorem after illustrating in algebraic and symplectic geometry:

Example 4 (Coherent sheaves). Let Y be a smooth proper algebraic variety, and X ⊂ Y an open
subvariety with complement Z . Then Coh(Y ) is smooth and proper, and one has

Coh(X ) = Coh(Y )/CohZ (Y ),

where CohZ (Y ) is the full subcategory on sheaves set-theoretically supported on Z . The Serre
functor of Coh(Y ) obviously preserves CohZ (Y ). Writing x : X → Y for the inclusion, our result
asserts that given E ,F ∈ Coh(Y ),

HomáCoh(X )∞ (E ,F ) = Cone
(
HomQ Coh(Y )

(
x∗x∗E ,F

)→ HomQ Coh(Y )
(
E , x∗x∗F

))
Note we may compute this cone of Homs after restricting to any Zariski neighborhood of Z , since
x∗x∗E → E and x∗x∗F → F are isomorphisms away from such neighborhood.

Let us do an example of the example. We take Y =P1, X =P1 \ 0, and E = F =O . In the Zariski
chart P1 \∞, we compute:

Cone
(
HomK[t ]

(
K[t , t−1],K[t ]

)→ HomK[t ]
(
K[t ],K[t , t−1]

))∼=K((t ))

Indeed, the second term in the cone is obviouslyK[t , t−1]. One can show that the first is in fact
isomorphic to

(
K[[t ]]/K[t ]

)
[−1]; we include a calculation in Appendix B. We leave it to the reader

to check that the cone realizes the nontrivial extension

0 −→K[t , t−1] −→K((t )) −→K[[t ]]/K[t ] −→ 0.

Before going to the next example, we note the following lemma.

Lemma 5. Let B be a smooth proper category, and f : A → B be a left relative Calabi–Yau
structure. Then the Serre functor of B preserves the image of the triangulated hull of A .



Tatsuki Kuwagaki and Vivek Shende 207

Proof. By the definition of left relative CY structure [1, (4.10)], we have an exact sequence

B! −→ f!A [−n +1] −→B[−n +1]

in the category of Be =B⊗k B-bimodules. Here B! is the dualizing module, n is the dimension
of the CY structure. Since B is smooth proper, ⊗B! is the inverse Serre functor. As a result, the
sequence says that the Serre functor differs from the identity by something from A . Hence the
images of objects of A are preserved by the Serre functor of B. □

Example 6 (Fukaya categories). Let W be a Weinstein symplectic manifold and Λ ⊂ ∂∞W a
generically Legendrian total stop, such as the core of a fiber of an open book decomposition of
∂∞W , e.g. as for a Lefschetz fibration on W in the sense of Seidel. Then [5] the (partially) wrapped
Fukaya category Fuk(W,Λ) is smooth and proper, and we have a localization sequence

0 −→〈DΛ〉 −→ Fuk(W,Λ) −→ Fuk(W ) −→ 0 (3)

where DΛ are the so-called linking disks to Λ.
We claim that 〈DΛ〉 is preserved by the Serre functor of Fuk(W,Λ). In the case where Λ is

the core of fiber of a Lefschetz fibration, this follows from Seidel’s result that the (inverse) Serre
functor on Fuk(W,Λ) acts by “wrapping once” [8], which evidently preserves the DΛ.1 Note that
any Weinstein manifold can be presented as a Lefschetz fibration [6], hence equipped with such
a stop.

More generally, for any (say Whitney stratifiable) Legendrian total stop Λ, while we do not
know an explicit description of the Serre functor of Fuk(W,Λ), we can nevertheless check that
it preserves 〈DΛ〉. First we interpret Fuk(W,Λ) with a category of microsheaves µsh(W,Λ)
through [4]. We have a left relative CY structure on µsh(Λ) → µsh(W,Λ) by [10]. Then Lemma 5
implies what we want.

Thus, we may apply Theorem 1. Let us see what it yields. Suppose given a Lagrangian
M ∈ Fuk(W,Λ). As in [5], by a negative wrapping M ⇝ M−, we mean an isotopy induced by a
Hamiltonian which is linear and negative at contact infinity. So long as M− avoids Λ and hence
defines an element of Fuk(W,Λ), there is a continuation morphism M → M−. Essentially by
definition,2

HomFuk(W )( · , M) = lim−−→
M→M−

HomFuk(W,Λ)( · , M−) = HomMod Fuk(W )

(
· , lim−−→

M→M−
M−

)
.

In other words, there is a natural isomorphism

i i L(M) ∼= lim−−→
M→M−

M−.

We conclude:

Hom áFuk(W,Λ′)∞
(L, M) = Cone

(
HomFuk(W,Λ)

(
lim−−→

L→L−
L−, M

)
→ HomFuk(W,Λ)

(
L, lim−−→

M→M−
M−

))

= Cone

(
lim←−−

L→L−
HomFuk(W,Λ)

(
L−, M

)−→ lim−−→
M→M−

HomFuk(W,Λ)
(
L, M−))

.

This recovers a result originally proven in [3, Theorem 1.1(2)].

1In [8] this was asserted as a conjecture, and was proved in [9, Eq. (7.63)] for Seidel’s definition of Fukaya–Seidel
categories. Strictly speaking, Seidel’s setup differs from that in [5] in terms of the asymptotic conditions imposed at
infinity; a detailed account of the isotopies needed to check that the approaches are equivalent can be found in [7].

2Or see [5, Lemma 3.12] for a detailed argument in the equivalent version where the wrapping is done positively in
the first factor, rather than negatively in the second.
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The remainder of this note concerns the proof of Theorem 1.
We have the diagram:

Mod K Mod C Mod S

j RR

j

i R

j R

i L

i

Here, j R and i are the natural pullback of modules under the identification of ind- and
module-categories. These each have right and left adjoints, and the left adjoints compose with
the Yoneda embeddings to give the original j and i L .

We note some properties of this diagram. The maps i , j , j RR are fully faithful; we have
j R j = 1Mod K = j R j RR and i Li = 1Mod S = i R i .

Lemma 7. i R (K ) = 0.

Proof. For E ∈K and F ∈ Mod S , we have

HomMod S

(
F , i R (E )

)∼= HomMod C

(
i (F ),E

)
. (4)

We have Fi ∈C such that lim−−→i
Fi = i (F ).

HomMod C

(
i (F ),E

)∼= lim←−−
i

HomMod C (Fi ,E )

∼= lim←−−
i

HomK

(
HomMod C

(
Φ−1(E ),Fi

)
,K

)
∼= HomK

(
lim−−→

i

HomMod C

(
Φ−1(E ),Fi

)
,K

)
∼= HomK

(
HomMod C

(
Φ−1(E ), lim−−→

i

Fi
)
,K

)
∼= HomK

(
HomMod C

(
Φ−1(E ), i (F )

)
,K

)
= 0.

(5)

In the last equality, we used the ansatz Φ preserves K . This completes the proof. □

We will later be interested in the Drinfeld–Verdier quotient (Mod C )/K . (Note this differs
from Mod C /Mod K = Mod S .) It will be useful that certain morphisms can already be com-
puted in C :

Lemma 8. For any c,d ∈C ,

HomModC /K
(
i i L(c),d

)∼= HomModC

(
i i L(c),d

)∼= HomModC

(
c, i i R (d)

)
(6)

and

HomModC /K
(
i i L(c), i i L(d)

)∼= HomModC

(
i i L(c), i i L(d)

)∼= HomModC

(
c, i i L(d)

)
. (7)

Additionally,

HomModC /K
(
c, i i L(d)

)∼= HomModC

(
c, i i L(d)

)
(8)

and

HomModC /K (c,d) ∼= HomModC

(
c, i i L(d)

)
. (9)

Proof. A morphism in HomModC /K
(
i i L(c),d

)
is given by a roof diagram

i i L(c)
f−→ c ′

g←− d (10)

such that Cone(g ) ∈ K . Since HomModC

(
i i L(c),Cone(g )

) = 0 by Lemma 7, f is induced by a
morphism i i L(c) → d . This shows (6). Now (7) follows from i i R i i L = i i L .
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Similarly, take a morphism in HomModC /K
(
c, i i L(d)

)
. Then it is given by a roof diagram

c
f←− c ′

g−→ i i L(d) (11)

such that Cone( f ) ∈ K . Since HomModC

(
Cone( f ), i i L(d)

) = 0, g is induced by a morphism
c → i i L(d). This establishes (8).

Finally, since j R (d) ∈ ModK , we have di ∈ K such that lim−−→i
di = j R (d). Since j is colimit

preserving and c is compact, we have

HomModC

(
c, j j R (d)

)∼= lim−−→
i

HomModC (c,di ). (12)

Take any morphism f ∈ HomModC

(
c, j j R (d)

)
. The above isomorphism implies f factors through

di ∈K for some sufficiently large i . This implies HomModC /K
(
c, j j R (d)

)∼= 0. Applying this result
to the triangle

HomModC /K (c,d) −→ HomModC /K
(
c, i i L(d)

)−→ HomModC /K
(
c, j j R (d)

)−→, (13)

we get (9). □

Lemma 9. Given an exact sequence as in (1), the restrictions of i and j R to pseudo-perfect modules
have the following properties:

• i : S pp →C pp is fully faithful;
• the image of i is the kernel of j R .

Proof. For the second statement:

S pp = Hom
(
S ,Perf(K)

)= Hom
(
C ⊕K 0,Perf(K)

)=C pp ×K pp 0. □

Remark 10. Note we do not claim the map C pp/i (S pp) →K pp is fully faithful.

Corollary 11. Assume C is smooth and proper, so C pp =C . Then the kernel of the map

C
j R

−→K pp −→K pp/K

is generated by K and C ∩ i (S ).

Proof. After Lemma 9, the only thing remaining to check is i (S pp) =C ∩i (S ). Smoothness of C

implies smoothness of S , hence S pp ⊂ S , giving the inclusion ⊂. On the other hand for s ∈ S

satisfies i (s) ∈C , then for c ∈C we have

HomS

(
i L(c), s

)= HomC

(
c, i (s)

)
by properness of C , this Hom is perfect. But i L is surjective, so s ∈S pp. □

Proof of Theorem 1. Consider the category (C ,Mod S ) generated by C and Mod S in Mod C .
Since j R kills Mod S , we have an induced functor (C ,Mod S ) → K pp. The kernel is generated
by Mod S , and we have a map

[ jR ] : (C ,ModS )ModS −→K pp. (14)

As [ jR ] can be embedded into an equivalence Mod C /Mod S ∼= ModK , it is in particular fully
faithful. Hence we get an equivalence:(

(C ,ModS )ModS
)
K ∼= Ŝ∞ ⊂K pp/K . (15)

Consider the embedding

(C ,ModS )ModS ,−→ ModK ,−→ ModC (16)

given by j j R . We use the same notation after passing to the quotient by K :

j j R :
(
(C ,ModS )ModS

)
K ,−→ ModC /K . (17)
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Thus far we have shown

HomŜ∞ (c,d) = HomModC /K
(

j j R (c), j j R (d)
)
.

Since we have an exact triangle

j j R −→ id −→ i i L −→, (18)

we have

HomModC /K
(

j j R (c), j j R (d)
)∼= Cone(C1 →C2)[−1] (19)

where
C1 := Cone

(
HomModC /K

(
i i L(c),d

)→ HomModC /K (c,d)
)
,

C2 := Cone
(
HomModC /K

(
i i L(c), i i L(d)

)→ HomModC /K
(
c, i i L(d)

))
.

(20)

By (7), we see C2 = 0. To complete the proof we rewrite C1 using (6) and (9). □

Appendix A. Compositions in Ŝ∞

Let c0,c1,c2 be objects of C , viewed also as objects of Ŝ∞. We express the underlying complex of
HomŜ∞ (ci ,ci+1) as

HomMod C

(
i i L(ci ),ci+1

)
[1]⊕HomMod C

(
i i L(ci ), i i L(ci+1)

)
. (21)

We will use the unit morphism
u : ci −→ i i L(ci ). (22)

We will compose

( f0, g0) ∈ HomMod C

(
i i L(c0),c1

)
[1]⊕HomMod C

(
i i L(ci ), i i L(ci+1)

)
,

( f1, g1) ∈ HomMod C

(
i i L(c1),c2

)
[1]⊕HomMod C

(
i i L(ci ), i i L(ci+1)

)
.

(23)

We use the notation from the proof of Theorem 1. We have the projection

π : Cone(C1 →C2)[−1] −→C1, (24)

which is a quasi-isomorphism. For each ( fi , gi ), we have a cocycle lift

( fi , gi ,u ◦ gi ◦u−1,0) ∈ HomModC /K
(
i i L(ci ),ci+1

)
[−1]⊕HomModC /K (ci ,ci+1)

⊕HomModC /K
(
i i L(ci ), i i L(ci+1)

)
[−2]⊕HomModC /K

(
ci , i i L(ci+1)

)
[−1], (25)

which is the underlying vector space of Cone(C1 → C2), which is the underlying vector space of
the hom-space Hom

(
Cone

(
ci → i i L(ci )

)
,Cone

(
ci+1 → i i L(ci+1)

))
. Here gi ◦u−1 is only cohomo-

logically well-defined. We then directly calculate and get

( f1, g1,u ◦ g1 ◦u−1,0)◦ ( f0, g0,u ◦ g0 ◦u−1,0) = (g1 ◦ f0 + f1 ◦u ◦ g0 ◦u−1, g1 ◦ g0,⋆1,⋆2), (26)

where the last two components are omitted.
We interpret each term as a morphism of Mod C . By taking the following identification, u−1

disappears:

( fi , gi , gi ,0) ∈ HomModC

(
i i L(ci ),ci+1

)
[−1]⊕HomModC

(
i i L(ci ), i i L(ci+1)

)
⊕HomModC

(
i i L(ci ), i i L(ci+1)

)
[−2]⊕HomModC

(
i i L(ci ), i i L(ci+1)

)
[−1]. (27)

Then the terms in
(g1 ◦u ◦ f0 + f1 ◦ g0, g1 ◦ g0) (28)

are well-defined except for g1 ◦ f0 lands in the correct place HomModC

(
i i L(ci ),ci+1

)
[−1] ⊕

HomModC

(
i i L(ci ), i i L(ci+1)

)
. Here we put u the head of two f0, which also comes from the iden-

tification with Mod C .
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A priori, g1 ◦u ◦ f0 is not in HomModC

(
i i L(ci ),ci+1

)
[−1], but HomModC

(
i i L(ci ), i i L(ci+1)

)
[−1].

But, by construction, there is some u−1 ◦ g1 ◦ u ◦ f0 ∈ HomModC

(
i i L(ci ),ci+1

)
[−1] such that

u ◦ (u−1 ◦ g1 ◦ f0) = g1 ◦u ◦ f0. Hence, at the cohomological level, we obtain the following formula
for the composition:

( f1, g1)◦ ( f0, g0) := (u−1 ◦ g1 ◦u ◦ f0 + f1 ◦ g0, g1 ◦ g0). (29)

One way to write formulas beyond the cohomological level would be the following. Choose
a projection C1 → H∗(C1) and the splitting of Cone(C1 → C2)[1] → H∗(C1), one obtains the
contracting homotopy from Cone(C1 → C2)[1] to H∗(C1). Then, by running the homological
perturbation theory, one obtains an A∞-structure upgrading the above composition formula,
which is by construction quasi-equivalent to Ŝ∞.

Appendix B. HomK[t ]
(
K[t , t−1],K[t ]

)
A free resolution ofK[t , t−1] is given by:⊕

n≤−1
K[t ] · rn −→ ⊕

n≤0
K[t ] · sn

rn 7−→ t sn − sn+1

where rn , sn are just basis elements. Dualizing gives∏
n≤0

K[t ] · s∗n −→ ∏
n≤−1

K[t ] · r∗
n

s∗n 7−→ tr∗
n − r∗

n−1.

Consider the followingK[t ]-linear map

Σ :
∏

n≤−1
K[t ]r∗

n −→K[[t ]] (30)

r∗
n 7−→ t−n−1. (31)

We claim that ∏
n≤−1

K[t ] · s∗n −→ ∏
n≤−1

K[t ] · r∗
n −→K[[t ]] −→ 0 (32)

is an exact sequence. Indeed, it is obvious that the composition is zero. Suppose
∏

fn(t )r∗
n goes

to zero. For each monomial αr∗
n of

∏
fn(t )r∗

n , we set

deg(αr∗
n ) := deg(α)−n −1.

Let N be the lowest nonzero number where
∏

fn(t )r∗
n has a nonzero degree N monomial. Note

that the number of degree N monomials in
∏

fn(t )r∗
n are finite. Hence, by adding an element

coming from
∏

n≤−1K[t ] · s∗n , one can assume that the sum of the degree N monomials is βr∗
−N−1

for some scalar β. Since this is still in the kernel of Σ and the degree N -part of Σ(βr∗
−N−1) = βt N ,

β is zero. Inductively, adding elements coming from
∏

n≤−1K[t ]·s∗n , we get kerΣ=∏
n≤−1K[t ]·s∗n .

Hence ∏
n≤0

K[t ] · s∗n −→ ∏
n≤−1

K[t ] · r∗
n −→K[[t ]]/K[t ] −→ 0 (33)

is also an exact sequence. (It is also easy to see that the first map is injective.)
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