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Abstract. The aim of the paper is to provide a direct proof of the weighted Pólya–Knopp inequality. This in-
equality (which is a limiting case of the Ariño–Muckenhoupt inequalities), involving non-increasing func-
tions, was initially established by Sbordone–Wik, who proved its validity under the necessary and sufficient
condition that the weight satisfies an appropriate doubling condition. Our main contribution is to use Car-
leson’s approach to Carleman’s inequality in conjunction with Hardy’s lemma and Sbordone–Wik’s doubling
condition, in order to obtain the weighted Pólya–Knopp inequality.

Résumé. L’objectif de cet article est de fournir une preuve directe de l’inégalité de Pólya–Knopp à poids.
Cette inégalité (qui est un cas limite des inégalités de Ariño–Muckenhoupt), portant sur des fonctions
décroissantes, a été montrée par Sbordone–Wik, qui ont montré qu’elle est valide si elle seulement si le poids
satisfait une condition adaptée de doublement. Notre contribution principale est d’utiliser la méthode de
Carleson pour la preuve de l’inégalité de Carleman, en conjonction avec le lemme de Hardy et la condition
de doublement de Sbordone–Wik, afin de prouver directement l’inégalité de Pólya–Knopp à poids.
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1. Introduction

Let the Ariño–Muckenhoupt class Bp (1 ≤ p < ∞) be defined as the set of all nonnegative
functions W for which a constant B exists such that∫ ∞

r

(
r

x

)p

W (x)dx ≤ B
∫ r

0
W (x)dx for all r > 0,

and let the class B∞ be the union of all such Bp .
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Let 1 ≤ p <∞. Then, the Ariño–Muckenhoupt theorem [1, Theorem 1.7] asserts the following.

Ariño–Muckenhoupt theorem ([1, Theorem 1.7]). The weighted Hardy inequality∫ ∞

0

(
1

x

∫ x

0
f (t )1/p dt

)p

W (x)dx ≤C
∫ ∞

0
f (x)W (x)dx

holds for all nonnegative, nonincreasing functions f on [0,∞) if and only if W belongs to the
class Bp .

By Riesz [7],
(∫ x

0 f (t )1/p dt/x
)p decreases and tends to exp

(∫ x
0 log f (t )dt/x

)
as p increases

to ∞. Therefore, as a limiting case of this theorem, it is natural to try to characterize the class
B∞ such that the following holds, where we use the notation G f (x) = exp

(∫ x
0 log f (t )dt/x

)
: the

weighted Pólya–Knopp inequality∫ ∞

0
G f (x)W (x)dx ≤C

∫ ∞

0
f (x)W (x)dx (1)

holds for all positive, nonincreasing functions f on [0,∞) if and only if W ∈ B∞.
In Sbordone–Wik [8], the class B∞ is defined using the doubling condition (Da) below. More-

over, it is proved in [8, Theorem 5] that the class B∞ is the union of all Bp (1 ≤ p <∞), and the
inequality (1) is proved in [8, Theorem 6].

The aim of this paper is to provide a direct proof of the inequality (1) by making full use of
Carleson’s approach to Carleman’s inequality.

Following Carleson [4], we express a nonincreasing function f (x) on (0,∞) by using a nonin-
creasing function h(x) as f (x) = eh(x), where h : (0,∞) → R∪ {±∞}. Then G f (x) = eH(x) and the
inequality (1) can be written as∫ ∞

0
eH(x)W (x)dx ≤C

∫ ∞

0
eh(x)W (x)dx, (2)

where

H(x) := 1

x

∫ x

0
h(t )dt , x ∈ (0,∞).

The inequality where W (x) = x p (−1 < p <∞) and C = ep+1 is treated in Carleson [4]. The case
where p = 0 is known as the Pólya–Knopp inequality [5]. See also Carleman [3].

Our paper is organized as follows. In Section 2, we restate the theorem to be considered and
then give a direct proof of the inequality (2) following Carleson’s method. A few comments are
mentioned in Section 3.

2. Theorem and a direct proof of the weighted Pólya–Knopp inequality

For the convenience of the reader, we restate the result to be proved.

Theorem 1. Let the weight function W belong to the class B∞. Then the weighted Pólya–
Knopp inequality (2) holds for all nonincreasing function h : (0,∞) → R∪ {±∞}, where H(x) =
(1/x)

∫ x
0 h(t )dt .

Proof. For a nonnegative function W (x), suppose that it satisfies the B∞ condition, or equiva-
lently, the following doubling condition (Da) for some a > 1:∫ ar

0
W (x)dx ≤Ca

∫ r

0
W (x)dx for all r > 0. (Da)

For this equivalence, see Sbordone–Wik [8, Theorem 5]. The inequality (2) is now to be proved.
Because h is nonincreasing, we have axH(ax) ≤ xH(x)+ (ax − x)h(x) (even in the case where
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h(x) = −∞ and thus this inequality becomes −∞ ≤ −∞). We use this inequality and Hölder’s
inequality to obtain, for any A > 0,∫ A

0
eH(x)W (x)dx =

∫ A/a

0
eH(ax)W (ax)a dx

≤
∫ A

0
eH(x)/a e(a−1)h(x)/aW (ax)a dx

≤
(∫ A

0
eH(x)W (ax)a dx

)1/a(∫ A

0
eh(x)W (ax)a dx

)(a−1)/a

.

(3)

We next note that the functions eH(x) and eh(x) are nonincreasing, and that the condition (Da) can
be written as follows: ∫ r

0
W (ax)a dx ≤Ca

∫ r

0
W (x)dx for all r > 0.

We now recall Hardy’s lemma according to [2, Proposition 3.6 in Chapter 2].

Hardy’s lemma ([2, Proposition 3.6 in Chapter 2]). Let f1 and f2 be nonnegative functions on
[0,∞), and suppose ∫ r

0
f1(x)dx ≤

∫ r

0
f2(x)dx for all r > 0.

Let g be any nonnegative nonincreasing function on [0,∞). Then,∫ A

0
f1(x)g (x)dx ≤

∫ A

0
f2(x)g (x)dx for all A > 0.

In our case, Hardy’s lemma yields∫ A

0
eH(x)W (ax)a dx ≤Ca

∫ A

0
eH(x)W (x)dx, (4)

and ∫ A

0
eh(x)W (ax)a dx ≤Ca

∫ A

0
eh(x)W (x)dx. (5)

Therefore, from (3), (4) and (5), we obtain∫ A

0
eH(x)W (x)dx ≤Ca

(∫ A

0
eH(x)W (x)dx

)1/a(∫ A

0
eh(x)W (x)dx

)(a−1)/a

. (6)

As it is assumed in Ariño–Muckenhoupt [1, p. 730], we can also assume that h is constant on [0,d ]
for some d > 0. We can add this restriction on h without loss of generality by use of the monotone
convergence theorem. Then H is also constant on [0,d ] and we have∫ A

0
eH(x)W (x)dx <∞.

By rearranging the inequality (6) using this finite-valued term, we obtain∫ A

0
eH(x)W (x)dx ≤C a/(a−1)

a

∫ A

0
eh(x)W (x)dx.

Letting A tend to ∞, we obtain the desired inequality (2) with the constant C =C a/(a−1)
a . □

Remark 2. In Carleson [4], the power function W (x) = xp (−1 < p <∞) is used as a weight. Then,
the doubling constant is Ca = ap+1, and we have that infa>1 C a/(a−1)

a = lima→1 C a/(a−1)
a = ep+1,

which is known to be the best constant for the power-weighted Pólya–Knopp inequality.
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3. Comments

Comment 3. For the use of Carleson’s approach in the related direction of the weighted Hardy
inequality, see Kwon [6].

Comment 4. Let 1 ≤ p < ∞. Then, the Hardy–Littlewood maximal operator is bounded on
the classical Lorentz space Λp (W ) if and only if W satisfies the Bp condition. See Ariño–
Muckenhoupt [1]. The question that remains is what is the limiting case of this equivalence when
p →∞.
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